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The Persian Gulf is a special habitat of marine sponges whose bacterial communities
are under-investigated. Recently, next-generation sequencing technology has
comprehensively improved the knowledge of marine sponge-associated bacteria. For the
first time, this study aimed to evaluate the diversity of the Persian Gulf sponge-associated
bacteria using tag pyrosequencing in Iran. In this study, 10 sponge samples from 6
different taxonomic orders were collected from the Persian Gulf using SCUBA diving.
The diversity of the bacteria associated with the marine sponges was investigated using
the 76S rRNA gene PCR-tagged pyrosequencing method. A total of 68,628 high-quality
sequences were obtained and clustered at a 97% similarity into 724 unique operational
taxonomic units (OTUs), representing 17 bacterial phyla. Cyanobacteria was the most
abundant phylum in the sponges, followed by Proteobacteria, Chloroflexi, Acidobacteria,
and Actinobacteria. Other phyla were detected as minor groups of bacteria. Bacterial
community richness, Shannon, and Simpson indices revealed the highest diversity in
sponge S11 (Dictyoceratida sp.) compared to other sponges. This study showed a
diverse structure of bacterial communities associated with the Persian Gulf sponges.
The dominance of Cyanobacteria may suggest an ecological importance of this phylum
in the Persian Gulf sponges.

Keywords: sponge, symbionts, bacterial diversity, 454 pyrosequencing, the Persian Gulf

INTRODUCTION

Marine sponges (phylum Porifera) are known as the oldest multicellular animals (metazoans)
(found more than 600 million years ago) (Lee et al., 2011; Verhoeven et al., 2017) and represent
ecologically important reef builders in benthic communities’ worldwide (Bayer et al., 2014; Graca
etal., 2015). In the last decade, sponges have attracted research interests because of their symbiotic
relationships with a wide range of microbial communities including bacteria (Lee et al., 2011;
Giles et al., 2013; Gao et al., 2014a), archaea (Zhang et al., 2014), Cyanobacteria (Gao et al., 2017;
Regueiras et al., 2017), and fungi (Maldonado et al., 2005). The sponge-associated microorganisms
can constitute up to 40-60% of the total sponge biomass (Gao et al., 2014a; Graca et al., 2015;
Gaikwad et al., 2016). They may play crucial roles in sponge survival in the marine ecosystem
including recycling of nutrients such as nitrogen and sulfur (Montalvo et al., 2014; Zhang
et al., 2014), removing metabolic waste (Jackson et al., 2012), and producing bioactive secondary
metabolites (Graga et al., 2015).
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Extensive studies have been conducted to investigate
the bacterial communities associated with different sponge
species using both culture-dependent and culture-independent
techniques (Giles et al., 2013; Jeong et al., 2014). As is common
with most environments, <1% of bacteria present in sponge
tissues can be successfully cultivated (Nam et al., 2011; Jackson
et al, 2012). In the past two decades, culture-independent
methods (mainly based on 16S rRNA gene) have led to a deeper
understanding of the microbial diversity in sponges (Alex and
Antunes, 2015). Numerous sponge-associated bacteria have
been identified using culture-independent techniques such as
denaturing gradient gel electrophoresis (DGGE) (Li et al., 2006),
fluorescent in situ hybridization (FISH) (Bayer et al., 2014),
terminal restriction fragment length polymorphism (TRFLP)
analyses (Zhang et al., 2006; Lee et al., 2011), PCR cloning and
sequencing (Kennedy et al., 2008). The 454 tag pyrosequencing
is a next-generation sequencing (NGS) technology that provides
a faster and simpler way to analyze the microbial communities
associated with marine sponges (Webster et al., 2010; Lee et al.,
2011; Schmitt et al., 2012; Gao et al., 2014a; Gaikwad et al., 2016).
This new method enables hundreds of thousands of nucleotide
sequences from multiple samples to be examined in a single 10 h
reaction (Lee et al., 2011; Nam et al., 2011; Jeong et al.,, 2013,
2014).

The next-generation sequencing techniques have revealed
the presence of more than 25 different bacterial phyla and 2
archaeal lineages in marine sponges around the world (Moitinho-
Silva et al., 2014; Rodriguez-Marconi et al., 2015; Verhoeven
etal., 2017). Members of the phyla Actinobacteria, Acidobacteria,
Cyanobacteria, Chloroflexi, Proteobacteria, Bacteroidetes, and
Firmicutes have been described in association with different
marine sponges (Jackson et al., 2012; Giles et al., 2013; Bayer
etal., 2014). However, the marine bacterial communities can vary
in different sponges with respect to both microbial richness and
diversity.

The Persian Gulf, a small, shallow, semi-enclosed body of
water bordered by the Arabian Peninsula and Iran, is a unique
and greatly underexplored marine ecosystem. There are about
55 sponge genera recorded in the Persian Gulf (Najafi, 2012).
However, next-generation sequencing technology has not been
applied to identify the sponge-associated bacterial communities
in Iran and the Middle East.

The present study was aimed at characterizing the bacterial
community associated with the marine sponge species collected
from the Persian Gulf, Iran using 454 pyrosequencing.

MATERIALS AND METHODS
Sponge Sampling

Sponge sampling was performed in May to September 2016 at a
depth of 2-3 m offshore Bushehr, Persian Gulf, Iran by SCUBA
diving. In this study, the sponges were living in an area where it
was exposed to light. Sponge samples were placed in sterile plastic
Ziploc bags containing seawater and immediately transported
to the Persian Gulf of Marine Biotechnology Research Center.
Sponge tissues were rinsed with 0.22-pm-membrane-filtered
seawater (FSW) to remove exogenous materials and loosely

attached microbes (Jackson et al., 2012). The samples were stored
at —80°C until further processing.

Ethics Statement
In this study, the sponges collected did not involve endangered
or protected sponge species. No specific scientific research

permission was required to collect the sponges from the Persian
Gulf.

Sponge Identification

Sponge taxonomic identifications were confirmed with a
combination of multilocus DNA markers. The cytochrome
oxidase subunit 1 (COI) and partial 28S rDNA fragments (ITS)
were amplified using specific primers as previously reported
(Becking et al., 2013). PCR amplifications were carried out on
a thermal cycler PeQlab, peqSTAR 96X Universal Gradient,
Germany under the following conditions: 94°C for 30s; followed
by 35 cycles of 94°C for 553 50°C for 5 s; 72°C for 12 s; followed by
72°C for 1 min (Becking et al., 2013). PCR products were purified
and sequenced by Macrogen Inc. (Seoul, Korea).

Also, morphological and spicule examination was carried
out by Dr. Yusheng M. Huang (National Penghu University of
Science and Technology, Taiwan). List of sponge species collected
from different locations of the Persian Gulf is shown in Table 1.

Metagenomic DNA Extraction From
Sponges

Frozen sponge tissues were defrosted and washed with sterilized
and filtered seawater. Then, they were cut into small pieces (about
1 cm?) and ground to fine powder under liquid N, using a sterile
pestle and mortar (Jackson et al., 2012; Bayer et al., 2014). DNA
was extracted using a hexadecyltrimethylammonium bromide
(CTAB) method. Briefly, a subsample of approximately 100 mg
of each sponge tissue was suspended in lysis buffer [100 mM
Tris, 100 mM EDTA, 1.5 M NaCl (w/v), 1% CTAB (w/v), 2% SDS
(w/v)]. Then they were disrupted in the presence of factors such
as proteinase K and extraction buffer containing chloroform:
isoamyl alcohol (24:1). Samples were washed with a solution
of phenol-chloroform in a few steps for DNA purification.
Finally, DNA was precipitated with sodium acetate (3M, pH
5.2) and isopropanol, then washed in 70% ethanol, dried and re-
dissolved in TE buffer (Jackson et al., 2012; Schmitt et al., 2012).
Metagenomic DNA was qualified by agarose gel electrophoresis
[1% w/v agarose in Tris-acetate-EDTA (TAE) buffer]. The
quantitative assessment of the isolated DNA was carried out
using a NanoDrop 1000 spectrophotometer (Thermo Scientific,
Wilmington, DE, USA). The high-quality DNA was stored at
—20°C until use (Schmitt et al., 2012; Jasmin et al., 2015).

Pyrosequencing of Barcoded 716S rRNA

Gene Amplicons

In this study, the universal primers 27F and 518R were
used to amplify a ~ 400 bp fragment of the bacterial 16S
rRNA gene targeting the V1 to V3 hyper-variable regions.
These regions were amplified using primer sets (V1-27F: 5'-
X-MID-GAGTTTGATCMTGGCTCAG-3’ and V3-518R: 5'-X-
MID-WTTACCGCGGCTGCTGG-3'), in which X indicates the
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TABLE 1 | List of sponge species collected from different locations of the Persian Gulf.

Site Collection Coordinate Depth Temp Sample Sponge species Taxonomy

date (m) © ID
Class Order Family

PG1 September  27.8238N, ~2 32.0 S02 Suberites diversicolor Demospongiae  Suberitida Suberitidae
2016 51.8948 E

PG1 September  27.8238N, ~2 32.0 S03 Pseudoceratina arabica Demospongiae Verongida Pseudoceratinidae
2016 51.8948 E

PG2 July 28.9817N, 3 29.6 S04 Chondrilla sp. Demospongiae Chondrillida Chondrillidae
2016 50.8243 E

PG2 July 28.9817N, 3 29.6 S05 Cladocroce sp. Demospongiae  Haplosclerida Chalinidae
2016 50.8243 E

PG2 July 28.9817N, 3 29.6 S06 Cladocroce sp. Demospongiae  Haplosclerida Chalinidae
2016 50.8243 E

PG2 July 28.9817N, 3 29.6 S07 Halichondria sp. Demospongiae  Halichondrida Halichondriidae
2016 50.8243 E

PG3 May 28.9816 N, 3 28.0 S09 Chondrilla sp. Demospongiae Chondrrillida Chondillidae
2016 50.8253 E

PG3 May 28.9816 N, 3 28.0 S10 Halichondria sp. Demospongiae Halichondrida Halichondriidae
2016 50.8253 E

PG3 May 28.9816 N, 3 28.0 S11 Dictyoceratida sp. Demospongiae  Dictyoceratida Unclassified
2016 50.8253 E Dictyoceratida

PG3 May 28.9816N, 3 28.0 S13 Ircinia ramose Demospongiae Dictyoceratida Irciniidae
2016 50.8253 E

adapter sequences and MID (multiplex identifier) shows the
different oligomers comprised of 10 nucleotides to tag different
samples for barcoded pyrosequencing (Table 2; Jeong et al., 2013,
2014). This approach allowed for the mixing of multiple samples
in parallel and re-sorting the sequences into order (Nam et al.,
2011; Jackson et al.,, 2012). PCR amplification was performed
in a volume of 50 wL containing 3mM of MgCl,, 0.2mM of
dNTPs, 2.5U of Pfu Turbo DNA polymerase (Stratagene, La
Jolla, CA, USA), 1X Pfu reaction buffer, 0.1 uM of each pair
of barcoded primers, and 20 ng of metagenomic DNA (Lee
et al.,, 2011; Gao et al., 2014a). PCR was conducted in a Thermal
Cycler (Applied Biosystems ABI Perkin Elmer 9600 GeneAmp)
using the following conditions: an initial denaturation at 95°C
for 5min, followed by 35 cycles of denaturation at 95°C for
60, annealing at 55°C for 60 s, extension at 72°C for 60's, and
a final extension at 72°C for 5min (White et al., 2012). The
PCR amplicon libraries were purified using the NucleoSpin® Gel
and PCR Clean-up (Macherey-Nagel, Germany) and quantified
using NanoDrop 1000 spectrophotometer (Thermo Scientific,
Wilmington, DE, USA). Pyrosequencing was performed through
a GS FLX Titanium system (454 Life Sciences) according to the
manufacturer’s instructions (Roche, Germany) by a commercial
sequencing provider (Macrogen, Seoul, Korea).

Processing of 454 Tag Sequences Data

In the present study, the sequences generated from
pyrosequencing were analyzed as previously reported (Jeong
et al.,, 2014). The low-quality sequences were filtered from the
raw reads using Trimmomatic v0.30 (Gaikwad et al., 2016).
Briefly, sequences with a read length of less than 172 bp or

with mismatches on primer or barcode, a quality score of less
than 25 with ambiguous bases N and homopolymers longer
than 6 nucleotides were removed from further analysis (Gao
et al., 2014a; Moitinho-Silva et al., 2014; Rodriguez-Marconi
et al., 2015; Gaikwad et al., 2016). Final sequences that passed
the quality checks were then assigned to respective samples
based on the barcodes and subjected to Denoiser to increase
the accuracy of the sequence processing (Gao et al., 2014a).
The sequences were merged into one file and clustered into
operational taxonomic units (OTUs) using the Quantitative
Insights Into Microbial Ecology Toolkit (QIIME), version 1.8.0.
(Caporaso et al., 2010). Chloroplast and mitochondria sequences
and chimeric reads were excluded from downstream analyses.
In this study, the chimeric reads were removed through the CD-
HIT-OTU program (http://cd-hit.org). Taxonomic assignment
of representative OTU sequences was performed using the
UCLUST (version 1.2.22) taxonomy assigner method (Edgar,
2010) against the SILVA release 119 database as a reference.
To have more information about the strains, each OTU was
compared to the most closely related 16S rRNA gene sequences
from the NCBI nucleotide databases using BLAST search.
Phylogenetic analysis was inferred by using the Maximum
Likelihood method based on the Tamura-Nei model (Tamura
and Nei, 1993). Also, the evolutionary analysis was conducted
using MEGA version 7.0 (Kumar et al., 2016).

Analysis of Microbial Richness and
Diversity

Taxonomic abundance was presented in the phylum, class,
order, family, and genus. Alpha diversity metrics were computed
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TABLE 2 | The MID barcodes for the amplification of 76S rRNA genes.

Sample S2 S3 S4 S5 S7 S9 S$10 S11 S$13
MID ACGAG ACGCT CTCTA AGCAC ATCAG ATATC CTGTA CTCGC TAGAC TGATA
TGCGT CGACA CGCTC TGTAG ACACG GCGAG CATAC GTGTC TGCAC CGTCT

(observed species, Chaol, Shannon and inverse Simpson) among
sponge samples using the QIIME package with a step size of
100 and 100 repetitions per step. These indices were presented
to evaluate the richness and evenness of the associated bacteria
within each sponge sample (Caporaso et al.,, 2010). To show
whether the number of reads used in the analysis was sufficient in
identifying species/OTU, rarefaction curves were calculated using
the QIIME script alpha_rarefaction.py. (Caporaso et al., 2010).
Good’s coverage index was calculated as C = 1-(s/n), where “s” is
the number of unique OTUs and “n” is the number of individuals
in the sample (Naim et al, 2014). The beta diversity among
the microbial communities in different sponges was evaluated
using UniFrac analysis and the QIIME package (Caporaso et al.,
2010). The phylogenetic tree was constructed with the FastTree
program to cluster the samples by an unweighted-pair group
method with arithmetic mean (UPGMA) using average linkages
(Nam et al., 2011; Giles et al., 2013). Also, principal coordinate
analysis (PCoA) plots were provided using the QIIME to visualize
the effect of the microbial community on structuring the diversity
in different sponges (Caporaso et al., 2010).

RESULTS

Sponge Taxonomic Identification

In this study, 10 sponge samples were collected from three
different sites in the Persian Gulf to evaluate their bacterial
diversity (Table 1). Taxonomic identification of the sponges using
a combination of multilocus DNA markers (28S rDNA and COI
mtDNA) showed that the sponges belong to families Suberitidae,
Pseudoceratinidae, Chondrillidae, Chalinidae, Halichondriidae,
unclassified Dictyoceratida, and Irciniidae (Table 1).

Bacterial Richness and Diversity Analyses
A combined total of 134,495 raw pyrosequencing reads of the
bacterial 16S rRNA gene fragment comprising 52,835,851 bases
were obtained from the sponge samples. Trimming and quality
filtering of the raw reads derived 68,628 high-quality sequences.
These denoised sequences were clustered at a 97% similarity
into 724 unique OTUs. The highest number of OTUs was
obtained from the sponge Dictyoceratida sp. (S11), representing
165 OTUs and minimum of 29 OTUs from the sponge Suberites
diversicolor (S02).

In this study, 7.43% of 16S rRNA gene fragments were
unassigned OTUs at the phylum level. To have more
detailed confirmation of the OTU representative sequences
corresponding to unassigned, we extracted the sequences from
each OTU and performed a BLAST search to check the sequences
corresponding to the conserved region of the target region (16S
rDNA). But the closest known sequences had less than 89%

similarity rate (Supplementary Table 1) and the phylogenetic tree
was not informative. Therefore, these OTUs were not included
in subsequent analyses. The total number of reads retrieved and
OTUs from each sponge are shown in Table 3.

Rarefaction plots were constructed based on OTUs at a 97%
sequence similarity cut-off value by the QIIME package. Alpha
rarefaction curve showed that a reasonable number of reads
have been used in analysis and identifying species/OTU. The
sequencing depth of the sponge samples indicated the microbial
communities were very well sampled (Figure1). However,
additional reads may be required to discover more OTUs for the
samples such as S02 to show their total bacterial diversity. OTU
based alpha diversity measures and Chaol estimation of species
richness revealed the highest richness of bacterial species in the
sponge S11 and lowest in the sponge S02 (Table 3). Microbial
community diversity, Shannon and Simpson indices displayed
the highest community diversity and obviously distinguished the
sponge S11 when compared to other sponge species collected
from the same location (Table 3). In this study, mean and s.d.
Expected richness (Chaol) was 80.242 + 37.647, non-parametric
Shannon (H’) was 3.28 + 1.070 and Simpson (D) was 0.774 +
0.141. Also, the obtained average of the Good’s coverage index
was 99.8 % =+ 0.001 for all the sponge species.

Taxonomic Composition of Bacterial

Pyrosequencing Reads
Taxonomic assignment of the sequences of each OTU (68,628)
was classified in the domains Bacteria (92.57% of the total
dataset). Altogether, 17 bacterial phyla were recovered from the
sponge samples. In the present study, 72.96% of the bacterial
reads from the sponge samples were affiliated with two dominant
phyla, Cyanobacteria (44.22%) and Proteobacteria (a-, f-, and
y- classes) (28.74%) (Figure 2). While the other reads belonging
to Chloroflexi (8.67%), Acidobacteria (7.13%), Actinobacteria
(4.72%), Bacteroidetes (2.04%), Gemmatimonadetes (2.04%),
the candidate phylum TM7 (0.81%), Planctomycetes (0.69%),
Deferribacteres (0.47%), Nitrospirae (0.19%), Firmicutes
(0.10%), BD1-5 (0.07%), Tenericutes (0.06%), Armatimonadetes
(0.02%), TM6 (0.02%), and Chlorobi (0.01%) were detected to
be the minor groups in the sponge communities. Sponge S11
was obviously distinguished from the other sponges, in terms of
containing taxa from 15 different bacterial phyla and candidate
phyla. Other sponge samples contained 5 to 10 bacterial and
candidate phyla. Also, the candidate phyla BD1-5 and TM6, and
some phyla such as Firmicutes, Tenericutes, Armatimonadetes,
and Chlorobi were only identified in sponge S11.

Diversity sponge-associated bacteria at the lower taxonomic
levels showed that 45 classes and 87 orders were recovered
from all datasets. Cyanophyceae (in Cyanobacteria),
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TABLE 3 | The observed number of operational taxonomic units (OTUs) and estimations of richness (Chao1) and diversity index (Shannon, Simpson) for 16S rRNA

libraries of the Persian Gulf sponge samples.

Sponge ID Total reads OTU richness OTU diversity Goods coverage (%)
Observed OTUs Chao1E Shannon Simpson
S02 2,886 29.0 34.25 2.58 0.75 99.7
S03 3,433 67.0 76.33 4.62 0.92 99.8
S04 5,769 49.0 52.0 4.03 0.92 99.9
S05 6,083 47.0 50.27 2.57 0.75 99.8
S06 11,423 75.0 80.14 2.40 0.67 99.9
S07 7,358 67.0 81.25 2.45 0.73 99.7
S09 6,552 55.0 58.33 4.46 0.93 99.9
S10 10,910 95.0 114.25 1.94 0.48 99.8
S11 7,584 165.0 165.0 4.77 0.87 99.9
S13 6,630 75.0 90.6 2.98 0.72 99.8

S11

OTUs

$10

$13
S06

0 L " s " L
0 1000 2000 3000 4000 5000 6000 7000
Sequences Per Sample

FIGURE 1 | Rarefaction plot of OTU diversity in sponge samples collected
from the Persian Gulf. Rarefaction curves were constructed at a 97%
sequence similarity cut-off value by the QIIME package.

Gammaproteobacteria, Alphaproteobacteria were the major
classes in the sponges, making up 43.78, 15.82, and 7.79%,
respectively. The bacterial communities in sponges at the order
level were heavily loaded with Synechococcales (43.78%) in
Cyanobacteria and Rhodobacterales (16.32%) and Rhizobiales
(9.42%) in Proteobacteria. At all the three levels of taxonomic
classification, the bacterial community in the sponge SI1
was more diverse than those associated with other sponges.
Interestingly, sponge S11 has contained more rare bacteria
compared with other 9 sponges. In addition, the bacterial
compositions in the same sponges (e.g., S05 and S06) from
similar sites did vary substantially (Figure 2).

BLASTN and Phylogenetic Relationships of
Highly Abundant OTUs

To have more information about the sponge-associated bacteria
strains, the representative sequences of each OTU were compared

against the nucleotide database in GenBank. In this study, the
first 27 OTUs with average proportions of more than 0.5% among
sponge samples are shown in Figure 3. The most predominant
OTU was OTU_denovo0 in the phylum Cyanobacteria, which
accounted for proportions of 16.60% in the sponge-associated
bacteria and shared the highest similarity (99%) to Synechococcus
rubescens (Table 4). The second most dominant OTU was
OTU_denovo2 in the phylum Proteobacteria, which accounted
for proportions of 5.30% and shared 93% identity with
the closest relative Proteobacteria bacterium Sinobacterium
caligoides (Table 4). The phylum Proteobacteria was divided into
more than 100 OTUs mainly belonging to Gammaproteobacteria,
Alphaproteobacteria, and Betaproteobacteria. Following these
symbionts in terms of relative abundance were OTU_ denovol
in the phylum Cyanobacteria, OTU_denovo4 in Acidobacteria
(read count: 1614), and OTU_denovo9 in Chloroflexi (read
count: 1472) (Figure 3). Another highly abundant OUT in
the phylum Cyanobacteria was related to OTU_denovoll that
affiliated with Prochlorococcus marinus with an identity of
97%. Details of all cyanobacterial and proteobacterial sequences
included in the study are summarized in Table 4. Also, the
evolutionary analysis of these two dominant phyla involved 127
nucleotide sequences and are shown in Figure 4.

Clustering of Sponges According to

Bacterial Diversity

Weighted UPGMA tree from the Unifrac analysis was
constructed to show the relationships between different
sponges according to their bacterial communities (Figure 5). In
this study, sponge S11 was always distinct from the others in
all trees. Also, sponges S4 and S9 exhibited the same topology
and the closest distance to each other. The association among
other sponges was not noticeable in the Unifrac UPGMA tree
topologies. Because the bacterial profiles in each sponge were
highly different from each other. Further, the difference in
the bacterial community structure of the sponge samples was
evaluated using Principal coordinate analysis (PCoA) plot based
on the unweighted unifrac distance metrics (Figure 6). Sponge
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FIGURE 2 | Taxonomic classification of bacterial sequences retrieved from different sponge samples collected from the Persian Gulf at the phylum level. Refer to
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FIGURE 3 | The relative abundance of OTUs with average proportions of more than 0.5%. The Standard Deviations (SD) were shown with error bars.
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S11 formed a distinct clade and showed notable differences from
other sponges. Three pairs of sponges belonged to the same
species (Table 1). But each pair was clustered in different clades
except for the species Chondrila sp. (S04 and S09). Also, only the
sponges S02, S10, and S13 contained Cyanobacteria as a major
phylum.

DISCUSSION

Recently, marine sponges have been a major target of
different studies due to their abundant and diverse microbial

communities, ecological roles, production of novel bioactive
natural compounds, and biotechnological significance
(Menezes et al., 2010; Alex and Antunes, 2015). However,
our understanding of bacteria-sponge interactions, nature,
and diversity of bacteria associated with marine sponges is
still incomplete. There are significant gaps in research on
the bacterial composition, function, and maintenance of the
symbiotic relationships (Menezes et al., 2010; Verhoeven
et al., 2017). Deep sequencing approaches such as 454 tag
pyrosequencing can be used to explore the microbial diversity of
sponges with high efficiency rather than was possible by clone
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library construction and Sanger sequencing methods (Gao et al.,
2014a; Moitinho-Silva et al., 2014).

Taxonomic Richness and Bacterial

Community Diversity

In this study, the number of unique OTUs (724) is in accordance
with a study on 12 different marine sponge species from the
Atlantic coast, where only 686 OTUs at 97% sequence similarity
reported (Alex and Antunes, 2015). Here, the low diversity of
OTUs in bacterial communities might be related to the bias
of selected primers (V1-V3), in comparison to V3-V4 and V6
regions in other studies (Lee et al., 2011; Gaikwad et al., 2016;
Souza et al., 2017). It will be led to inefficient amplification of the
bacterial 16S rRNA genes (Gao et al., 2017). On the other hand,
differences in sampling depth and the water temperature may
affect the number of OTUs in our sponge-associated bacterial
communities than other studies (Jackson et al.,, 2012; Alex and
Antunes, 2015; Souza et al., 2017). Another possibility may be
because of the difference in using various bioinformatics patterns
to analyze the sponge data. In CD-HIT-OTU program, when
defining the OUT, there is a step to remove a cluster with fewer
reads, such as a singleton or doubleton, as noise. This is not the
same OTU picking method in MOTHUR or QIIME. It looks like
the total number of OTU appears to be low when removing low
size clusters. In the present study, the cutoff X value defined as
the low size cluster was applied as 7, and the cluster consisting of
less than 7 reads were removed without being picked by OTU. At
this time, the total number of reads removed is 46,318.

In this study, alpha rarefaction curve showed that a reasonable
number of reads have been used in analysis and identifying
species/OTU. The bacterial richness estimation reported in the
Persian Gulf sponges ranged from 29 to 165 OTUs. It is
concordant with the range observed (29-370 OTUs) in a study
targeting 12 marine sponge species sampled from the Atlantic
coast (Alex and Antunes, 2015). In contrast, higher bacterial
richness (570-3,013 OTUs) was found in the sponge-specific
bacterial communities in Irish waters (Jackson et al., 2012) and
also in the sponges from the Red Sea (251-444 OTUs) (Moitinho-
Silvaetal., 2014). Also, (Thomas et al., 2016) showed contributing
marine sponges to the total bacterial diversity of the world’s
oceans, with a bacterial richness accounted for 50-3,820 OTUs in
each sponge (Thomas et al., 2016). In the present study, diversity
index and number of OTUs were higher in sponge S11 compared
to other sponges. Sponge S11 was obviously distinguished from
the other sponges, in terms of containing taxa from 15 different
bacterial phyla and candidate phyla. At all the three levels of
taxonomic classification, the bacterial community in the sponge
S11 was more diverse than those associated with other studied
sponges. Interestingly, sponge S11 has contained more rare
bacteria compared with other sponges.

Taxonomic identification of sponge S11 using a combination
of multilocus DNA markers showed that the sponge belongs to
the genus of Dictyoceratida sp. Many studies have considered
the order Dictyoceratida as the largest producer of new marine
natural products, contributing more than 20% of all sponge-
derived novel compounds (Mehbub et al., 2014, 2016). Different

bacterial communities associated with the order Dictyoceratida
are reported to produce a wide range of natural compounds with
a variety of biological activities (Thakur et al., 2005; Mehbub
etal., 2014, 2016). Also, Sponge S11 formed a distinct clade in the
weighted UPGMA tree from Unifrac analysis and showed notable
differences from other sponges.

Interestingly, in this study, the bacterial compositions in
the same sponges (S05 and S06) from similar sites did vary
substantially. There was a 100 m distance between the sampling
sites of these two sponges. This finding confirms the previous
studies, indicating that two cohabiting sponges may have
different bacterial signatures (Jasmin et al., 2015; Jeong et al.,
2015).

In the present study, a small number of OTUs (7.43%) were
recorded as unassigned at the phylum level, after quality filtering
and removal of chimera. When alignment is performed with
UCLUST in the Reference DB, it means that there are no more
than 90% references to match (OTU representative sequence).
Unassigned OTUs may be a sequencing error element (Chimera,
etc.) that could not be removed in the previous step (OTU
picking step). Because there is no match result due to high
cut off value, 90%. The frequency of unassigned OTUs was
also maintained, after re-analysis of the OTU representative
sequences corresponding to unassigned in a BLAST search for
the conserved region of the target region (16S rDNA). These
OTUs were not included in further analyses, but their presence
is noteworthy. However, this number was much lower than those
reported from Florida (White et al., 2012) and Indonesia (Cleary
etal., 2013), where 36 and 34% of OTUs could not be assigned to
any bacterial phylum, respectively.

Community Composition of

Sponge-Associated Bacteria

One of the highlights of our study was the high frequency
of Cyanobacteria in the Persian Gulf sponges, contributing
44.22% of the total phylum-level diversity. Also, the presence
of Cyanobacteria was confirmed in all the sponges studied
with various abundance. Cyanobacteria were also the dominant
phylum in the sponge samples reported from other tropical and
subtropical regions (Alex et al., 2012; Gao et al., 2014a, 2017;
Regueiras et al., 2017).

Within this phylum, our sponge samples contained a high
proportion (97.37%) of free-living Synechococcus. BLAST search
further revealed the dominant OTU in sponge samples and
showed a high similarity with previously reported freshwater-
specific species “Synechococcus rubescens” isolated from the
deep subalpine lakes (central Europe), Lake Biwa (Japan), Lake
Balaton (Hungary), and the Baltic Sea (Ernst et al., 2003). The
Cyanobacteria Synechococcus has considered as an autotrophic
plankton community and a substantial fraction of marine
primary production (Flombaum et al., 2013), as sponge feeding
on Cyanobacteria has been extensively confirmed (Pile et al.,
1996; Hadas et al., 2009). This genus of marine bacteria has widely
distributed in many ocean regions, covering both polar and
high-nutrient waters (Flombaum et al., 2013). Furthermore, the
cyanobacterial Synechococcus lineage is believed to have several
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ecotypes that are adapted to different environmental conditions
including light, temperature, nutrients, and chlorophyll a
concentration (Flombaum et al, 2013). It is possible that
the core OTUs illustrate bacterial sponge ecotypes that are
matched to the niche sponges and are probably environmentally
transmitted (Schmitt et al, 2012). As Cyanobacteria are the
center of carbon fixation and provide necessary nutrients to
photosynthetic sponge hosts (Taylor et al., 2007), the high
abundance of Cyanobacteria further indicated the specific roles of
photosynthetic bacteria and their profitability in sponge biology
(Lemloh et al., 2009; Alex et al., 2012).

The Persian Gulf sponges were recurrently exposed to light
in low depth (<3 m) in this study. Therefore, the prominence
of photosymbionts was predictable in these sponges. In spite of
the important role of Cyanobacteria, they are typically absent in
Antarctic sponges (Rodriguez-Marconi et al., 2015). It seems that
environmental factors such as temperature, salinity or nutrient
levels might impact the composition of bacterial community
structures in different sponges (Giles et al., 2013; Cuvelier et al.,
2014).

The co-evolution and functional aspects of sponge-
cyanobacteria associations have not been revealed in details.
Sponges may acquire their cyanobacterial symbionts by vertical,
horizontal or combined transmission routes (Thacker and
Freeman, 2012). The genome-level research on cyanobacterial
symbionts of sponges showed that they have general and specific
adaptations to life within the sponge host in comparison with
free-living cyanobacteria (Gao et al., 2014b; Burgsdorf et al,
2015). Sponge symbionts have adapted mechanisms to actively
seek out by their sponge hosts (Webster and Thomas, 2016).
For example, cyanobacterial symbionts contains large number
eukaryotic-like domains, such as ARs. These domains may be
involved in avoiding digestion by the sponge host (Gao et al,
2017).

Lifestyle evolutionary and functional studies on other
functions enriched and depleted in cyanobacterial symbionts
of sponges compared to members of the closely related free-
living strains reveled the precise and smart adaptation of
cyanobacteria to live in full of challenge sponge’s intercellular
environment. Sponge amoebocytes may not actively distinguish
between food bacteria and their cyanobacterial symbionts
(Webster and Thomas, 2016). Hence, the depleted genes
involved in biosynthesis of LPS O antigen in cyanobacterial
symbionts of sponges produces a defense mechanism against
sponge predation and phage attack (Burgsdorf et al, 2015;
Webster and Thomas, 2016). In functional profile studies
of bacterial symbionts with sponges, common functions in
similar niches were found, indicating functionally convergence
of symbionts in the divergent hosts (Fan et al., 2012; Rua et al.,
2015). The biological and ecological roles of these functional
equivalences may be of general importance for the adaptation
of cyanobacterial symbiont to the sponge host environment and
other symbiotic interactions.

In the present study, Proteobacteria was the second most
abundant phylum in the microbiome of sponge-associated
bacteria. Our study is in accordance with other studies showing

FIGURE 4 | Molecular phylogenetic analysis of Cyanobacteria (red color) and
proteobacteria (blue color) phyla in sponge samples based on the bacterial
16S rRNA gene in GenBank. Tree topology constructed using Maximum
Likelihood method, with bootstrap values >90%. Scale bar: 0.06 substitutions
per nucleotide position.
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FIGURE 5 | Weighted UPGMA tree from Unifrac analysis showing
relationships between different sponges according to bacterial communities.
The figure was constructed on the basis of tag pyrosequencing data. The
scale bar represents the distance between clusters in UniFrac units.

proteobacteria as one of the most diverse phyla of sponge-
isolated bacterial communities, irrespective of the habitat
(Menezes et al., 2010; Schmitt et al., 2012; Jeong et al., 2014, 2015;
Gao et al., 2017). In Proteobacteria phylum, OTUs were mainly
affiliated with Gammaproteobacteria, Alphaproteobacteria,
Betaproteobacteria classes, respectively. Multiple studies have
highlighted the presence of Gammaproteobacteria in marine
invertebrates, such as sponges (Menezes et al., 2010; Giles et al.,
2013; Graga et al., 2015; Rodriguez-Marconi et al., 2015), corals
(Sun et al, 2014), and oysters (Garnier et al,, 2007). In this
study, Gammaproteobacteria accounted for 15.82% of the total
bacterial community, including mainly isolates belonging to
genus Nitrosococcus. Different species of the genus Nitrosococcus
are well known as ammonia-oxidizing bacteria (AOB), inducing
the process of nitrification in different sponges and removing
the ammonia excreted by the sponge host (Hentschel et al.,
2006; Gao et al.,, 2017). The combined action between AOB
and nitrite-oxidizing bacteria (NOB), such as members of the
phylum Nitrospirae might then be responsible for the conversion
of ammonia to nitrate in sponges (Bayer et al., 2007; Han
et al,, 2013). In the present study, nitrite-oxidizing phylum
Nitrospirae (0.19%) was identified as one of the minor phyla in
the Persian Gulf sponges. Our study is in accordance to other
pyrosequencing studies in which Nitrospirae constituted a small
portion of reads, accounted for 0.01-3% among several sponge
species (Webster et al., 2010; Lee et al., 2011; Bayer et al., 2014;
Gaikwad et al., 2016).

Chloroflexi was ranked as the third most abundant group
(8.67%) using our sequencing approach. In this study, sponge 04
(Chondrilla sp.) harbored the largest proportion of Chloroflexi
in comparison to other sponges. The presence of this phylum
was previously reported in the Mediterranean sponge Chondrilla
nucula using a clone library of 16S rRNA gene sequences (Thiel
et al., 2007). The Chloroflexi is one of the most common and
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FIGURE 6 | Principal coordinate analysis (PCoA) plot of sponge samples
obtained with the unweighted UniFrac distance metric.

diverse bacterial phyla associated with a wide range of sponges,
with many sponge-specific lineages detected (Schmitt et al., 2011;
Hardoim et al, 2012; Jeong et al, 2013; Gao et al., 2017).
Different studies have revealed the important role of Chloroflexi
in nutrition, defense (Hardoim et al., 2012) and carbon fixation
through photosynthesis in marine sponges (Briick et al., 2010),
indicating its autotrophic lifestyle. In the present study, the
Chloroflexi OTUs were closer to the autotrophic lineages.

Actinobacteria was another phylum inhabiting the Persian
Gulf sponges. This phylum has been widely reported in marine
sponges (Schmitt et al., 2012; Giles et al.,, 2013; Bayer et al,
2014; Cuvelier et al., 2014; Naim et al., 2014). Different studies
have been considered Actinobacteria as an important source of
bioactive natural products (Izumikawa et al., 2010; Pimentel-
Elardo et al.,, 2010; Abdelmohsen et al.,, 2012), protecting the
sponge hosts against pathogens (O’Connor-Sanchez et al., 2014).
There is a possibility that this phylum may provide new
opportunities for novel marine drug discovery.

The candidate division TM?7, also known as phylum
candidatus Saccharibacteria, is a highly ubiquitous and
uncultured phylum of bacteria, described through environmental
16S rRNA gene sequence and genome data only (Ferrari et al,,
2014). The existence of this phylum has widely been reported
from different sponges (Webster et al., 2010; Lee et al., 2011;
Schmitt et al., 2012; Gao et al., 2014a; Montalvo et al., 2014; Alex
and Antunes, 2015; Gaikwad et al., 2016). In the present study,
TM7 was found at very low abundance in some sponge species.
It highlights the importance of deep sequencing technology
for detection of the sponge-associated uncultivated bacteria
and rare microbial groups in sponges. Otherwise, they might
have been not discovered by other routine molecular methods
(Lee et al., 2011). However, because of the lack of cultivated
representatives and minimal genomic sampling knowledge on
the metabolism and biological activities of this enigmatic group
has been remained unclear (Ferrari et al., 2014).
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The candidate phylum Poribacteria is a sponge-specific
phylum that has been widely detected and described in a variety
of sponge species (Lafi et al., 2009; Cleary et al., 2013). This
candidate phylum has typically been reported in high microbial
abundance (HMA) sponge microbiomes (Hochmuth et al., 2010)
and considered as “indicator species” for these group of sponges
(Bayer et al., 2014). However, unexpectedly, no Poribacteria was
found in sponges of the present study.

One reason for the lack of Poribacteria in the Persian
Gulf sponges could be related to the use of different primers
and bioinformatics pipelines (Souza et al., 2017). Also, some
studies have shown that Poribacteria has not been associated
with the orders such as Halichondrida, Dictyoceratida, and
Haplosclerida (Lafi et al., 2009; Jeong et al., 2013). Noteworthy,
these orders have been among the six orders found in this
study. In addition, in contrast to other studies conducted on
sponges (Kennedy et al., 2008; Montalvo et al., 2014; Alex and
Antunes, 2015), the Verrucomicrobia and Spirochaetes phyla
were not observed in the bacterial community of the Persian Gulf
sponges.

Our study showed that more than 90% of the microbial groups
observed in the Persian Gulf sponges were also represented
in other studies conducted on the seawater samples (Lee
et al, 2011; Schmitt et al., 2011; Gao et al.,, 2014a; Alex and
Antunes, 2015). Nitrospirae, Tenericutes, Armatimonadetes, and
the two candidate phyla BD1-5 and TM6 were the only bacterial
communities reported exclusively in association with the marine
sponges.

Our results showed that the representative OTUs sequences
were related to sequences mainly from marine environments
such as seawater and marine sediments. Interestingly, sponges
had a very low proportion of the isolation source in the
closest relative bacteria. Also, some sequences were related
to other marine invertebrates such as abalone, octocoral,
sea cucumber, oyster, ascidian, starfish, etc. This finding
supports the hypothesis of possible environmental acquisition
and/or horizontal transmission of bacteria (Moitinho-Silva
et al, 2014; Alex and Antunes, 2015). It seems that innate
immune system in sponges is responsible for differentiation
between symbionts and food microbes (Miller and Miiller,
2003). As a result, some overlap between the bacteria
in the surrounding seawater and marine sponges would
occur. A further deep-sequencing approach is needed to
improve our knowledge about the nature of the bacterial
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