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Lactobacillus rhamnosus GR-1
Ameliorates Escherichia
coli-Induced Activation of NLRP3
and NLRC4 Inflammasomes With
Differential Requirement for ASC

Qiong Wut, Yao-Hong Zhut, Jin Xu, Xiao Liu, Cong Duan, Mei-Jun Wang and
Jiu-Feng Wang*

Department of Vieterinary Clinical Sciences, College of Vieterinary Medicine, China Agricultural University, Beijing, China

Escherichia coli is a common cause of mastitis in dairy cows. The adaptor protein
apoptosis-associated speck-like protein containing a caspase recruitment domain
(ASC) synergizes with caspase-1 to regulate inflammasome activation during pathogen
infection. Here, the ASC gene was knocked out in bovine mammary epithelial (MAC-T)
cells using clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-
associated (Cas)-9 technology. MAC-T cells were pre-incubated with and without
Lactobacillus rhamnosus GR-1 and then exposed to E. coli. Western blot analysis
demonstrated increased expression of NLRP3 and NLRC4 following E. coli infection,
but this increase was attenuated by pre-incubation with L. rhamnosus GR-1, regardless
of ASC knockout. Western blot and immunofluorescence analyses revealed that pre-
incubation with L. rhamnosus GR-1 decreased E. coli-induced caspase-1 activation
at 6 h after E. coli infection, as also observed in ASC-knockout MAC-T cells. The
E. coli-induced increase in caspase-4 mRNA expression was inhibited by pre-incubation
with L. rhamnosus GR-1. ASC knockout diminished, but did not completely prevent,
increased production of IL-18 and IL-18 and cell pyroptosis associated with E. coli
infection, whereas pre-incubation with L. rhamnosus GR-1 inhibited this increase. Our
data indicate that L. rhamnosus GR-1 suppresses activation of ASC-dependent NLRP3
and NLRC4 inflammasomes and production of downstream IL-Ip and IL-18 during
E. coli infection. L. rhamnosus GR-1 also inhibited E. coli-induced cell pyroptosis, in part
through attenuation of NLRC4 and non-canonical caspase-4 activation independently
of ASC.
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INTRODUCTION

Escherichia coli is a frequent cause of bovine mastitis and a leading cause of clinical
mastitis in bovine (Shaheen et al., 2015). The NLR family member pyrin domain-containing
protein 3 (NLRP3) inflammasome is considered a suitable target for new alternatives to
antibiotics to treat bovine mastitis (Thacker et al, 2012). Our previous study showed that
probiotic Lactobacillus rhamnosus GR-1 ameliorates E. coli-induced inflammatory damage via
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attenuation of apoptosis-associated speck-like protein containing
a caspase recruitment domain (ASC)-independent NLRP3
inflammasome activation in primary bovine mammary epithelial
cells (PBMCs) (Wu et al., 2016). Therefore, L. rhamnosus GR-1
represents a potentially promising therapeutic agent targeting
inflammasome activity in E. coli-associated bovine mastitis.

Binding of lipopolysaccharide (LPS) from gram-negative
bacteria to toll-like receptor (TLR) 4 increases cellular expression
of NLRP3 protein through nuclear factor-kB (NF-«kB) signaling,
leading to rapidly NLRP3 activation (Afonina et al, 2017).
Upon activation, NLRP3 nucleates the adaptor protein ASC
through interaction with the pyrin domain (PYD). Pro-
caspase-1 is subsequently autoproteolytically processed through
CARD-CARD (caspase recruitment domain) interactions in the
NLRP3/ASC complex scaffold and cleaves precursors of the
proinflammatory interleukin (IL)-1 family into their bioactive
forms, IL-1p and IL-18. We found that L. rhamnosus GR-
1 reduces E. coli-induced caspase-1 activation and production
of IL-1B and IL-18. However, in contrast to increases in the
expression of NLRP3 and caspase-1, expression of the adaptor
protein ASC is decreased in PBMCs infected with E. coli, even
in cells pretreated with L. rhamnosus GR-1 (Wu et al., 2016).

In contrast to the multiple stimuli that activate NLRP3,
NLRC4 is activated by flagellin and the rod protein Escl of
the E. coli type III secretion system (T3SS) apparatus (Miao
et al., 2010). NLRC4 contains a CARD motif, through which
it directly oligomerizes with caspase-1 independent of ASC;
this complex activates caspase-1 without autoproteolysis,
triggering pyroptosis, an inflammatory form of cell death
(Broz et al., 2010b). However, ASC greatly enhances the
efficiency of NLRC4-mediated maturation of IL-18 and IL-
18 by inducing caspase-1 autoproteolysis (Lamkanfi and
Dixit, 2014). NLRC4-dependent production of IL-1f is
induced by pathogenic Salmonella or Pseudomonas but not
commensal Lactobacillus plantarum, indicating that the NLRC4
inflammasome specifically discriminates pathogens and probiotic
bacteria (Franchi et al., 2012). However, the contributions of
the NLRC4 inflammasome to inflammatory responses that
control E. coli infections are less clear in relation to L. rhamnosus
GR-1.

NLRP3 and NLRC4 inflammasomes play a crucial role
in potentiating the host antimicrobial response (Guo et al,
2015). Studies using ASC-deficient cells from ASC™/~ mice
demonstrated the dual role of ASC in bridging NLRP3 and
NLRC4 inflammasomes and caspase-1 via PYD and CARD
and regulating the result of inflammasome activation (Broz
et al., 2010a; Gueya et al., 2014). ASC-dependent inflammasome
activation results in the production of proinflammatory IL-1
family cytokines, whereas ASC-independent inflammasome
activation induces cell pyroptosis. Given the significant potential
of IL-1 family cytokines to cause detrimental inflammation
and pyroptosis to control the spread of intracellular pathogens
(Jorgensen et al., 2016; Lannitti et al., 2016), the role of ASC in
regulating inflammasome activity during E. coli infection must
be examined in detail to determine and how L. rhamnosus GR-1
regulates the immune response to prevent E. coli-associated
bovine mastitis.

In the present study, we knocked out the ASC gene in
bovine mammary epithelial (MAC-T) cells using the RNA-
guided clustered regularly interspaced short palindrome repeats
(CRISPR)-CRISPR-associated nuclease 9 (Cas9) system. We
hypothesized that during E. coli infection, the activity of
NLRP3 and NLRC4 inflammasomes is differentially regulated
by L. rhamnosus GR-1, inducing maturation of IL-18 and
IL-18 or cell pyroptosis, depending on ASC. We provide
evidence that L. rhamnosus GR-1 suppresses E. coli-induced ASC-
dependent activation of NLRP3 and NLRC4 inflammasomes
and thus decreases production of IL-I3 and IL-18 during
E. coli infection. In addition, L. rhamnosus GR-1 suppresses
E. coli-induced cell pyroptosis, in part through attenuation of
NLRC4 inflammasome and non-canonical caspase-4 activation,
independent of ASC.

MATERIALS AND METHODS

Biosecurity Statement

All bacterial strains were treated in strict accordance with
the Regulations on Biological Safety Management of Pathogen
Microbiology Laboratory (000014349/2004-00195) from the State
Council of the People’s Republic of China. The E. coli CVCC1450
was subjected to all necessary safety procedures to avoid pathogen
transmission and infection.

Construction of CRISPR/Cas9 System

Expression Vector

Three guide RNAs (ASC-sgRNA1, ASC-sgRNA 2, and ASC-
sgRNA 3) were designed to target the exon 1 regions of the
bovine ASC gene (Table 1). A pair of oligos for each targeting
site was annealed and ligated into the Bbsl site of pCRISPR-
sg5, which was kindly provided by Professor Sen Wu (China
Agricultural University, Beijing, China), to generate pCRISPR-
sg5-ASC-sgRNA1, pCRISPR-sg5-ASC-sgRNA2, and pCRISPR-
sg5-ASC-sgRNA3 plasmids. All plasmids were confirmed by
sequencing (Sangon Biotech, Shanghai, China).

Cell Culture and Transfection

MAC-T cells transferred with the SV40 T antigen (Huynh
et al, 1991) was a gift from Dr. Ying Yu (China Agricultural
University). MAC-T cells were cultured in Dulbecco’s Modified
Eagle medium/Ham’s F-12 medium (1:1) supplemented with 10%
heat-inactivated fetal calf serum, 100 U/mL of penicillin, and
1 g/mL of streptomycin (Invitrogen, Carlsbad, CA, United States)
at 37°C in an atmosphere of 5% CO, and 95% air at 95% relative
humidity.

Plasmid DNA for cell transfection was prepared using
an Omega Endo-free Plasmid Mini Kit II (Omega Bio-Tek
Inc., Doraville, GA, United States). MAC-T cells (1 x 10°)
were electroporated with 1.5 pg of pCRISPR-W9 plasmid,
1.5 pg of pCRISPR-sg5-ASC-sgRNA plasmid, and 1 pg of
pCAG-PBase plasmid using the T-020 program of an Amaxa
electroporator (Lonza, Allendale, NJ, United States), in which
PCRISPR-W9 encoded Cas9 nuclease and pCRISPR-sg5-ASC-
sgRNA encoded ASC-sgRNA. After electroporation, 300 cells
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TABLE 1 | Sequences of three guide RNAs designed to target the exon 1 region
of the bovine ASC gene and primers for PCR amplification.

Gene product? Primer Accession
number
Direction®  Sequence (5'-3)
ASC-sgRNA1 F CACCGCGATGCCATC NM_174730.2
CTGGATGCGC
R AAACGCGCATCCAGGAT
GGCATCGC
ASC-sgRNA2 F CACCGCTTTCAGTGCC NM_174730.2
GCTGCGGGA
R AAACTCCCGCAGCG
GCACTGAAAGC
ASC-sgRNA3 F CACCGCAAGCTCGT NM_174730.2
CAGCTACTATC
R AAACGATAGTAGCTG
ACGAGCTTGC
ASC F CCAGGTTCCTGATTTG  NM_174730.2
GCTAGCTA
R GAAGTCTCGGTCCGGAG
GCCAAGG

4ASC, apoptosis-associated speck-like protein containing a caspase-recruitment
domain; sgRNA = Cas9/single guide RNA (sgRNA). °F, forward; R, reverse.

were plated in a 10-cm dish using growth medium containing
350 pg/ml of selectable marker G418 (Sigma-Aldrich, St.
Louis, MO, United States). After 10 days, individual clones
were picked, and clonal cell populations were expanded.
Before experiments, MAC-T cells were electroporated with
pmaxGFP™  (Lonza) encoding green fluorescent protein
to determine transfection efficiency using the T-020 and
W-001 programs. MAC-T cells were chosen for CRISPR-
Cas9 inactivation experiments due to their good transfection
efficiency.

Sequencing and Protein Analysis of the
Gene Target Site

Genomic DNA samples were extracted using a TIANamp
Genomic DNA Kit (Tiangen, Beijing, China) according to the
manufacturer’s instructions, and 50 ng of DNA template was
used to amplify the 630-bp fragment encompassing the gene
inactivation locus in 25 pl of PCR buffer (Takara, Shiga, Japan)
using primer pairs listed in Table 1. The resulting PCR products
were purified and subsequently sequenced to identify deletions.
In addition, clonal cell population whole-cell extracts were
analyzed by Western blotting.

Immunocytochemistry

The epithelial origin of MAC-T cells was tested by staining
for cytokeratin 18. MAC-T cells (6 X 10* cells/well) were
seeded into a 24-well culture plate with glass coverslips. After
24 h, cells were washed three times with phosphate-buffered
saline (PBS) and fixed with 4% paraformaldehyde for 15 min
on ice. The cells were then permeabilized with 0.2% (v/v)
Triton X-100 (Sigma-Aldrich) and blocked with 1% bovine
serum albumin. Subsequently, cells were incubated with
mouse anti-cytokeratin-18 primary monoclonal antibody at a

dilution of 1:200 (Ab668; Abcam, Cambridge, United Kingdom)
for 45 min at 4°C, following by incubation with secondary
antibody, goat anti-mouse fluorescein isothiocyanate (FITC)-
conjugated IgG (F4143; Sigma-Aldrich). Cell nuclei were
stained using 4/,6'-diamidino-2-phenylindole (DAPIL Sigma-
Aldrich). Coverslips were imaged on an FV1000 confocal
laser scanning Dbiological microscope (Olympus, Tokyo,
Japan).

Bacterial Strains and Growth Conditions
Lactobacillus rhamnosus GR-1 ATCC 55826 was purchased
from the American Type Culture Collection (Manassas, VA,
United States) and grown in De Man, Rogosa, and Sharpe (MRS)
broth (Oxoid, Hampshire, United Kingdom) for 24 h at 37°C
under microaerophilic conditions. After overnight incubation,
L. rhamnosus GR-1 was subcultured at a dilution of 1:100 in
fresh MRS broth for approximately 8 h until reaching mid-log
phase [optical density (OD) at 600 nm (ODggp) of 0.5] for all
experiments.

Escherichia coli CVCC1450 (serotype OI111:K58) was
purchased from the China Institute of Veterinary Drug Center
(Beijing, China) and grown in Luria-Bertani (LB) broth
(Oxoid). After overnight incubation at 37°C with vigorous
shaking, bacteria were diluted 1:100 in fresh LB and grown for
approximately 3 h until reaching mid-log phase (ODgqg of 0.5).

Adhesion Assay

Wild-type (WT) and ASC~/~ MAC-T cells 3 x 10°
cells/well) were seeded onto a six-well transwell collagen-
coated polytetrafluoroethylene (PTFE) filter. Confluent cell
monolayers were pretreated with L. rhamnosus GR-1 (3 x 107
CFU) for 3 h, and then were washed three times with PBS
and exposed to E. coli (3 x 107 CFU). At 1.5, 3, and 6 h after
E. coli challenge, the cell monolayers were washed four times
with PBS to remove non-adherent bacteria and treated with
0.05% trypsin for 10 min at 37°C. Cells were harvested by
centrifugation for 10 min at 4000 g and lysed using 100 wl
of 0.2% Triton X-100 (Sigma-Aldrich) in sterile water. The
populations of E. coli and L. rhamnosus GR-1 were determined
on LB and MRS agar plates, respectively. The adhesion rate
of E. coli was defined as the adhered E. coli population on the
cells pretreated with L. rhamnosus GR-1 relative to the adhered
E. coli population in the adhesion assay of E. coli infection
alone.

Immunofluorescence

Confluent monolayers of WT and ASC™/~ MAC-T cells
(6 x 10* cells/well) grown on glass coverslips in a 24-well
flat-bottom culture plate were treated under four different
conditions, as follows: (i) medium alone (CONT); (ii) E. coli
alone (6 x 10° CFU) at a multiplicity of infection (MOI)
of 100:1 (ECOL); (iii) incubation with L. rhamnosus GR-1
(6 x 10° CFU) at a MOI of 100:1 for 3 h (LRGR); or (iv)
pre-incubation with L. rhamnosus GR-1 (6 X 106 CFU) for
3 h prior to addition of E. coli (LRGR + ECOL). At 6 h
after E. coli infection, the cells were washed, fixed with 4%
paraformaldehyde for 15 min on ice, permeabilized with 0.2%
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(v/v) Triton X-100 (Sigma-Aldrich), and blocked with 1% bovine
serum albumin. Subsequently, the following primary monoclonal
antibodies were used: mouse anti-cytokeratin-18 (Ab668, 1:200
dilution; Abcam), rabbit anti-ASC (10500-1-AP, 1:500 dilution;
Proteintech Group, Chicago, IL, United States), and mouse
anti-caspase-1 (22915-1-AP, 1:500 dilution; Proteintech Group).
The cells were incubated with the primary antibody for
45 min at 4°C, followed by incubation with goat anti-
rabbit Cy-3 (AP307F, 1:200 dilution; Sigma-Aldrich) or FITC-
conjugated IgG (F-0382, 1:40 dilution; Sigma-Aldrich) as the
secondary antibody. Cell nuclei were stained with DAPI
The coverslips and slides were visualized and photographed
under an FV1000 confocal laser scanning biological microscope

(Olympus).

Western Blotting

WT and ASC~/~ MAC-T cells (6 x 10* cells/well) were
seeded onto a six-well transwell collagen-coated PTFE filter
and treated with E. coli or L. rhamnosus GR-1 at a MOI of
100:1, as described above. Cells were also simultaneously treated
with lactate at a concentration of 0.6 g/L (equivalent to 7 mM)
and E. coli at a MOI of 100:1. At 1.5, 3, and 6 h after E. coli
infection, cells were extracted using Radio-Immunoprecipitation
Assay buffer (Sigma-Aldrich), as previously described (Wu
et al, 2016). The primary antibodies were as follows: rabbit
anti-NLRP3 (19771-1-AP, 1:200 dilution; Proteintech Group),
rabbit anti-NLRC4 (12421, 1:1,000 dilution; Cell Signaling
Technologies Inc., Danvers, MA, United States), mouse
anti-caspase-1 (sc56036) (14F468, 1:500 dilution; Santa Cruz
Biotechnology, Dallas, TX, United States), rabbit anti-cleaved
caspase-4 (GIn81) (GTX86890, 1:250 dilution; GeneTex, Inc., San
Antonio, TX, United States), and mouse anti-glyceraldehyde-
3-phosphate dehydrogenase (GAPDH, 60004-1-Ig, 1:500
dilution;  Proteintech ~ Group). Horseradish peroxidase-
conjugated AffiniPure goat anti-mouse IgG (SA00001-1,
1:5,000 dilution; Proteintech Group) or goat anti-rabbit
IgG (SA00001-2, 1:5,000 dilution; Proteintech Group) were
used as secondary antibodies. The detection of NLRP3 and
caspase-1 proteins was performed in the same gel. After
NLRP3 and caspase-1 proteins were visualized, blots were
then stripped using Restore Western Blot Stripping Buffer
(Solarbio, Beijing, China), and re-probed with the desired
antibodies for GAPDH. The OD of each band was quantified
by densitometric analysis using Quantity One software (Bio-
Rad Laboratories, Richmond, CA, United States). Results are
presented as the ratio of the NLRP3, NLRC4, caspase pl0
subunit or cleaved caspase-4 band intensity to the GAPDH band
intensity.

Lactate Dehydrogenase (LDH) Assay

The death of WT or ASC™/~ MAC-T cells under the different
conditions was assessed using the CytoTox 96 Non-Radioactive
Cytotoxicity Assay (Promega, Madison, WI, United States)
according to the manufacturer’s instructions. The assay
measures the release of LDH into the supernatant, calculated
as the percentage of total LDH content as determined
from cell lysates (100%). LDH released by uninfected cells

was used as a maximum-lysis control. The percentage of
LDH released was calculated using the following equation:
[(LDH infected-LDH uninfected)/(LDH total lysis-LDH
uninfected)] x 100.

Enzyme-Linked Immunosorbent Assay
(ELISA)

The concentrations of IL-1f and IL-18 in cell-free supernatants
of WT or ASC™/~ cells were determined at 1.5, 3, and 6 h after
E. coli infection using commercially available ELISA kits specific
for bovine IL-1f (DG90995Q) and bovine IL-18 (DG91524Q;
Beijing Dongge Biotechnology Co., Beijing, China).

Quantification of Lactate Content

Cell culture supernatants were collected. Lactate content in the
supernatants were quantified using the enzymatic kit K-DLATE
(Megazyme, Bray, Ireland) that allows the measurement of both
D-lactate and L-lactate.

Statistical Analysis

Statistical analysis was performed using the SAS statistical
software package, version 9.1 (SAS Institute Inc., Cary, NC,
United States). With regard to small sample sizes, normal
distribution and homogeneity of variance were assumed using the
UNIVARIATE (Shapiro-Wilk test) and HOVTEST procedures.
Natural logarithm transformation was performed prior to
analysis for IL-1p and IL-18 data to yield a normal distribution.
Statistical significance of differences was tested using ANOVA
procedures, following Tukey’s honestly significant difference
post hoc test. Data of adhesion assay were compared by an
unpaired two-tailed Student’s t-test. Data were visualized using
GraphPad Prism5 software (GraphPad Software Inc., San Diego,
CA, United States). Data from adhesion assay are presented as
the mean =+ standard deviation (SD) and data from Western
blotting, LDH, ELISA and lactate quantification assays are
presented as the mean =+ standard error of the mean (SEM).
Results are representative of three independent experiments,
each performed in triplicate. P-values: *P < 0.05; **P < 0.01;
*#*P < 0.001.

RESULTS

CRISPR/Cas9 Mediates Knockout of
ASC in MAC-T Cells

To demonstrate the role of ASC in L. rhamnosus GR-1
modulation of inflammasome activation during E. coli infection,
we attempted knockout of the ASC gene in MAC-T cells using
the CRISPR/Cas9 system. Upon immunocytochemistry analysis,
MAC-T cells showed intense positive staining for epithelial
cell-specific cytokeratin-18 in the cytoplasmic meshwork of
cytokeratin fibrils (Supplementary Figure S1). Compared
with program W-001, after electroporation with program
T-020, MAC-T cells exhibited higher transfection efficiency
(Figure 1A). Thus, the ASC gene knockout experiment
was subsequently performed in MAC-T cells using program
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FIGURE 1 | CRISPR/Cas9 system-mediated knockout of the ASC gene in MAC-T cells. (A) To determine transfection efficiency, MAC-T cells were electroporated
with pmaxGFP encoding green fluorescent protein using the programs W-001 and T-020, respectively. (B) Schematic illustrating Cas9 inactivation of the bovine ASC
locus. The 20-bp guide RNA target sequence is shown in blue, and the protospacer-adjacent motif (PAM) is shown in red. An 8-bp deletion was detected (Upper).
Representative Sanger sequencing results of target regions of ASC (frameshift indels; Lower). (C) Analysis of ASC protein in WT and ASC~/~ cells transfected with
Cas-9 and ASC guide RNA expression vector by Western blotting. (D) Immunofluorescence staining of ASC (red) in WT and ASC—/~ cells at 6 h after Escherichia
coli challenge. DAPI was used for nuclear staining (blue). Representative confocal immunofluorescence images show staining of ASC. Scale bar, 20 pm. Data are
representative of three independent experiments.
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FIGURE 2 | Pre-incubation with Lactobacillus rhamnosus GR-1 reduced the adhesion of E. coli to MAC-T cell monolayers. An adhesion assay was performed. Cells
and supernatants were collected. The number of adherent E. coli and L. rhamnosus GR-1 was determined (A). The adhesion rate of E. coli was defined as the
adhered E. coli population on the cells pretreated with L. rhamnosus GR-1 relative to the adhered E. coli population in the adhesion assay of E. coli infection alone
(B). The number of E. coli recovered was determined in adhesion assay supernatants (C). Data are presented as the mean + SD of three independent experiments.

infected with E. coli alone at 3 h. *P < 0.05, **P < 0.01, #P < 0.01.

Asterisks indicate the significances among different treatments in the same cell type. Pound signs indicate the significance among WT and ASC~/~ MAC-T cells

T-020. Among the three designed sgRNA sequences, the
specific 20-nucleotide sgRNA1 sequence targeted the exon
1 regions of the ASC gene and directed Cas9 nuclease
to precisely introduce a DNA double-strand break in front
of a protospacer adjacent motif (PAM). After cloning and
sequencing of the DNA fragment, an 8-bp deletion was observed
(Figure 1B). Western blot analysis did not show expression
of ASC protein in sgRNAI sequence-targeted MAC-T cells
(Figure 1C). Furthermore, E. coli infection triggered assembly
of ASC specks in WT cells, whereas pre-incubation with
L. rhamnosus GR-1 attenuated E. coli-induced ASC speck
assembly. No ASC specks were observed in ASC~/~ cells,

regardless of E. coli infection (Figure 1D). These results
demonstrated that knockout of the ASC gene in MAC-T cells was
successful.

Pre-incubation With L. rhamnosus GR-1
Reduces the Adhesion of E. coli to
MAC-T Cell Monolayers

Escherichia coli or L. rhamnosus GR-1 exhibited similar adhesion
capacity in WT and ASC™/~ MAC-T cells. The number of
adherent E. coli was about 1.29 x 10* + 0.67 x 10> CFU
(means =+ standard deviation) at 1.5 h after E. coli infection,
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FIGURE 3 | Pre-incubation with L. rhamnosus GR-1 attenuated E. coli-induced NLRP3 expression. Western blot detection of NLRP3 in WT and ASC~/~ cells
collected from the indicated cell cultures at 1.5 h (A), 3 h (B), and 6 h (C) after E. coli challenge. Representative panels showing expression of NLRP3 protein (Left).
Results are presented as the ratio of NLRP3 band intensity to that of GAPDH (Right). Data are presented as the mean + SEM of three independent experiments.
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and increased to 1.95 x 10* + 1.17 x 10> CFU at 6 h. At
3 h after E. coli challenge, the number of adherent E. coli in
ASC—/~ cells was lower (P = 0.007) than in WT MAC-T cells
(Figure 2A). L. rhamnosus GR-1 had a lower adhesion capacity
and the number of adherent L. rhammnosus GR-1 was about
8.75 x 10° & 1.56 x 10 CFU, regardless of infection time. Pre-
incubation with L. rhamnosus GR-1 resulted in a reduction in
the E. coli adhesion rate to 57% of that observed in MAC-T
cells infected with E. coli alone (Figure 2B). No differences were
observed in the number of E. coli recovered from the supernatant
fraction among two groups (Figure 2C).

Pre-incubation With L. rhamnosus GR-1
Attenuates E. coli-Induced NLRP3
Expression and Increases Lactate

Content in the Supernatants

Compared with untreated control WT cells, Western blot analysis
showed an increase in NLRP3 protein expression at 1.5, 3, and
6 h after E. coli challenge in cells only infected with E. coli, but
not in cells incubated with L. rhamnosus GR-1 alone (P = 0.046,
P < 0.001, and P < 0.001, respectively; Figures 3A-C). In
contrast, WT cells pre-incubated with L. rhamnosus GR-1 had

a lower expression of NLRP3 protein than did WT cells only
infected with E. coli at 3 and 6 h (P < 0.001 for both).

Compared with WT cells, ASC~/~ MAC-T cells exhibited a
similar differential response to E. coli challenge and L. rhamnosus
GR-1 incubation. Compared with untreated control ASC™/~
cells, at 1.5, 3, and 6 h after E. coli challenge, NLRP3 protein
expression was elevated in ASC™/~ cells only infected with E. coli
(P =10.036, P=0.005,and P < 0.001, respectively; Figures 3A-C)
but not in ASC™/~ cells pre-incubated with L. rhamnosus GR-1.

The lactate content (D-lactate plus L-lactate) in the
supernatants was quantified. Compared with untreated control
cells, the lactate content was increased in the supernatants
from both WT and ASC™/~ cells incubated with L. rhamnosus
GR-1 alone or pre-incubated with L. rhamnosus GR-1, but
not the cells only infected with E. coli at 1.5, 3, and 6 h after
infection, regardless of ASC knockout (P < 0.05; Supplementary
Figure S2A). Western blot analysis showed that compared with
untreated control cells, at 6 h after E. coli challenge, NLRP3
protein expression was elevated in WT or ASC™/~ cells infected
with E. coli, but not in cells only treated with lactate alone
(P < 0.05; Supplementary Figure S2B). Lactate addition did not
attenuate E. coli-induced increase in NLRP3 protein expression
in either WT or ASC~/~ cells.
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FIGURE 4 | Western blot detection of NLRC4 protein. Representative panels showing expression of NLRP4 protein in WT and ASC~/~ cells collected from the
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6 h after E. coli challenge

Effect of L. rhamnosus GR-1 on NLRC4

Activation During E. coli Infection

Compared with untreated control cells, expression of NLRC4
protein was elevated at 3 h after E. coli infection in WT cells only
infected with E. coli (P = 0.027; Figure 4B) but not in WT cells
incubated with L. rhamnosus GR-1 alone or pre-incubated with
L. rhamnosus GR-1. Compared with WT cells only infected with
E. coli, expression of NLRC4 protein at 3 h was decreased in WT
cells incubated with L. rhamnosus GR-1 alone and pre-incubated
with L. rhamnosus GR-1 (P = 0.019 and P = 0.001, respectively).
No differences were observed at 3 h in ASC™/~ cells, regardless
of treatment.

Compared with untreated control cells, E. coli challenge led
to increased expression of NLRC4 protein at 6 h after E. coli
challenge in WT cells (P = 0.019) and ASC—/~ cells (P < 0.001;
Figure 4C). Expression of NLRC4 protein was lower in ASC™/~
cells incubated with L. rhamnosus GR-1 alone and pre-incubated
with L. rhamnosus GR-1 (P = 0.001 for both) than in ASC~/~
cells only infected with E. coli. No changes were observed at 1.5 h
after E. coli infection in WT cells or ASC™/~ cells, regardless of
treatment (Figure 4A).

Pre-incubation With L. rhamnosus GR-1
Attenuates E. coli-Induced Caspase-1

Maturation

Immunofluorescence staining showed that compared with
untreated control cells, E. coli challenge triggered assembly
of ASC specks in WT cells at 6 h after E. coli challenge,
and this was attenuated in WT cells pre-incubated with
L. rhamnosus GR-1 (Figure 5A). No ASC specks were observed
in ASC™/~ cells, regardless of treatment. Compared with
untreated control cells, bright foci indicative of increased
caspase-1 expression was observed in WT cells only infected
with E. coli at 6 h after challenge; this increase was attenuated
by incubation with L. rhamnosus GR-1 (Figure 5B). Compared
with WT cells, ASC deletion attenuated, but did not abolish,
caspase-1 staining in response to E. coli infection and pre-
incubation with L. rhamnosus GR-1. A punctate staining
pattern for caspase-1 was observed in ASC™/~ cells only
infected with E. coli, and pre-incubation with L. rhamnosus
GR-1 inhibited the E. coli-induced punctate caspase-1
staining pattern. Compared with untreated control cells,
incubation with L. rhamnosus GR-1 only did not result in
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increase in caspase-1 activation either in WT or ASC™/~ cells
(Figure 5B).

Compared with untreated control cells, increased maturation
of procaspase-1 into its catalytic 10-kDa subunit was observed at
6 h after E. coli challenge in WT and ASC~/~ cells only infected
with E. coli (P < 0.001 for both; Figure 6C). However, maturation
of caspase-1 declined in WT and ASC~/~ cells pre-incubated
with L. rhamnosus GR-1 (P = 0.014 and P = 0.006, respectively)
or incubated with L. rhamnosus GR-1 alone (P < 0.001 for both),
compared with WT cells infected with E. coli only. No differences
were observed in caspase-1 maturation at 1.5 and 3 h after E. coli
infection in WT cells or ASC™/~ cells, regardless of treatment
(Figures 6A,B).

Pre-incubation With L. rhamnosus GR-1
Attenuates E. coli-Induced Caspase-4
Activation

At 3 h after E. coli infection, expression of cleaved caspase-
4 (26 kDa) in WT and ASC/~ cells pre-incubated with
L. rhamnosus GR-1 was lower than in untreated control cells and
cells only infected with E. coli (Figure 7B). Infection with E. coli
resulted in increased expression of cleaved caspase-4 in WT and

ASC~/~ cells (P = 0.001 and P = 0.004, respectively; Figure 7C)
at 6 h. However, expression of caspase-4 decreased in WT and
ASC~/~ cells pre-incubated with L. rhamnosus GR-1, compared
with cells only infected with E. coli (P < 0.001 and P = 0.001,
respectively). No differences were observed in the expression of
cleaved caspase-4 at 1.5 h after E. coli infection in WT or ASC~/~
cells, regardless of treatment (Figure 7A).

Pre-incubation With L. rhamnosus GR-1
Attenuates E. coli-Induced Production of
IL-18 and IL-18 and Cell Pyroptosis

Compared with untreated control cells, IL-1 production was
increased at 3 and 6 h after E. coli infection in WT cells only
infected with E. coli (P < 0.001 for both; Figure 8A). IL-1f
production was lower at 3 and 6 h both in WT cells incubated
with L. rhamnosus GR-1 alone (P = 0.002 and P = 0.004,
respectively) and cells pre-incubated with L. rhamnosus GR-1
(P = 0.013 and P = 0.011, respectively) than in WT cells only
infected with E. coli. Compared with WT cells, ASC deletion
led to a decrease in production of IL-1f in ASC™/~ cells in
response to different treatments. Challenge with E. coli resulted
in elevated production of IL-1f at 1.5, 3, and 6 h after E. coli
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infection in ASC~/~ cells only infected with E. coli (P = 0.009,
P =0.021, and P = 0.001, respectively; Figure 8A) compared with
untreated control cells; however, the E. coli-induced increase in
IL-1B production was attenuated at 3 and 6 h by incubation with
L. rhamnosus GR-1 alone (P = 0.014 and P = 0.007, respectively)
and pre-incubation with L. rhamnosus GR-1 (P = 0.009 and
P =0.003, respectively).

IL-18 exhibited similar differential production as IL-1p.
Compared with untreated control cells, production of IL-
18 was increased at 3 and 6 h after E. coli challenge both
in WT (P = 0.001 for both) and ASC™/~ (P < 0.001 for
both) cells only infected with E. coli (Figure 8A). However,
incubation with L. rhamnosus GR-1 alone and pre-incubation
with L. rhamnosus GR-1 attenuated the E. coli-induced elevation
in the concentration of IL-18 at 3 and 6 h after E. coli challenge
both in WT and ASC~/~ cells. Compared with untreated control
ASC~/~ cells, the concentration of IL-18 was elevated at 3 and
6 h in ASC™/~ cells pre-incubated with L. rhamnosus GR-1
(P =0.008 and P = 0.002, respectively).

Cell pyroptosis was quantified by monitoring the release of
LDH into the supernatants after E. coli challenge. Compared
with untreated control cells, the percentage of pyroptotic cells
at 3 and 6 h was increased in WT cells only infected with

E. coli (P < 0.001 for both; Figure 8B) but not in WT cells
incubated with L. rhamnosus GR-1 alone and pre-incubated with
L. rhamnosus GR-1. Compared with WT cells, ASC deletion let to
a similarly differential but attenuated cell pyroptosis. Compared
with untreated control cells, the percentage of pyroptotic cells was
increased at 3 and 6 h in ASC™/~ cells only infected with E. coli
(P =0.020 and P < 0.001, respectively), whereas incubation with
L. rhamnosus GR-1 alone and pre-incubation with L. rhamnosus
GR-1 ameliorated the E. coli-induced increase in pyroptotic
cell death at 6 h (P < 0.001 and P = 0.002, respectively). No
changes were observed in WT and ASC~/~ cells, regardless of
treatment.

DISCUSSION

Bacterial adhesion to host epithelial cells is an essential step in
the initiation of infection. Lactobacillus can reduce pathogen
adhesion to epithelial cells and exert direct antimicrobial
activity due to accumulation of antimicrobial substances (Gudina
et al., 2015). We found that L. rhamnosus GR-1 did not
directly kill E. coli, but did decrease the level of E. coli
adhesion to 57% of that observed in MAC-T cells infected with
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FIGURE 7 | Pre-incubation with L. rhamnosus GR-1 attenuated E. coli-induced activation of caspase-4. Western blot detection of cleaved caspase-4 in WT and
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6 h after E. coli challenge

E. coli alone. We previously revealed that live and ultraviolet-
irradiated L. rhamnosus GR-1 rather than culture supernatant
of L. rhamnosus GR-1 and medium acidified with lactate lead
to a decrease in the E. coli adhesion rate in bovine mammary
epithelial cells (Wu et al., 2016). The reduced E. coli adhesion
level mediated by L. rhamnosus GR-1 may be attributed to steric
hindrance due to competition for attachment sites (Ardita et al.,
2014; Tytgat et al., 2016).

NLRP3 is activated by a wide variety of stimuli, including
pore-forming toxins, extracellular adenosine triphosphate, RNA-
DNA hybrid molecules, and pathogens (Jo et al., 2016). We found
that E. coli infection also increased the expression of NLRP3
protein from 1.5 to 6 h, but L. rhamnosus GR-1 pretreatment
inhibited this increase. NLRP3 must be primed before activation.
Escherichia coli LPS binds to TLR4 to induce expression of
NLRP3 protein via NF-kB signaling. Bacterial mRNA from
viable E. coli cells that have been phagocytosed enters the
cytosolic compartment, resulting in assembly of the NLRP3
inflammasome (Sander et al., 2011). Intake of L. plantarum
CECT 7315/7316 downregulates expression of NIrp3 in the
ileum of rats (Vilahur et al., 2015). However, the NLRP3
inflammasome is also activated by L. rhamnosus GG and
LC705 originating from dairy sources (Miettinen et al,
2012).

In a mouse immune hepatitis model, lactate treatment
was shown to attenuate hepatic and pancreatic injury by
negatively regulating TLR4-mediated activation of the NLRP3
inflammasome and production of IL-1p through arrestin B2
and G-protein-coupled receptor 81 (Hoque et al, 2014). In
the present study, there was a higher lactate content in
the supernatants of cells incubated with L. rhamnosus GR-1.
However, additional lactate treatment did not attenuate the
E. coli-induced increase in expression of NLRP3. This indicates
that the elevated lactate content in the supernatant is a secondary
effect of L. rhamnosus GR-1 treatment and cannot account for
attenuation of E. coli-induced activation of NLRP3. Previously,
we have shown that L. rhamnosus GR-1 attenuates E. coli-induced
TLR4 expression in bovine mammary epithelial cells (Wu et al.,
2016). This may contribute to attenuating the priming step and
subsequent activation of NLRP3 through TLR4-mediated NF-
kB signaling (Bauernfeind et al., 2009). The mitogen-activated
protein kinase (MAPK) subfamilies, c-Jun N-terminal kinase
(JNK) and extracellular regulated protein kinase (ERK) are
essential for NLRP3 inflammasome activation and addition of
JNK1/2 inhibitor SP600125 or upstream MAPK/ERK kinase
inhibitor PD98059 of ERK inhibits the LPS-induced increase
in NLRP3 protein expression (Liao et al, 2013). Culture
medium of L. rhamnosus GR-1 inhibits LPS-induced JNK
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activation in macrophages or monocytic THP-1 cells (Kim
et al., 2006). Histamine derived from Lactobacillus reuteri 6475
inhibits activation of ERK in THP-1 cells (Thomas et al,
2012). It is possible that L. rhamnosus GR-1 attenuates E. coli-
induced NLRP3 activation through reducing the adhesion of
E. coli to MAC-T cells and subsequently negatively regulating
the functional synergy between NF-kB and JNK/ERK MAPK
pathways mediated by some uncertain soluble factors. Further
studies are required to determine active components derived
from L. rhamnosus GR-1 and elucidate possible mechanisms
underlying the antagonistic effects of L. rhamnosus GR-1 on
NLRP3 activation during E. coli infection.

NLRP3 contains only a PYD, which engages the PYD
of ASC, leaving the CARD of ASC to interact with the
CARD-containing region of pro-caspase-1. Caspase-1 is thought
to be activated by a proximity-induced dimerization and
autoproteolytic process in the NLRP3/ASC complex platform
(Shi, 2004). Active caspase-1 cleaves pro-IL-18 and pro-IL-18 into
mature IL-IB and IL-18, which are essential for coordination
of immune responses to pathogen infection through allograft
neutrophil sequestration, mononuclear phagocyte recruitment,
and T-cell activation (Samuel Weigt et al., 2017). In the present
study, L. rhamnosus GR-1 attenuated E. coli-induced caspase-
1 autoproteolysis and elevated production of mature IL-If
and IL-18 at 6 h after challenge. Another study also showed
that the NLRP3 inflammasome pathway plays a critical role
in the host immune response to pathogen infection (Dikshit
et al., 2018). However, inappropriate activation of the NLRP3

inflammasome is linked not only to local inflammation but also
several autoimmune inflammatory disorders in humans (Seo
et al., 2015). Indeed, activation of the NLRP3 inflammasome
amplifies inflammation and promotes pathogen infection via
a process involving triggering of T helper 2-biased adaptive
immune responses (Gurung et al., 2015) or secretion of secondary
danger-associated molecular pattern molecules (Bui et al., 2016).
Our data suggest that L. rhamnosus GR-1 prevents E. coli-induced
inflammation by suppressing activation of ASC-dependent
NLRP3 inflammasomes.

In mice, non-canonical caspase-11 was identified as a
key regulator of NLRP3 inflammasome-associated caspase-1
activation in response to E. coli infection. Caspase-11 is activated
via NLRP3-independent mechanisms, but it is essential for
NLRP3-dependent and ASC-dependent caspase-1 processing and
IL-18 maturation in response to E. coli infection (Kayagaki
et al, 2011). In addition, binding of LPS to human caspase-
4 or murine caspase-11 via the CARD directly induces cell
pyroptosis, independently of NLRP3 and ASC (Shi et al., 2014).
A recent study revealed that outer-membrane-vesicle-mediated
cytoplasmic delivery of extracellular E. coli LPS activates murine
caspase-11 to induce pyroptosis and IL-1f maturation (Vanaja
et al., 2016). Bovine caspase-4 is a homolog of human caspase-4
and mouse caspase-11 and plays a role in the processing of IL-1f
and IL-18 precursors (Koenig et al., 2001; Martinon and Tschopp,
2004). In the present study, caspase-4 was activated by E. coli at
6 h; however, L. rhamnosus GR-1 pretreatment attenuated this
activation.
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FIGURE 9 | Lactobacillus rhamnosus GR-1 attenuated activation of ASC-dependent and ASC-independent inflammasomes during E. coli infection. L. rhamnosus
GR-1 ameliorates E. coli-induced inflammatory damage via attenuation of both ASC-dependent and ASC-independent inflammasome activation in MAC-T cells.

L. rhamnosus GR-1 inhibits activation of ASC-dependent NLRP3 and NLRC4 inflammasomes and production of the downstream proinflammatory cytokines IL-If
and IL-18 during E. coli infection. L. rhamnosus GR-1 suppresses E. coli-induced cell pyroptosis, in part through attenuation of NLRC4 inflammasome activation,
independently of ASC. In addition, L. rhamnosus GR-1 inhibits non-canonical caspase-4 activation, which subsequently synergizes with the NLRP3 inflammasome
to attenuate caspase-1 activation and potentially inhibit caspase-1-independent cell pyroptosis and IL-IB and IL-18 production. Full lines represent the results of the
present study, and dashed lines represent the conclusions drawn in other studies.
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Interestingly, there was a lower number of adherent E. coli
in ASC™/~ MAC-T cells at 3 h after E. coli challenge
compared with WT MAC-T cells. It must be noted that ASC
deficiency reduced, but did not abolish, caspase-1 processing,
IL-1B and IL-18 maturation, and cell pyroptosis during E. coli
infection. Decreased E. coli adhesion may delay the expression
of NLRC4 receptor and the downstream activation of caspase-1,
maturation of proinflammatory cytokines and cell pyroptosis
in ASC™/~ MAC-T cells. Caspase-1 activation by E. coli
requires NLRP3 and ASC, but caspase-11 processing and cell
pyroptosis do not (Kayagaki et al., 2011). A previous study
reported weaker oligomerization of both ASC and caspase-1 in
macrophages infected with E. coli compared with the canonical
NLRP3 inflammasome activator nigericin, but with comparable
production of IL-1p (Rathinam et al., 2012). Caspase-11 interacts
with caspase-1 in infected cells, forming a heterodimeric complex
(Kayagaki et al, 2011). These data suggest that caspase-4/-
11 amplify caspase-1 activation independently of ASC by
enabling caspase-1 autoprocessing through heterodimerization.
Indeed, in the present study, caspase-4 activation was enhanced
in ASC™/~ cells compared with WT cells, which could
have compensated for the loss of caspase-1 activation due
to ASC-dependent NLRP3 inflammasome activation. Our
findings indicate that E. coli infection activates caspase-4,
subsequently resulting in cell pyroptosis and maturation of
IL-18 and IL-18 via an NLRP3 inflammasome-dependent
and ASC-independent pathway. Lactobacillus rhamnosus GR-1

suppresses ASC-dependent NLRP3 inflammasome activation and
ASC-independent caspase-1 processing by inhibiting caspase-
4 activation, thereby attenuating cell pyroptosis and cytokine
production and thus preventing establishment of E. coli infection.

In contrast to NLRP3 activation in response to diverse
stimuli, upon E. coli infection, NLRC4 responds to bacterial
rod protein of the T3SS apparatus and flagellin (Zhao et al.,
2011). We found that L. rhamnosus GR-1 inhibited E. coli-
induced NLRC4 expression, as was also observed in ASC™/~
cells. NLRC4 contains a CARD motif through which it directly
interacts with caspase-1 to induce pyroptosis, independently
of ASC. This NLRC4-dependent/ASC-independent cell death
pathway proceeds in the absence of caspase-1 autoproteolysis.
Interestingly, we observed weaker staining for caspase-1 in
ASC™/~ cells. Caspase-1 autoproteolysis is often used as an
indicator of caspase-1 activation. However, it was also reported
that uncleaved caspase-1 is enzymatically active in ASC™/~
cells and can induce pyroptosis. In contrast to the formation
of a single large ASC/caspase-1 focus for efficient IL-I8 and
IL-18 processing, pro-caspase-1 could be recruited to NLRC4,
with which it forms a smaller complex that induces pyroptosis
(Broz et al., 2010b). Although NLRC4 contains a CARD, ASC
amplifies NLRC4 inflammasome activity because ASC is essential
for NLRC4-induced caspase-1 autoprocessing and maturation
of IL-1p and IL-18 (Brubaker et al, 2015). Our data suggest
that L. rhamnosus GR-1 inhibits E. coli-induced cell pyroptosis
via suppression of ASC-independent NLRC4 inflammasome
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activation. During E. coli infection in the present study,
L. rhamnosus GR-1 decreased the secretion of IL-I3 and IL-
18, in part due to suppression of ASC-dependent NLRC4
inflammasome activation.

This MAC-T cell model of E. coli and L. rhamnosus GR-
1 co-incubation presents an in vitro framework for assessing
bovine mammary immune response to pathogen infection,
and evaluating the efficiency of Lactobacillus-based intervention
in preventing bovine mastitis. The results require further
confirmation in other cell lines and in vivo studies. However,
several concerns need to be addressed before the clinical
application of Lactobacillus in bovine mastitis. Oral ingestion
of probiotics promotes mucosal immune response to pathogen
infection in the gut. The mechanism underlying how the
immunomodulatory effect extends to the mammary glands
remains unclear. The means of probiotic supplementation (e.g.,
mixed into the feed, oral capsules or intra-mammary infection)
and dose effect also needs to be studied in more details. The
molecular mechanism underlying regulation of inflammasome
activity by Lactobacillus requires further investigation. Our
findings identify NLRP3 and NLRC4 inflammasomes as potential
targets for bovine mastitis therapy and could strengthen the
development for other inflammasome-targeted therapies in
E. coli-associated mastitis.

CONCLUSION

In conclusion, our findings suggest that L. rhamnosus GR-1
ameliorates E. coli-induced inflammatory damage by attenuating
both ASC-dependent and ASC-independent inflammasome
activation in MAC-T cells (Figure 9). L. rhamnosus GR-1 inhibits
activation of ASC-dependent NLRP3 and NLRC4 inflammasome
activation and production of the downstream proinflammatory
cytokines IL-18 and IL-18 during E. coli infection. In addition,
L. rhamnosus GR-1 suppresses E. coli-induced cell pyroptosis, in
part through attenuation of NLRC4 inflammasome activation,
independently of ASC. Furthermore, L. rhamnosus GR-1
inhibits non-canonical caspase-4 activation, which subsequently
synergizes with NLRP3-/ASC-dependent caspase-1 activation to
potentially inhibit ASC-independent caspase-1 activation, thus
suppressing cell pyroptosis and IL-18 and IL-18 production.
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