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Sewage sludges generation and their disposal have become one of the greatest
challenges of the 21st century. They have great microbial diversity that may impact
wastewater treatment plant (WWTP) efficiency and soil quality whether used as fertilizers.
Therefore, this research aimed to characterize microbial community diversity and
structure of 19 sewage sludges from São Paulo, Brazil, as well as to draw their
relations to sludge sources [domestic and mixed (domestic+industrial)], biological
treatments (redox conditions and liming), and chemical attributes, using molecular
biology as a tool. All sludges revealed high bacterial diversity, but their sources and redox
operating conditions as well as liming did not consistently affect bacterial community
structures. Proteobacteria was the dominant phylum followed by Bacteroidetes and
Firmicutes; whereas Clostridium was the dominant genus followed by Treponema,
Propionibacterium, Syntrophus, and Desulfobulbus. The sludge samples could be
clustered into six groups (C1 to C6) according their microbial structure similarities.
Very high pH (≥11.9) was the main sludge attribute segregating C6, that presented
very distinct microbial structure from the others. Its most dominant genera were
Propionibacterium > > Comamonas > Brevundimonas > Methylobacterium ∼

Stenotrophomonas ∼ Cloacibacterium. The other clusters’ dominant genera were
Clostridium > > Treponema > Desulfobulbus ∼ Syntrophus. Moreover, high Fe and
S were important modulators of microbial structure in certain sludges undertaking
anaerobic treatment and having relatively low N-Kj, B, and P contents (C5). However,
high N-Kj, B, P, and low Fe and Al contents were typical of domestic, unlimed, and
aerobically treated sludges (C1). In general, heavy metals had little impact on microbial
community structure of the sludges. However, our sludges shared a common core of 77
bacteria, mostly Clostridium, Treponema, Syntrophus, and Comamonas. They should
dictate microbial functioning within WWTPs, except by SS12 and SS13.
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INTRODUCTION

Urban centers fast growth and industrial activities intensification
generate high volumes of effluents daily (Atashgahi et al., 2015),
which are collected or discharged into the sewage network
reaching wastewater treatment plants (WWTPs) (Shchegolkova
et al., 2016). WWTPs comprehend efficient and low-cost
processes to treat domestic and industrial effluents (Wen
et al., 2015; Dezotti et al., 2017; Bassin et al., 2018). Among
the treatments, the biological aims to degrade toxic organic
compounds (petroleum derivatives, pharmaceutical compounds,
and other xenobiotics) and reduce pathogenic organisms,
mitigating effects on human health and environment (Seviour
and Nielsen, 2010; Yang et al., 2011; Biswas and Turner, 2012;
Xia et al., 2015). The residue (or by-product) of this activity,
the sewage sludge, has great microbial diversity, which may vary
depending on sewage origin, treatment condition (e.g., liming
and redox conditions), industrial activity, among others.

Many factors may modulate microbial community structure
within WWTPs, which may change from autotrophic to
heterotrophic bacteria depending on effluent source, for example
(Cydzik-Kwiatkowska and Zielińska, 2016). Proteobacteria
phylum (21–65%) was predominant in municipal WWTPs
(domestic sewage), mostly belonging to Betaproteobacteria
that represents a class of microorganisms related to organic
matter degradation and nutrient cycling. Other less dominant
taxa were Bacteroidetes, Acidobacteria, and Chloroflexi (Nielsen
et al., 2010; Wan et al., 2011; Wang et al., 2012). Proteobacteria
was also abundant in industrial sewages that often have high
concentrations of recalcitrant compounds originating from
pharmaceutical industries, petroleum refineries, animal feed
factories, and others (Ibarbalz et al., 2013; Ma et al., 2015).
Biological treatment condition may be another important
modulating factor. For example, microorganisms were most
abundant in both anaerobic and anaerobic-aerobic than in
aerobic system, but Proteobacteria was most abundant in
aerobic whereas Bacteroidetes was most abundant in anaerobic
bioreactors (Hu et al., 2012).

It is also clear that chemical attributes, such as pH and
macronutrient contents (Tan et al., 2006; Ibarbalz et al., 2013;
Gao et al., 2016; Meerburg et al., 2016); presence of toxic
compounds, such as organic pollutants and heavy metals (Bettiol
and Ghini, 2011; Balcom et al., 2016); and biological treatment
(redox) conditions (Hu et al., 2012) can directly impact sludge
bacterial community structure. In Brazil, sulfur oxidoreductive
bacteria community were composed by 22 families, which could
be clustered by sludge sources and chemical attributes, such as S,
K, Zn, Mn, P, and N (Meyer et al., 2016).

Despite the relevance of the microorganisms, the literature
in this field presents some shortcomings. First, there are
several studies addressing sludge microbial community structure
in WWTPs, but they often regard a small number of
samples. Second, current knowledge was attained employing
mainly laboratory bioreactors and pilot systems (Ahmed,
2012; Saia et al., 2016), but controlled operating conditions
(temperature, aeration, and effluent flow) shorten microbial
community diversity (Muszyński et al., 2013, 2015). Third,

several studies used conventional techniques, but only 60–90% of
bacteria population are cultivable. The emergence of molecular
techniques allowed better characterization of microbial structure
and function directly in the environment (Liaw et al., 2010;
Tomazetto and Oliveira, 2013; Lee et al., 2015), as well as better
description of microbial community ecological role (Dezotti
et al., 2017). However, these information are still scarce under
realistic conditions (Biswas and Turner, 2012; Bassin et al., 2018),
and even more in tropical countries.

Therefore, this research work aimed to evaluate whether
microbial community structure of several sewage sludges from
São Paulo State, Brazil, is related to WWTP conditions, such
as sewage source [domestic or mixed (domestic+industrial)],
biological treatment (redox) conditions, liming, urbanization,
and industrial activity; as well as to sludge chemical attributes. It
would supply useful information about hygiene measures needed
and/or potential contamination resulting from sludge application
as soil amendment.

MATERIALS AND METHODS

Samples Collection and Characterization
Sewage sludge samples were collected from 19 WWTPs of
São Paulo State, Brazil. Five samples (SS6, SS7, SS11, SS12, and
SS13) were collected from metropolitan area of São Paulo City,
the most urbanized and industrialized region within São Paulo
State, whereas the others were collected from other municipalities
(Table 1). Sample collection was performed at the sludges
dewatering points, as described by EPA SW-865.

For this purpose, three samples were collected from each
WWTP. Each sample was composed of five subsamples (200 g)
taken in 10-min intervals, mixed, and properly homogenized.
They were conditioned in glass bottles and refrigerated until
analysis according CONAMA Resolution 375/2006 (BRASIL,
2006).

Chemical Attributes of the Samples
Moisture was determined according to EPA-SW 846. For this,
sludge samples of 100 g were oven dried at 65◦C, for 48 h. pH
was measured using 2 g of moist sample and 20 ml of deionized
water, which was stirred for 5 min at 220 rpm and rested for
30 min. For total inorganic N, 5 g of moist samples were distilled
with 50 ml of 1.0 mol L−1 KCl, 0.2 g of MgO, and 0.2 g of
Devarda alloy, which were taken in 5 mL of 20 g L−1 H3BO3
and titrated with 0.0025 mol L−1 H2SO4 (Bremner, 1996). Nitrite
and nitrate were determined according to Mulvaney (1996). For
organic N (N-Kj), 0.05 g of oven dried samples were mixed with
3 mL of concentrated H2SO4, placed in a digester block ( ± 360◦
C) for 3 h, distilled with 20 mL of 10 mol L−1 NaOH, which
were also taken in 20 mL of 20 g L−1 H3BO3 and then titrated
with 0.0025 mol L−1H2SO4 (American Public Health Association
[APHA], 2005). Organic carbon (OC) was determined by the
K2Cr2O7 method (Nelson and Sommers, 1996). Ca, K, P, Mg, S,
Cu, Fe, Ni, Mn, Mo, Si, Zn, Al, As, Ba, Cd, Cr, Pb, Hg, and Na were
extracted in microwave oven, according to EPA (2007). K and
Na were quantified by flame photometry and the other elements
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TABLE 1 | Sewage sludges sources and treatments as well as main chemical attributes.

Sample Treatment pH C/N Fe g kg−1 Al g kg−1 S g kg−1 N-Kj g kg−1 P g kg−1 B mg kg−1

SS01 Ae/D 8.1 6.9 19.9 7.0 11.8 61 16.8 12.4

SS02 Ae/D 7.4 7.7 13.7 10.8 7.9 44 10.2 16.1

SS03 Ae/D 6.5 6.7 4.4 6.7 8.7 58 14.8 22.4

SS04 Ae/D 7.9 7.0 20.9 22.8 15.5 54 17.7 3.5

SS05 Ae/D+L 7.3 6.3 4.5 5.5 8.1 61 13.6 19.6

SS06 Ae/M 8.1 8.8 22.8 22.4 18.4 39 15.0 7.8

SS07 Ae/M 8.0 7.9 42.4 18.4 36.9 40 10.6 14.9

SS08 Ae/M 8.0 6.9 14.8 9.7 14.9 60 9.9 6.4

SS09 Ae/M 7.9 13.2 21.6 18.9 24.9 27 11.0 11.4

SS10 Ae/M 7.2 10.5 24.2 18.3 32.6 38 8.5 7.5

SS11 Ae/M+L 11.1 7.2 84.6 8.2 10.7 28 16.4 15.7

SS12 Ae/M+L 13.1 6.6 29.9 6.8 5.7 44 10.6 3.3

SS13 Ae/M+L 11.9 12.9 38.0 21.1 14.1 17 9.5 6.6

SS14 An/D 8.0 11.2 18.3 13.6 19.3 25 7.7 4.7

SS15 An/M 8.7 10.9 86.8 15.9 17.3 34 13.9 4.1

SS16 AeAn/D 7.9 7.6 22.5 48.5 7.9 35 14.3 1.7

SS17 AeAn/M 8.1 10.5 28.4 18.4 28.7 30 7.6 2.4

SS18 AeAn/M 7.9 8.6 12.4 19.8 19.9 40 11.9 7.4

SS19 AnAe/D+L 6.9 6.3 10.8 10.2 13.4 60 20.5 11.5

Mean 8.4 8.6 27.4 15.9 16.7 42 12.7 9.4

Ae, aerobic; An, anaerobic; D, domestic; M, mixed (domestic+industrial); L, liming.

by inductively coupled plasma atomic emission spectrometry
(ICP-OES).

Total DNA Extraction and Sequencing
From Sludge Samples
For total DNA, 0.4 g of each sewage sludge sample was
extracted individually using MoBio Power Soil DNA Isolation Kit
(MoBio, United States), according to manufacturer’s instructions.
Integrity of the extracted DNA was checked by electrophoresis
(1% agarose gel), which was stained with ethidium bromide and
visualized under ultraviolet light.

DNA sequencing was performed by Illumina MiSeq platform
and library preparation based on Nextera XT index kit (Illumina,
United States), targeting the V4 region of the 16S rRNA
gene. This was amplified using a mixture of 4-Forward and
4-Reverse primers with pre-adapters (Supplementary Table S1).
For the PCR reaction (final volume of 25 µL), 3.0 µL of
PCR Buffer, 2.5 µL of MgCl2 (50 mM), 2.0 µL of DNTPs
(2.5 mM), 0.1 µL of each primer mix, 0.3 µL Taq DNA
polymerase (0.05 U/µL), 16 µL mili-Q water and 1.0 µL template
DNA were utilized. Amplification conditions involved initial
denaturation at 95◦C for 3 min, 30 cycles at 95◦C for 45 s,
57◦C for 1 min: 45 s; 72◦C for 1 min; followed by a final
extension at 72◦C for 4 min (Caporaso et al., 2011). PCR
products were confirmed by electrophoresis in agarose gel (1%)
and resulted in amplified fragments of ∼430 bp. Amplified
DNA was then purified with QiaQuick PCR kit, quantified
by spectrophotometry (ND-1000), and PCR products stored
(−20◦C) for sequencing.

After DNA purification, another PCR reaction was performed
to bind adapters (an index pair) to identify sequence origin. This

consisted of 3.0 µL of PCR buffer, 2.5 µL of MgCl2 (50 mM),
2.0 µL of DNTPs (2.5 mM), 5 µL of each adapter (index), 0.3 µL
of Taq DNA polymerase (0.05 U/µL), 17.2 µL of mili-Q water,
and 15 µL of previous reaction product (final volume = 50 µL).
Amplification conditions consisted of 95◦C for 3 min, five cycles
at 95◦C for 45 s, 57◦C for 1 min: 45 s; 72◦C for 1 min;
followed by a final extension at 72◦C for 4 min. Sequencing
was carried out at the University of São Paulo (USP/ESALQ), by
the Animal Biotechnology Laboratory within the Animal Science
Department.

Bioinformatic and Statistical Analyses
Quantitative Insights into Microbial Ecology (QIIME) program
was used for DNA sequencing analysis (Caporaso et al., 2010).
Sequences quality was set at 20. Removal of poor quality
sequences, primers, barcodes, and adapters were performed
with CLC Genomics Workbench 6 (CLCbio). Operational
taxonomic units (OTUs) were grouped in 3% distance level
(97% of similarity) and classification was performed by the
Ribosomal Database Project (RDP Classifier). OTUs were also
used to estimate ecological parameters using Chao 1, Simpson,
and Shannon diversity indexes. Clustering of the samples was
performed by principal coordinate analysis (PCoA) (Ramette,
2007), and tested by similarity analysis (ANOSIM) on Past R©

software (v.3.2) (Hammer et al., 2001). ANOSIM was also used
to verify sample similarities according sludge sources, biological
(redox) treatments, and liming.

Relationship between bacterial community composition and
sludges sources, treatments, and chemical attributes (pH,
moisture, N-NH4

+, N-NO2
−/NO3

−, organic N (N-Kjeldahl =
N-Kj), organic carbon (OC), K, Ca, Fe, P, S, Mg, Na, Cd, Cr,
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Cu, Hg, Mn, Mo, Ni, Pb, Se, Zn, Al, As, and Ba) were settled
by redundancy analysis (RDA) on Canoco R© software (v.4.5).
Graphics were plotted on Origin R© software (v.10.5), but heatmap
graphical scales were built in R software, using “gplots” and
“RColorBrewer” packages1.

RESULTS

Sewage Sludges Locations, Treatments,
Sources, and Main Chemical Attributes
Samples identification and main chemical attributes affecting
microbial community and their clustering were presented in
Table 1. The other chemical attributes were summarized from
a previous thesis work (Nascimento, 2015) and presented as
supplementary material (Supplementary Table S2). Thirteen
samples underwent aerobic (SS1 to SS13) whereas the other six
(SS14-SS19) underwent either strictly anaerobic or combined
aerobic-anaerobic treatments during biological digestion. Eight
samples were collected from domestic (SS1-SS5, SS14, SS16, and
SS19) whereas the others were collected from mixed sewers.
Only five samples were limed (SS5, SS11, SS12, SS13, and
SS19).

Structure and Composition of Sewage
Sludges Bacterial Communities
A total of 7,219,247 16S RNA gene sequences were attained.
After removal of low quality sequences (cut level = 3%), OTUs
matrixes showed that all sludges presented high diversity indexes
(Supplementary Table S3). Although sequencing would contain
inactive (dormant and dead) microorganisms, it should not
impact diversity as verified by Liang et al. (2017).

RDP Classifier identified 68 phyla, 164 classes, and
665 genera of bacteria. The most abundant phyla were
Proteobacteria > Bacteroidetes > Firmicutes, corresponding
to >73% of the DNA sequences (Figure 1A); whereas the most
abundant classes were Saprospirae > Betaproteobacteria >
Bacteroidia > Clostridia > Deltaproteobacteria (Figure 1B). In
addition, Betaproteobacteria was the most abundant class within
the Proteobacteria phylum (∼37% of the sequences), followed
by Deltaproteobacteria (∼26%), Alphaproteobacteria (∼16%),
and Gammaproteobacteria (∼11%); whereas Saprospirae
was the most abundant class within the Bacteroidetes
(∼46%), followed by Bacteroidia (∼36) and Flavobacteria
(∼3%) (Figures 1A,B). Within the Firmicutes, the most
abundant classes were Clostridia (∼87%) and Bacilli (∼9%)
(Figures 1A,B). Finally, the most abundant genera were
Clostridium > Treponema > Propionibacterium > Syntrophus >
Desulfobulbus > Brevundimonas > Paludibacter > Cloaci-
bacterium > Methylobacterium (Figure 1C). Despite distinctions
in sewage sources and treatments, their bacterial community
presented a common core of 77 genera, being Clostridium,
Treponema, Syntrophus, and Comamonas the most abundant
ones (Supplementary Figure S1).

1https://www.r-project.org

Clusters and Relations With Sludge
Sources, Treatments, and Chemical
Attributes
The sludge samples could be grouped in six clusters according
to PCoA: C1 (SS1, SS2, and SS3), C2 (SS9 and SS16), C3
(SS11 and SS18), C4 (SS4, SS5, SS6, SS7, SS8, and SS19), C5
(SS10, SS14, SS15, and SS17), C6 (SS12 and SS13). Its main
two coordinates explained 36.7% of sludges’ bacterial community
structures (Figure 2). This result was also validated by similarity
analysis of their bacterial communities (Table 2).

C6 showed bacterial community very distinct from the others,
with relative dominance of Propionibacterium, Comamonas,
Brevundimonas, Methylobacterium, Stenotrophomonas, and
Cloacibacterium (Figure 3). The other clusters (C1-C5)
generally presented great abundance of Clostridium, Treponema,
Syntrophus, and Desulfobulbus, except that C1 showed low
abundance of Syntrophus and high abundance of Dechloromonas;
C2 showed relative high abundance of Sedimentibacter; C3
showed relative high abundance of Paludibacter; C4 showed
relative high abundance of Sedimentibacter and also of Dok59 and
Bacillus; and C5 showed relative high abundance of Paludibacter,
PD-UASB-13, Desulfovibrio, and E6 (Figure 3).

Sewage sources (domestic or mixed) and biological treatments
(redox conditions) did not affect consistently the bacterial
community structuring (Table 3), suggesting that clusters were
formed due to other factors, likely related with sludges chemical
attributes as suggested by RDA (Figure 4). In fact, pH (λ = 0.11,
P-value < 0.002), Fe (λ = 0.07, P-value < 0.002); B and Mg
(λ = 0.06, P-value < 0.002); Na (λ = 0.05, P-value < 0.002);
and P, Ba, organic N (N-Kj), and Ca (λ = 0.04, P-value < 0.002)
contents were the sludge attributes most related to microbial
community structuring and clustering; whereas organic carbon
(OC), inorganic N (in the different forms), Hg, Se, and
As contents, C/N ratio, and moisture were not correlated
with sludges bacterial community structures (λ < 0.01 and
P-value > 0.05) (Supplementary Table S2).

DISCUSSION

Structure and Composition of Sewage
Sludges Bacterial Communities
WWTPs bacterial community exhibited low variation at higher
taxonomical levels (e.g., phylum) even for distinct geographic
regions and sludge treatments (Philippot et al., 2010; Ibarbalz
et al., 2013; Hatamoto et al., 2017) (Figure 1A). In all
samples, independently of sewer operating condition, the most
abundant phyla were Proteobacteria > Bacteroidetes > Firmicutes
(Figure 1A). Similar results were reported for sludges from China
(Zhang et al., 2012; Shu et al., 2015b; Gao et al., 2016; Liang et al.,
2017). However, the literature shows some contrasting results.
Meerbergen et al. (2017) found predominantly Proteobacteria,
Bacteroidetes, and Actinobacteria for domestic sludges, but
Planctomycetes, Chloroflexi, Acidobacteria, and Chlorobi for
industrial sludges. Proteobacteria usually predominated in
domestic sewage sludges, corresponding from 30 to 65% of
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FIGURE 1 | Relative microbial community abundance of 19 sewage sludges from São Paulo State, Brazil. (A, phyla; B, classes; C, genera; Others, members with
relative abundance < 1%).

the total sequences (Liang et al., 2017; Meerbergen et al.,
2017), as well as in various other environments, such as soil
(Roesch et al., 2007; Spain et al., 2009; Sun et al., 2015) and
rhizosphere (Jiang et al., 2016). Proteobacteria usually presented
wide diversity and metabolic capacity, acting in important
environmental functions such as the cycles of C, N, S, and P
(Friedrich et al., 2005; Meyer et al., 2016). Bacteroidetes were often
reported as proteolytic bacteria, involved in degrading protein

to volatile phenolic acids and ammonia (NH3) (Yi et al., 2014).
Their abundance was correlated with total solid contents when
submitted to anaerobiosis (Liu et al., 2016). Firmicutes were
often widely distributed in anaerobic sludge treatment systems
(Yang et al., 2014) and were versatile in degrading a vast array
of environmental substrates (Liu et al., 2016). They may act on
metabolic pathways responsible for producing volatile fatty acids,
which can be used by other microbial groups.
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FIGURE 2 | Principal coordinate analysis (PCoA) for bacterial community structure of 19 sewage sludges from São Paulo State, Brazil (n = 3). Axis values indicated
percentage of variance.

The most abundant classes were Saprospirae > Betaproteo-
bacteria > Bacteroidia > Clostridia > Deltaproteobacteria >
Alphaproteobacteria > Gammaproteobacteria > Actinobacteria
> Spirochaetes (Figure 1B). Liang et al. (2017) and Shu et al.
(2015a) reported relative high abundance of Betaproteobacteria,
which is often associated with organic matter degradation and
S cycle (Friedrich et al., 2005; Takai et al., 2005). In Denmark,
however, several studies reported low occurrence of Saprospirae
in full scale WWTPs (Nielsen et al., 2012; Kong et al., 2007;
Muszyński et al., 2015). The members of this class were
predominant in marine environments, but could also be found
in fresh water and sewage sludges degrading complex organic
compounds (Nielsen and McMahon, 2014).

Lower taxonomic levels (e.g., genus) showed higher bacterial
community differentiation among WWTPs (Figure 1C),
corroborating with the literature (Philippot et al., 2010; Ibarbalz
et al., 2013). The most abundant genera were Clostridium >
Treponema > Propionibacterium > Propionibacterium >
Syntrophus > Desulfobulbus > Comamonas > Brevundimonas >
Paludibacter > Cloacibacterium > Methylobacterium >
Sedimentibacter > Stenotrophomonas (Figure 1C). A great
diversity of bacterial genera were also described in the literature
(Lee et al., 2015), which several times differed from ours (Ibarbalz
et al., 2013; Stiborova et al., 2015; Gao et al., 2016). It could be
explained by the fact that WWTPs comprise open and very
dynamic systems allowing rapid succession among microbial
community members during spatial and temporal scales (Shu
et al., 2015a). Nevertheless, our samples showed a common
nucleus of 77 bacteria, represented mostly by Clostridium,
Treponema, Syntrophus, and Comamonas (Supplementary
Figure S1). Gao et al. (2016) identified a common nucleus of

177 genera for sewage sludges from China. This shared core
of bacteria is usually responsible for the main functions in the
environment (Shu et al., 2015b). Several pathogenic bacteria,
such as Clostridium, Treponema, Stenotrophomonas, Bacillus,
Mycobacterium, and Acinetobacter were also identified, in
accordance to Stiborova et al. (2015).

Clusters and Relations With Sludge
Sources, Treatments, and Chemical
Attributes
Sewage sources (domestic or mixed) and biological treatments
(redox conditions) did not affect microbial community structure

TABLE 2 | Analysis of similarity (ANOSIM) for microbial community structure and
clusters formation for 19 sewage sludges from São Paulo State, Brazil.

Rvalue

Clusters C1 C2 C3 C4 C5 C6

C1 0.00 0.33 0.69∗ 0.50∗ 0.96∗ 1.00∗

C2 – 0.00 0.41 0.09 0.81∗ 1.00

C3 – – 0.00 0.26 0.38 1.00∗

C4 – – – 0.00 0.53∗ 0.58∗

C5 – – – – 0.00 0.99∗

C6 – – – – – 0.00

Based on the OTUs matrix attained by 16S rRNA sequencing (Illumina platform).
C1, SS1, SS2, and SS3; C2, SS9 and SS16; C3, SS11 and SS18; C4, SS4, SS5,
SS6, SS7, SS8, and SS19; C5, SS10, SS14, SS15, and SS17; C6, SS12 and
SS13. Rvalue = degree of similarity; Rvalue > 0.75 means that samples differed;
0.50 > Rvalue > 0.75 means that samples overlapped; and Rvalue < 0.50 means
that samples did not differ. ∗Pvalue < 0.002.
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FIGURE 3 | Heatmap of the 20 most abundant bacterial genera found in 19
sewage sludges from São Paulo State, Brazil. C1, cluster 1 (n = 3 samples);
C2, cluster 2 (n = 2 samples); C3, cluster 3 (n = 2 samples); C4, cluster 4
(n = 6 samples); C5, cluster 5 (n = 4 samples); and C6, cluster 6 (n = 2
samples). Red color, most abundant genus; Yellow, least abundant genus.

(Table 3) and diversity (Chao1, Simpson and Shannon)
(Supplementary Table S3), at least not consistently, similarly
to Hai et al. (2014). However, Gao et al. (2016) found that
biological treatment (redox conditions) influenced microbial
community, which was more diverse in aerobic tanks; whereas
Meerburg et al. (2016) reported structural differences in the
bacterial community of domestic and industrial sludges. Gao
et al. (2016) found a common core of 177 bacteria genera to
their samples and we found a common core of 77 bacteria
that corresponded to 85% of the identified sequences. They
considered only seven samples from strictly domestic sewers
that would explain their greater similarity. Normally, bacterial
communities of domestic sewers are more diverse due to its larger
fraction of readily degradable organic material (Meerbergen
et al., 2017). Industrial sewers receive recurrent discharges of

TABLE 3 | Analysis of similarity (ANOSIM) for microbial community structure as
affected by sources and treatments of 19 sewage sludges from São Paulo State,
Brazil.

Sludge treatment Rvalue Ae AeAn AnAe

Ae 000 0.0631 0.2454∗

Ae-An – 000 0.3214∗

An-Ae – – 000

Sludge source Rvalue D M D+L M+L

D 000 0.1406 0.2507 0.3179∗

M – 000 0.1490 0.4504∗

D+L – – 000 0.1736

M+L – – – 000

Based on the OTUs matrix attained by 16S rRNA sequencing (Illumina platform).
Ae, aerobic; AeAn, aerobic then anaerobic; AnAe, anaerobic then aerobic; D,
domestic; M, mixed (domestic+industrial); D+L, domestic with liming; M+L, mixed
with liming; Rvalue, degree of similarity; Rvalue > 0.75 means that samples differed;
0.50 > Rvalue > 0.75 means that samples overlapped; and Rvalue < 0.50 means
that samples did not differ. ∗Pvalue < 0.002.

more recalcitrant and toxic pollutants (Gao et al., 2016), such
as heavy metals and antimicrobial agents (Bettiol and Ghini,
2011; Balcom et al., 2016), thus limiting microbial diversity.
Hu et al. (2012) reported high similarity between bacterial
communities of five sludges from China, whereas Zhao et al.
(2014) reported substantial disparity, mainly due to their spatial
variation and biological composition. Meyer et al. (2016) also
reported significant variation in the structure of S oxidoreductive
bacteria from south Brazil.

On the other side, certain chemical attributes showed
direct connections to sludge microbial community structures
(Figure 4 and Supplementary Table S2), favoring samples
segregation in clusters (Figure 2 and Table 2). High pH
values (≥11.9) resulted from liming were responsible for
segregating C6 (SS12 and SS13) and enhancing Ca contents
(Figure 4). Its most abundant phyla were Actinobacteria,
Proteobacteria, and Bacteroidetes; whereas the most abundant
genera were Propionibacterium, Comamonas, Brevundimonas,
Methylobacterium, Stenotrophomonas, and Cloacibacterium
(Figure 3). Other limed samples (SS5, SS11, and SS19) presented
lower pH (Table 1) and; therefore, very distinct microbial
structure from C6. Despite having similar operating conditions
as SS12 and SS13, SS11 also showed slightly lower pH as well as
lower Cu and Zn and higher Fe and Pb contents (Table 1). It
has been demonstrated that 1 pH-unit may considerably affect
bacterial community structure and composition (Fierer and
Jackson, 2006). Gao et al. (2016) also observed distinct phylogeny
(Proteobacteria, Bacteroidetes, Acidobacteria, Chloroflexi, and
Firmicutes) at lower pH values (∼8.0). Liming to high pH values
usually decreases microbial community diversity (Blaszczyk
and Krzysko-Lupicka, 2013; Farzadkia and Bazrafshan, 2014),
being an important tool promoting sludge hygienization (i.e.,
pathogens control). In our case, high pH did not affect microbial
diversity (Supplementary Table S3) but affected its structure
inclusive favoring extremotolerant bacterial groups, such as
Actinobacteria (Figure 1A). Several studies showed that pH
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FIGURE 4 | Redundancy analysis (RDA) between chemical attributes and bacterial community of 19 sewage sludges from São Paulo State, Brazil (n = 3 replicates).

affected microbial community diversity and composition in soils
(Rousk et al., 2009; Cho et al., 2016; Wu et al., 2016) and sewage
sludges (Maspolim et al., 2015). Lauber et al. (2009) found that
bacterial phyla (Acidobacteria, Actinobacteria, Bacteroidetes, and
α, β, and γ-Proteobacteria) relative abundance did not depend on
sludge location, but on pH instead. Therefore, pH may modulate
microbial community by controlling nutrients availability and
enzymatic processes that are essential to microbial metabolism
(Fierer and Jackson, 2006; Madigan et al., 2016).

C5 (SS10, SS14, SS15, and SS17) segregation was related
mostly to Fe but also to S, B, P, and N-kj, and contents
(Figure 4). These samples underwent anaerobic treatment,
except for SS10 (Table 1). Under anaerobiosis, both Fe and
S have important roles in redox reactions (Ma et al., 2014),
acting as final electron acceptors (Moreira and Siqueira, 2006;
Shrestha et al., 2009; Alexandre et al., 2012). Fe is reduced
to its most soluble form (Fe3+

→ Fe2+) (Shrestha et al.,
2009) and reducing bacteria are important mediators of C
and N transformations (Tan et al., 2006; Wang et al., 2009;
Ding et al., 2014). Several bacteria associated with Fe reduction
were identified, such as Acidithiobacillus, Ferrimicrobium, and
Nitrospira (Figure 1B). In parallel, S reduction generates energy
in anaerobic environments (Aida et al., 2014); and it is crucial in
structuring microbial community. It could be ratified by relative
high abundance of Desulfobulbus and presence of Desulfovibrio
as well as Desulfococcus, Desulforhabdus, and Desulfovirga in
the samples (Figure 1C). Desulfovibrio, Desulforhabdus, and
Smithella were very efficient in removing S from anaerobically
treated sludges (Aida et al., 2015). SS10 was the only sample
having aerobic treatment and showed the highest S concentration
(Table 1). C5 samples had lower N-Kj likely due to denitrification

(Yamashita and Yamamoto-Ikemoto, 2014), resulting sludges
with slightly higher C/N ratios (10.8 versus 8.0) (Table 1).
Systems operated initially under anaerobic followed by aerobic
conditions usually contribute most to N loss since they warranty
anoxic denitrification and aerobic nitrification, thus converting
ammonia (NH4

+) to gaseous N (N2, NO2, and N2O) (Ruiz et al.,
2006; Kassab et al., 2010; Yao et al., 2013a,b; Zhang et al., 2014).
These samples also showed low P and B contents (Table 1).

All C1 samples (SS1, SS2, and SS3) derived from domestic
sewers, aerobically treated and without liming (Table 1). They
presented higher B, P, and N-Kj as would be expected from
their higher organic matter pool, thus generating sludges with
lower C/N ratios (Table 1). They also presented high Na and
low Fe and Al contents (Table 1), which would be expected by
their source nature (domestic). The most abundant genera were
Clostridium > Dechloromonas >> Treponema > Desulfobulbus
> Dok59 (Figure 3). Likewise, Clostridium, Treponema, and
Desulfobulbus were also abundant in C2 and C3 (Figure 3).
High abundance of Clostridium in domestic sludges was expected
since it represents 10–40 % of human intestinal microbiota
(Manson et al., 2008; Lopetuso et al., 2013). Clostridium was
usually the most abundant genera in activated sludges, whereas
Desulfobulbus and Dechloromonas were often associated with
nutrients (such as N and S) removal from WWTPs (Aida et al.,
2015).

Toxic inorganic elements, such as heavy metals (excluding the
micronutrients), did not impact microbial community structure
(Supplementary Table S2 and Figure 4). These element contents
were below those set by the Brazilian legislation for sludge use
in agriculture (CONAMA 375/2006). Only one sample (SS7)
exceeded threshold concentration for Ni and three (SS1, SS12,
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and SS13) for Zn, but both are plant micronutrients. On the other
side, Cd, Cr, and Ag inhibited important microorganisms for
biological treatment, thus impacting sludge bacterial community
(Wells et al., 2011).

CONCLUSION

All sewage sludges presented high bacterial diversity. Their
sources and biological treatment (redox) conditions did not
consistently affect bacterial community structures. Overall,
Proteobacteria was the dominant phylum, followed by
Bacteroidetes and Firmicutes. Their predominant classes were
Betaproteobacteria (∼37%), Saprospirae (∼46%), and Clostridia
(∼87%), respectively. Clostridium was the dominant genera,
followed by Treponema, Propionibacterium, Syntrophus, and
Desulfobulbus. Moreover, the samples were clustered into
six groups according similarity of microbial community
structures, which were related to their chemical attributes.
High pH values (≥11.9) resulted from liming impacted mostly
bacterial community structures and segregated C6, in which
predominated Propionibacterium, Comamonas, Brevundimonas,
Methylobacterium, and Cloacibacterium that are extremotolerant
organisms. However, Clostridium, Treponema, Desulfobulbus,
and Syntrophus were usually the most abundant ones in
the other clusters, except that C1 presented relatively high
abundance of Dechloromonas; C2 and C4 presented relatively
high abundance of Sedimentibacter, and C3 and C5 presented
relatively high abundance of Paludibacter. High Fe and S
contents were important modulators of microbial structure for
certain sludges undertaking anaerobic treatments and having
relatively low N-kj, B, and P contents (C5); whereas high N-Kj,
B, and P contents were important modulator for domestic,

aerobically treated, and unlimed sludges having low Fe and
Al contents (C1). Toxic inorganic elements, such as heavy
metals (excluding micronutrients), had little impact on microbial
community structure of the sludges. Nevertheless, the sludges
shared a common core of 77 bacteria, being Clostridium,
Treponema, Syntrophus, and Comamonas the most abundant
ones.
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