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Insoluble extracellular electron donors are important sources of energy for anaerobic
respiration in biogeochemical cycling and in diverse practical applications. The previous
lack of a genetically tractable model microorganism that could be grown to high
densities under anaerobic conditions in pure culture with an insoluble extracellular
electron donor has stymied efforts to better understand this form of respiration. We
report here on the design of a strain of Geobacter sulfurreducens, designated strain
ACL, which grows as thick (ca. 35 µm) confluent biofilms on graphite cathodes poised
at −500 mV (versus Ag/AgCl) with fumarate as the electron acceptor. Sustained
maximum current consumption rates were >0.8 A/m2, which is >10-fold higher than
the current consumption of the wild-type strain. The improved function on the cathode
was achieved by introducing genes for an ATP-dependent citrate lyase, completing the
complement of enzymes needed for a reverse TCA cycle for the synthesis of biosynthetic
precursors from carbon dioxide. Strain ACL provides an important model organism for
elucidating the mechanisms for effective anaerobic growth with an insoluble extracellular
electron donor and may offer unique possibilities as a chassis for the introduction of
synthetic metabolic pathways for the production of commodities with electrons derived
from electrodes.
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INTRODUCTION

The ability of some microorganisms to accept electrons from insoluble extracellular sources to
support anaerobic respiration is of biogeochemical significance and can be harnessed for diverse
practical applications. However, elucidating the mechanisms for this type of electron transport
has been limited by a lack of genetically tractable anaerobes that can be effectively grown in pure
cultures with insoluble electron donors.

Examples of biogeochemically significant anaerobic oxidation of insoluble extracellular electron
donors include oxidation of reduced humic substances (Lovley et al., 1999; Coates et al., 2002)
and direct interspecies electron transfer (DIET) in which methanogens consume electrons either
through direct biological electrical connections (Rotaru et al., 2014a,b; Holmes et al., 2017) or
conductive materials (Kato et al., 2012; Liu et al., 2012; Chen et al., 2014a,b).
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DIET may be of practical significance during anaerobic
digestion of organic wastes (Morita et al., 2011; Rotaru et al.,
2014b; Shrestha et al., 2014) and many studies have demonstrated
how promoting DIET can accelerate and stabilize the anaerobic
digestion process (Cheng and Call, 2016; Lovley, 2017b,c). Direct
electron transfer from zero valent iron to microorganisms may
be an important mechanism for anaerobic corrosion (Dinh et al.,
2004; Uchiyama et al., 2010; Enning et al., 2012; Kato et al., 2014).
Feeding microorganisms electrons with an electrode is becoming
an increasingly attractive possibility for the production of biofuels
and other organic commodities, as well as for bioremediation
of organic and metal contamination (Thrash and Coates, 2008;
Lovley, 2011; Lovley and Nevin, 2013; Rosenbaum and Henrich,
2014; Tremblay and Zhang, 2015; May et al., 2016; Tremblay
et al., 2017).

Some strategies for anaerobic growth with extracellular
electron donors are not conducive for detailed molecular
investigation of metabolism. For example, growth with humic
substances or their analogs yields low maximum cell densities
of ≤2 × 107 cells per ml (Lovley et al., 1999; Coates et al.,
2002). More biomass can be obtained in co-cultures in which the
genetically tractable Geobacter sulfurreducens grows by oxidizing
the reduced soluble humics analog anthrahydroquinone-2,6-
disulfonate (Smith et al., 2015) or via DIET (Summers et al.,
2010; Shrestha et al., 2013a,b). However, the presence of
the electron-donating partner in these co-cultures complicates
mechanistic studies. Substantial iron mineral crusts are associated
with cells growing by accepting electrons from zero valent
iron (Dinh et al., 2004; Uchiyama et al., 2010; Enning et al.,
2012).

Pure culture studies on electron transfer to electrodes have
been a powerful approach to elucidate mechanisms for electron
transfer to extracellular electron acceptors because they provide
an inert surface with a well-defined redox potential (Lovley, 2012,
2017a; Shi et al., 2016). For example, Geobacter sulfurreducens
generates high current densities (Nevin et al., 2008; Yi et al., 2009)
and forms thick (ca. 100 µm) biofilms on graphite electrodes
serving as an electron acceptor, which has facilitated diverse gene
expression, proteomic, and genetic investigations (Holmes et al.,
2006; Reguera et al., 2006; Nevin et al., 2009; Franks et al., 2010,
2012; Inoue et al., 2010; Malvankar et al., 2011, 2012a,b; Leang
et al., 2013; Chan et al., 2017).

G. sulfurreducens is also capable of growing with electrons
derived from graphite electrodes (i.e., cathodes). However,
cathode biofilms of wild-type G. sulfurreducens consume 20-
fold less current than they produce on anodes and biofilms
do not extend beyond a mono-layer on the cathode surface
(Gregory et al., 2004; Strycharz et al., 2011). Much higher current
consumption by G. sulfurreducens on stainless steel cathodes
was reported (Dumas et al., 2008), but we have been unable
to replicate those results. Furthermore, even in those studies,
cathode biofilms were thin and patchy. Other genetically tractable
microorganisms that can also consume electrons from cathodes
include G. metallireducens (Gregory et al., 2004), Shewanella
oneidensis (Ross et al., 2011), Clostridium ljungdahlii (Nevin
et al., 2011), and Rhodopseudomonas palustris (Bose et al., 2014).
However, all of these microorganisms grow poorly on cathodes, if

at all. The cathode biofilms are sparse and current consumption
rates are low.

Here, we report on a strain of G. sulfurreducens constructed to
enable autotrophic growth. Surprisingly, this strain grew much
more effectively on cathodes than the wild-type strain, providing
a robust, genetically tractable microbe for the study of cathode-
based growth.

MATERIALS AND METHODS

Strains and Growth Conditions
G. sulfurreducens strain DL-1 was obtained from our laboratory
culture collection and was routinely cultured under anaerobic
conditions with acetate as the electron donor and fumarate as the
electron acceptor, as previously described (Coppi et al., 2001). In
order to construct G. sulfurreducens strain ACL, the genes aclA
and aclB, which encode the two subunits for the ATP-citrate lyase
of Chlorobium limicola (Kanao et al., 2001), were synthesized
with codon optimization for G. sulfurreducens with GenScript
(Supplementary Figure S1). A BamHI-EcoRI fragment of the aclA
and aclB genes was cloned in pKIapr as previously described
(Ueki et al., 2017).

Escherichia coli NEB 10-beta (New England Biolabs) was used
for plasmid preparation and grown in LB medium supplemented
with appropriate antibiotics, as necessary. The synthetic ATP-
citrate lyase genes were introduced into the chromosome adjacent
to the gene (GSU1106) for citrate synthase in G. sulfurreducens
strain DL-1 (Figure 1) with previously described methods (Ueki
et al., 2017). Expression of the introduced genes was induced by
isopropyl β-D-1-thiogalactopyranoside (IPTG) at a concentration
of 1 mM.

Cells were grown with H2 as the electron donor and Fe(III)
citrate as the electron acceptor as previously described (Coppi
et al., 2004). The addition of acetate (1 mM) as a carbon
source was necessary to maintain strain DL-1. Fe(II) production
was analyzed with ferrozine (Lovley and Phillips, 1987). To
estimate cell biomass, total cell extracts were prepared with
B-PER Complete Bacterial Protein Extraction Reagent (Thermo
Fisher Scientific) and the amount of protein was measured
with the Bradford Protein Assay (Bio-Rad) as instructed by the
manufacturer.

Growth on Cathodes and Anodes
Cells were grown under anaerobic conditions in two-chambered
bioelectrochemical devices with graphite electrodes and
potentiostat control of the anode or cathode potential, as
previously described with graphite electrodes of 65 cm2 (Nevin
et al., 2009; Strycharz et al., 2011). Cathodes were poised at –
500 mV versus Ag/AgCl with fumarate (40 mM) as the electron
acceptor. Anodes were poised at +300 mV versus Ag/AgCl with
acetate (10 mM) as the electron donor.

Confocal Microscopy
Biofilms on graphite cathodes were prepared using the
LIVE/DEAD BacLight viability kit with antifade as previously
described, except that isotonic wash buffer was used for rinsing
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FIGURE 1 | Geobacter sulfurreducens strain ACL capable of autotrophic growth. (A) Enzymes for reverse TCA cycle encoded in the native G. sulfurreducens
genome and the requirement for ATP-dependent citrate lyase (in red) to complete the pathway. (B) Location of ATP-dependent citrate lyase genes within the
G. sulfurreducens strain ACL chromosome. Citrate lyase genes: aclA and aclB; Lac repressor gene; lacI; tac-lac promoter/lac operator (IPTG-inducible): P/O;
Apramycin resistance gene: aprR. (C) Fe(II) production from the reduction of Fe(III) with H2 as the electron donor following the first transfer of a 1% inoculum from
cultures grown with acetate as the electron donor and Fe(III) as the electron acceptor. (D) Fe(II) production from the reduction of Fe(III) with H2 as the electron donor
after a second transfer with a 2% inoculum of strain ACL from (C) into fresh medium. Inset-increase in protein concentration of strain ACL associated with Fe(III)
reduction. The results are the means of duplicate cultures.

and staining/destaining for 15 min (Nevin et al., 2008; Yi
et al., 2009). Confocal scanning laser microscopy was imaged
using a Leica TCS SP5 microscope, HCX PL FLUOTAR L 40×
(numerical aperture 0.6) objective, and Leica LAS AF software
(Yi et al., 2009).

RESULTS AND DISCUSSION

In order to construct a strain of G. sulfurreducens that did
not require an organic carbon source, we built on previous
analysis (Mahadevan et al., 2006; Feist et al., 2014) that suggested
that G. sulfurreducens lacks a complete pathway for carbon
dioxide fixation. Introduction of an ATP-dependent citrate lyase
provides the one enzyme that G. sulfurreducens requires for a
complete complement of enzymes necessary for a reverse TCA
cycle (Figure 1A and Supplementary Table S1) that has the
potential to make necessary biosynthetic precursors from carbon
dioxide. Therefore, codon-optimized genes for the two subunits
of this enzyme from Chlorobium limicola (Kanao et al., 2001)
were introduced into the chromosome adjacent to the gene

(GSU1106) for citrate synthase (Figure 1B). This strain was
designated G. sulfurreducens strain ACL (ATP-dependent citrate
lyase).

As previously reported (Coppi et al., 2004), the wild-type
strain of G. sulfurreducens could not sustain metabolism with H2
as the electron donor and Fe(III) citrate as the electron acceptor
in the absence of a carbon source (Figure 1C). However, strain
ACL grew in repeated transfers into Fe(III) citrate medium with
H2 provided as the electron donor and carbon dioxide as the sole
carbon source (Figure 1D). Fe(III) reduction was accompanied
with an increase in cell protein (Figure 1D, inset). These results
demonstrated that expression of the citrate lyase was sufficient to
confer the capacity for autotrophic growth.

Strain ACL grew well on cathodes in a medium in which
cathodes were the sole electron donor, fumarate was the
electron acceptor, and acetate was not added as a carbon
source (Figure 2). The improved growth of strain ACL on
the cathodes was visible as thick, red biofilms (Figure 2A). In
contrast, wild-type cells grew poorly, even with the addition
of an acetate carbon source (Figure 2A). Confocal scanning
laser microscopy images of the cathodes colonized by strain
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FIGURE 2 | Cathode biofilms and current consumption. (A) Appearance of cathode biofilms of strain ACL and the control strain without citrate lyase genes.
Confocal scanning laser micrographs of cathode biofilms of ACL (B) and wild-type (C) strains treated with Live/Dead stain. (D) Representative current consumption
of ACL strain as current consumption rate (mA) and total cumulative coulombs consumed. Size bar = 50 µm.

ACL revealed thick biofilms (ca. 35 µm) that predominantly
stained green with Live/Dead stain, suggesting that cells were
metabolically active and had intact membranes (Figure 2B).
Wild-type cathode biofilms were thinner (<10 µm), very patchy,
and stained predominately red, suggesting that many of the
cells were moribund (Figure 2C). The growth of strain ACL
on cathodes was accompanied by current consumption that
consistently maximized at more than 5 mA (Figure 2D and
Supplementary Figure S2). This is more than 10-fold the
maximum current consumption of ≤0.5 mA typically observed
with the wild-type strain (Gregory et al., 2004; Strycharz et al.,
2011).

The stoichiometry of total current consumption and
the simultaneous recovery of electrons in the reduction of

fumarate to succinate by mature cathode biofilms of strain
ACL was determined over 6-h intervals in three separate
bioelectrochemical devices. Coulombs of current consumed
from the electrode and coulomb equivalents recovered in
succinate production for the three replicate systems were: 40
coulombs consumed/41 equivalents recovered in succinate
(recovery 102.5%); 103 coulombs consumed/96 equivalents
recovered in succinate (recovery 93.2%); and 139 coulombs
consumed/145 equivalents recovered in succinate (recovery
104.3%); yielding a mean and standard deviation of 100 ±6% for
electron recovery in the triplicate studies.

Strain ACL generated currents comparable to the wild-
type strain with acetate as the electron donor (Supplementary
Figure S3). Carbon dioxide fixation by the reverse TCA cycle
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is not required during growth on acetate. Thus, possession of
ATP-dependent citrate lyase would not be expected to enhance
current production by strain ACL.

IMPLICATIONS

G. sulfurreducens strain ACL is, to our knowledge, the first pure
culture shown to grow anaerobically to high cell densities with
electrons derived from a cathode as the sole electron donor.
An additional benefit is that methods for genetic manipulation
of G. sulfurreducens (Coppi et al., 2001; Chan et al., 2015,
2017; Ueki et al., 2016); a genome-scale understanding of many
aspects of central metabolism (Mahadevan et al., 2006, 2011);
and a developing model for electron transfer to extracellular
electron acceptors (Lovley et al., 2011; Shi et al., 2016) are all
available as tools to facilitate elucidation of the mechanisms
of electron transfer from extracellular electron donors into
cells.

In addition to expressing the required electron carriers, cells
accepting electrons from electrodes must also balance carbon
and electron flow in a manner that effectively supports growth.
The complex regulatory networks in G. sulfurreducens evolved
to recognize the availability of natural electron donors (Lovley
et al., 2011). They may not be optimized to balance metabolism
in wild-type cells presented with both acetate and cathodes, an
unnatural source, as electron donors. The ability of strain ACL
to grow autotrophically removes the complication of acetate as a
second potential electron donor.

Genetic and metabolic modeling tools will aid in further
evaluating this hypothesis of metabolic imbalance in wild-type
cells and may lead to the design and construction of strains with
enhanced ability for electron uptake on cathodes. For example,
strains of G. sulfurreducens with faster rates of electron transfer

to extracellular electron acceptors have been developed from the
understanding of mechanisms for long-range electron transfer to
extracellular electron acceptors and central metabolism (Izallalen
et al., 2008; Tremblay et al., 2011; Malvankar et al., 2012a; Leang
et al., 2013).

As the availability of renewable sources of electricity rises,
and costs decline, feeding microorganisms electrons with an
electrode is becoming an increasingly attractive possibility for the
production of biofuels and other organic commodities (Lovley,
2011; Lovley and Nevin, 2013; Rosenbaum and Henrich, 2014;
Tremblay and Zhang, 2015; May et al., 2016; Tremblay et al.,
2017). Strain ACL may be the ideal chassis for such endeavors.
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