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The use of antimicrobial growth promoters (AGPs) in sub-therapeutic doses for long

periods promotes the selection of resistant microorganisms and the subsequent risk

of spreading this resistance to the human population and the environment. Global

concern about antimicrobial resistance development and transference of resistance

genes from animal to human has been rising. The goal of our research was to

evaluate the susceptibility pattern to different classes of antimicrobials of colistin-resistant

Escherichia coli from poultry production systems that use AGPs, and characterize the

resistance determinants associated to transferable platforms. E. coli strains (n = 41)

were obtained from fecal samples collected from typical Argentine commercial broiler

farms and susceptibility for 23 antimicrobials, relevant for human or veterinary medicine,

was determined. Isolates were tested by PCR for the presence of mcr-1, extended

spectrum β-lactamase encoding genes and plasmid-mediated quinolone resistance

(PMQR) coding genes. Conjugation and susceptibility patterns of the transconjugant

studies were performed. ERIC-PCR and REP-PCR analysis showed a high diversity of

the isolates. Resistance to several antimicrobials was determined and all colistin-resistant

isolates harbored the mcr-1 gene. CTX-M-2 cefotaximase was the main mechanism

responsible for third generation cephalosporins resistance, and PMQR determinants

were also identified. In addition, co-transference of the qnrB determinant on the

mcr-1-positive transconjugants was corroborated, which suggests that these resistance

genes are likely to be located in the same plasmid. In this work a wide range of

antimicrobial resistance mechanisms were identified in E. coli strains isolated from the

environment of healthy chickens highlighting the risk of antimicrobial abuse/misuse in

animals under intensive production systems and its consequences for public health.
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INTRODUCTION

Antimicrobial agents have been used extensively for prevention
and treatment of infectious diseases in food animals (Dibner
and Richards, 2005; Niewold, 2007). The concomitant risk of
spreading antibiotic resistance to human population through
the food supply chain and the environment is important since
many classes of these antimicrobial agents are also used in
human medicine. Therefore, increased global concern regarding
development of antimicrobial resistance and transference of
resistance genes from animals to humans has been rising
(Ljungquist et al., 2016; Madec et al., 2017; Wang et al., 2017).

Various antimicrobials have been widely used by the poultry
industry as antibiotic growth promoters (AGPs) since the
1950s. To reduce costs of production, AGPs have been

added into feed to promote weight gain by optimizing feed
conversion ratios (Moore and Evenson, 1946; Jukes et al., 1950).
In contrast to therapeutic usages of antimicrobials that are

administered at high doses for a limited period of time, AGPs
are used in sub-therapeutic doses during longer periods. This

situation is particularly favorable for the selection of resistant
microorganisms (Diarra et al., 2007).

Any use of antimicrobial agents may contribute to clinical
relevant antimicrobial resistance. One of the first findings
that led to strong recommendations (and even banning)
for the use of AGP in the European Union (EU) was
the finding that administration of avoparcin, a glycopeptide
AGP, was involved in emerging glycopeptide-resistant bacteria
(Howarth and Poulter, 1996). In the same way, use of colistin
as an AGP in livestock led to the emergence and silent
dissemination of plasmid-mediated mechanisms involved with
polymyxin resistance (Rhouma et al., 2016). International
organizations responsible for human, animal health, and
food production (World Health Organization-WHO/World
Organization for Animal Health-OIE/ Food and Agriculture
Organization-FAO) carried out systematic evaluations on
the impact of veterinary antimicrobial resistance on public
health, and they stated that the misuse and overuse of
antimicrobials is accelerating the processes of antimicrobial
resistance. As a result, this topic is now considered as one
of the critical issues in developed and developing countries
as indicated by the United Nations General Assembly in
2016.

As part of a technical support program to national
poultry producers, our team conducted studies to understand
the antimicrobial resistance evolution in food-borne bacteria
under commercial production systems in Argentina. Our
studies included the selection of Escherichia coli as an
indicator microorganism and concluded that almost 50% of
the strains were found to be resistant to colistin used as
AGP (Dominguez et al., 2017) which was much higher than
reported in studies published previously. Therefore, the aim
of this work was to evaluate the susceptibility pattern to
different classes of antimicrobials of colistin-resistant E. coli
isolated from poultry production systems that use AGP,
and to characterize the resistance determinants associated to
transmissible elements.

MATERIALS AND METHODS

Sampling and E. coli Isolation
Fresh fecal samples were collected from 129 commercial broiler
farms located in the most relevant production areas of Argentina
(Entre Rios and Buenos Aires Provinces). At the moment of the
sampling, healthy 4–6 week-old broiler chickens were at the end
of the rearing cycle in the farms (Dominguez et al., 2017). Each E.
coli strain was isolated from a pool of 10 feces samples collected
in different sections of each barn. All samples were placed into
boxes containing ice packs and immediately transported to the
laboratory to isolate the microorganism by culture on non-
antibiotic-supplemented MacConkey agar plates at 37◦C for 18–
24 h. Isolates were initially selected by the morphology of the
colonies and further identified by standard biochemical tests
(Brenner and Farmer, 2015). According to the size of the farms, a
fixed number of isolates were arbitrarily selected: 2 isolates from
small (less than 50,000 birds), 3 from medium (between 50,000
and 150,000 birds) and 6 from large (more than 150,000 birds)
farms. Overall 304 E. coli isolates were obtained (Dominguez
et al., 2017). In the present study a subset of 31 strains resistant to
colistin and 10 susceptible -according to EUCAST criteria- were
analyzed (EUCAST 2017)1. These strains were isolated from 11
farms belonging to 3 different integrated companies located at
Entre Rios and Buenos Aires Provinces.

Phenotypic Antimicrobial Susceptibility
Testing
Antibiotic susceptibility was determined by agar disk diffusion
test against 23 antibiotics representing seven antimicrobial
classes, commonly used in human and veterinary medicine.
Antimicrobial susceptibility was determined for the following
agents:

• ß-lactams including:

� Penicillins: Ampicillin (AMP), Amoxicillin-Clavulanic
Acid (AMC)

� Second generation cephalosporins: Cefuroxime (CXM)
� Third generation cephalosporins (TGC): Ceftiofur (CFT),

Cefotaxime (CTX), Ceftriaxone (CRO), Ceftazidime (CAZ)
� Cephamycins: Cefoxitin (FOX)
� Fourth generation cephalosporins: Cefepime (FEP)
� Monobactams: Aztreonam (ATM)
� Carbapenems: Imipenem (IMI), Meropenem (MEM)

• Aminoglycosides: Kanamycin (KAN), Gentamicin (GEN),
Amikacin (AMI), Streptomycin (STR)

• Tetracyclines: Tetracycline (TET)
• Quinolones: Nalidixic Acid (NAL), Ciprofloxacin (CIP),

Enrofloxacin (ENR)
• Sulfonamides: Trimethoprim-Sulfamethoxazole (SXT)
• Phenicols: Chloramphenicol (CLR)
• Polymyxins: Colistin (COL)

The results were interpreted according to the Clinical and
Laboratory Standards Institute (CLSI) criteria, (CLSI, 2017) and

1http://www.eucast.org
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TABLE 1 | Targets, primers, sequence, and product size used for PCR and sequencing of mcr-1, BLEE, ESBL, AmpC, and PMQR genes.

Targets Primers Nucleotide Secuence (5′-3′) Size (bp) References

mcr-1 CLR5-F CGGTCAGTCCGTTTGTTC 344 Liu et al., 2016

CLR5-R CTTGGTCGGTCTGTA GGG

blaCTX−M−like CTX-M

GRAL F

ATGTGCAGYACCAGTAARGTKATGGC 500 Ghiglione, 2015

CTX-M

GRAL R

CCGCTGCCGCTYTTATCVCCBAC

blaCTX−M−group1 CTX-M-1 CF ATGGTTAAAAAATCACTGC 864 Saba Villarroel et al., 2017

CTX-M-1 CR GGTGACGATTTTAGCCGC

CTX-M-1 FpK AAATGGTTAAAAAATCACTGC 876 Ghiglione, 2015

CTX-M-1 RpK CTACAAACCGTCGGTGACGAT

blaCTX−M−group2 CTX-M-2 FpK TAATGATGACTCAGAGCATTCGC 900 Ghiglione, 2015

CTX-M-2 RpK GCATCAGAAACCGTGGGTTACG

CTX-M-2 CF TTAATGATGACTCAGAGCATTC 910 Bertona et al., 2005

CTX-M-2 CR GATACCTCGCTCCATTTATTGC

blaCTX−M−group8 CTX-M-8 CF TGAATACTTCAGCCACACG 923 Saba Villarroel et al., 2017

CTX-M-8 CR TAGAATTAATAACCGTCGGT

CTX-M-8 FpK AGATGATGAGACATCGCGTTAAGC 1184 Ghiglione, 2015

CTX-M-8 RpK TTAATAACCGTCGGTGACG

blaCTX−M−group9 CTX-M-9 CF ATGGTGACAAAGAGAGTGC 876 Saba Villarroel et al., 2017

CTX-M-9C R TCACAGCCCTTCGGCGATG

CTX-M-9 FpK AGATGGTGACAAAGAGAGTGC 876 Ghiglione, 2015

CTX-M-9 RpK TTACAGCCCTTCGGCGATG

blaCTX−M−group25 CTX-M-25 CF ATGAGAMAWMGCGTWARGC 878 Saba Villarroel et al., 2017

CTX-M-25

CR

TAGAATTAATAACCGTCGGTGAC

blapAmpC MOXMF GCT GCT CAA GGA GCA CAG GAT 520 Cejas et al., 2012

MOXMR CAC ATT GAC ATA GGT GTG GTG C

CITMF TGG CCA GAA CTG ACA GGC AAA 462

CITMR TTT CTC CTG AAC GTC GCT GGC

DHAMF AAC TTT CAC AGC TGT GCT GGG T 405

DHAMR CCG TAC GCA TAC TGG CTT TGC

ACCMF AAC AGC CTC AGC AGC CGG TTA 346

ACCMR TTC GCC GCA ATC ATC CCT AGC

EBCMF TCG GTA AAG CCG ATG TTG CGG 302

EBCMR CTT CCA CTG CGG CTG CCA GTT

FOXMF AAC ATG GGG TAT CAG GGA GAT G 190

FOXMR CAA AGC GCG TAA CCG GAT TGG

blaCMY−2 CMY -F ATGATGAAAAAATCGTTATGCT 1146

CMY-R TTATTGCAGCTTTTCAAGAATGCG

qnrA qnrA-F AGAGGATTTCTCACGCCAGG 580 Cruz et al., 2013

qnrA-R TGCCAGGCACAGATCTTGAC

qnrS qnrS-F GCAAGTTCATTGAACAGGGT 428

qnrS-R TCTAAACCGTCGAGTTCGGCG

qnrC qnrC-F GGGTTGTACATTTATTGAATCG 330

qnrC-R CACCTACCCATTTATTTTCA

qnrD qnrD-F CGAGATCAATTTACGGGGAATA 582

qnrD-R AACAAGCTGAAGCGCCTG

qnrB qnrB-F GGMATHGAAAATCGCCACTG 264

qnrB-R TTTGCYGYYCGCCAGTCGAA

(Continued)
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TABLE 1 | Continued

Targets Primers Nucleotide Secuence (5′-3′) Size (bp) References

qnrBIF-F ATGWYGYCATTACTGTATA 676

qnrBIF-R CCMATHAYMGCGATRCCAAG

qnrBcf-F GTTRGCGAAAAAATTRACAG 626

qnrBIF-R CCMATHAYMGCGATRCCAAG

qepA qepA-F ACATCTACGGCTTCTTCGTCG 501

qepA-R AACTGCTTGAGCCCGTAGATC

acc(6′)-lb aac(6′)Ib-F CGATCTCATATCGTCGAGTGTT 447

aac(6′)Ib-R TTAGGCATCACTGCGTGTTC

oqxA oqxA-F CTCGGCGCGATGATGCT 393

oqxA-R CCACTCTTCACGGGAGACGA

oqxB oqxB-F TTCTCCCCCGGCGGGAAGTAC 513

oqxB-R CTCGGCCATTTTGGCGCGTA

(CLSI, 2013). Susceptibility to colistin was evaluated by broth
microdilution and results were interpreted according to the
European Committee on Antimicrobial Susceptibility Testing
guidelines (EUCAST).

E. coli strains resistant to three or more antimicrobial classes
were categorized as multidrug resistant (MDR). Phenotypic
screening for extended spectrum β-lactamase (ESBL) and
plasmid mediated AmpC (pAmpC) was conducted performing
synergy test using cefotaxime/clavulanic acid (CTX/CLA, 30/10
µg), ceftazidime/clavulanic acid (CAZ/CLA, 30/10 µg) and
phenyl-boronic acid (PBA, 300µg) containing disks, respectively
(Yagi et al., 2005; CLSI, 2017). E. coli ATCC 25922 and E. coli
ATCC 35218 were included as control.

Molecular Analysis of Resistance
All strains were tested by PCR for the presence of transferable
resistance markers (mcr-1, ESBL, pAmpC, and plasmid mediated
quinolone resistance—PMQR- coding- genes) using primers
listed in Table 1. In the case of mcr-1 detection, the full mcr-
1 gene was amplified and sequenced by using CLR5-F in
combination with MCR1-R (5′-TGCGGTCTTTGACTTTGTC)
(this study). Total DNA was obtained by boiling bacterial
suspensions and plasmid DNA was purified according to Kado
and Liu method (Kado and Liu, 1981).

Plasmid Conjugation Studies
To assess mcr-1 plasmid transferability, conjugation studies by
liquid mating were performed. Salmonella M1744 and E. coli
J53 strains were used as recipient and randomly chosen mcr-
1-positive strains from each farm were used as donors. After
the conjugation, the transconjugants obtained from Salmonella
M1744 were selected in TSA media supplemented with colistin
(2µg/mL), whereas those obtained from E. coli J53 were selected
with sodium azide (200µg/mL) and colistin (1µg/mL). To
confirm successful conjugation, colonies obtained in the selective
media were screened for mcr-1 gene by PCR and then colistin
MIC was determined for both transconjugant and parental E.
coli strains by the broth microdilution as described before. In

addition, co-resistance to other antimicrobials was assessed by
agar disk diffusion method as previously described.

Molecular Typing by PCR-Based
Techniques
Clonality of the isolates was determined by the homology
relationships among fragments amplified by ERIC-PCR
(Enterobacterial Repetitive Intergenic Consensus) and REP-PCR
(Repetitive Extragenic Palindromic) according to Versalovic et al.
(1991). Dendrograms were constructed by GelJ 1.0 program,
using UPGMA algorithm and applying the DICE correlation
coefficient.

Statistical Analysis
Significant differences (p< 0.05) in the association among strains
according to the presence of genes were determined by Pearson’s
Chi-squared test with Yates continuity correction using Epidat
software (version 4.1).

RESULTS AND DISCUSSION

Resistance to Colistin and mcr−1 Gene
Detection
The presence of mcr-1 in Argentina was already detected in
E. coli isolates recovered from invasive infections in humans
(Rapoport et al., 2016) and has also been found in bacteria
isolated from domestic animals (Dominguez et al., 2017). The
E. coli strains included in the present report were classified
in the base of their susceptibility to colistin following the
recommendations of the European Committee on Antimicrobial
Susceptibility Testing (EUCAST, 2017). All strains considered
resistant to colistin harbored the mcr-1 gene as demonstrated
by PCR, and the sequenced gene was identical to the previously
published sequence, accession number KP347127.1 (Liu et al.,
2016). Additionally, from the 10 strains classified as colistin-
susceptible, 3 of them were positive for the mcr-1 gene
(Table 2).

From the 31 colistin resistant/mcr-1-positive E. coli strains, 28
showed MICs ranging from 4 to ≥ 32µg/mL. Although the disk
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TABLE 2 | Characteristics of Escherichia coli recovered from different farms in Buenos Aires and Entre Ríos, Argentina, 2014.

Provinces Farms Strain MIC to colistin

(µg/mL)

Resistance determinant*

mcr-1 AmpC blaCTX-M qnrA qnrB qnrD qnrS oqxAB qepA

Buenos Aires 1 E. coli 190-02 2 (S)

E. coli 241-S1 8 (R) CTX-M-14

E. coli 241-S3 1 (S)

2 E. coli 190-06 0.5 (S)

E. coli 241-S2 1 (S)

E. coli 241-S4 1 (S) CTX-M-2

3 E. coli 241-L1 8 (R)

E. coli 241-L2 2 (S) CTX-M-2

E. coli 190-08 8 (R) CMY-2 CTX-M-2

E. coli 190-10 8 (R) CTX-M-2+ CTX-M14

E. coli 241-L3 0,5 (S) CTX-M-2

4 E. coli 190-13 8 (R) CTX-M-2+ CTX-M14

E. coli 190-14 8 (R) CTX-M-2

E. coli 241-P2 4 (R) CTX-M-2

E. coli 241-P3 8 (R) CMY-2

E. coli 241-P4 2 (S) CTX-M-2+ CTX-M14

E. coli 241-P1 8(R) CTX-M-2

5 E. coli 190-15 8(R)

E. coli 190-16 4 (R)

E. coli 241-Z1 8 (R) CTX-M-2

E. coli 241-Z2 16 (R) CTX-M-2

E. coli 241-Z3 8(R) CTX-M-2

6 E. coli 190-17 8 (R) CMY-2 CTX-M-2

E. coli 190-18 4 (R) CTX-M-2

E. coli 241-K1 8 (R) CTX-M-14

E. coli 241-K2 8 (R) CTX-M-2

E. coli 241-K3 2 (S) CTX-M-2

E. coli 241-K4 8 (R) CTX-M-2+ CTX-M14

7 E. coli 241-B2 2 (S)

E. coli 241-B3 8 (R) CTX-M-2

E. coli 241-B1 4(R) CTX-M-2

Entre Ríos 8 E. coli 191-08 8 (R) CTX-M-2

E. coli 191-07 8 (R) CMY-2 CTX-M-2

9 E. coli 191-11 8 (R)

E. coli 191-12 32 (R)

E. coli 191-13 16 (R)

10 E. coli 191-16 4 (R)

E. coli 191-17 8 (R) CTX-M-2

11 E. coli 191-21 8 (R) CTX-M-2

E. coli 191-23 32 (R) CTX-M-2+ CTX-M14

E. coli 191-22 8 (R) CTX-M-2

*The squares in gray indicate presence of the gene; while the squares in white indicate absence of the studied gene. (R) resistant and (S) susceptible by MIC determinations with colistin.

diffusion method (10 µg colistin disk) is not yet standardized
for polymyxins, all 28 strains displayed colistin inhibition zone
≤11mm. The remaining strains (3/31) showed MICs between
4 and 8µg/mL but nevertheless displayed inhibition zones
≥ 11mm with colistin. Although molecular detection is the
most appropriate technique for mcr-1 identification, a strong

association with the phenotypic methodologies to detect mcr-1-
mediated colistin resistance was observed.

Previous works describe the transferable nature of the mcr-
1 gene (Liu et al., 2016). In the present work, the mcr-
1-mediated colistin resistance was successfully transferred by
conjugation to both recipient laboratory strains (E. coli J53
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and Salmonella M1744). Two out of ten mcr-1-positive strains
from each farm (Table 3) were obtained from liquid mating
experiments performed using poultry E. coli strains as plasmid
donors. Plasmids carrying themcr-1 gene conjugated at a transfer
frequency of ∼1.5 × 10−3 transconjugants per donor cell.
Accordant to results obtained by Liu et al. (2016), we found
that MIC for colistin of the transconjugants increased four- and
eight-fold compared to the original recipient strains.

Molecular typing analysis by the ERIC-PCR and REP-PCR
showed that all E. coli carrying mcr-1 gene from this study had
high clonal diversity and thus considered as genetically unrelated
Figure S1. These results are in concordance with previous reports
that describe the wide distribution of the mcr-1 gene among E.
coli isolates independently of bacterial source or host species,
suggesting a non-clonal spread of colistin resistance (Fernandes
et al., 2016; Rapoport et al., 2016). In addition, this study reports
a successful plasmid–gene combination of these E. coli strains in
healthy broiler chickens, which may play a role in the emergence
and spread of this gene.

Resistance to Other Antimicrobials
Resistance to Fluoroquinolones and Detection of

Plasmid-Mediated Quinolone Resistant (PMQR)

Genes
Further determinations of antimicrobial susceptibility of
mcr-1-positive strains demonstrated high rates of multidrug
resistance, since 85% (29/34) of the tested strains were resistant
to at least three different classes of antimicrobial agents
(Figure 1).

Simultaneous resistance to colistin and quinolones or
fluoroquinolones was relatively high (Figure 1A), since 94%
(32/34) of the mcr-1-positive strains were resistant to nalidixic
acid (NAL), 67.6% (23/34) to ciprofloxacin (CIP), and 76.5%
(26/34) to enrofloxacin (ENR). Almost three from every four
strains (76.5%) harbored a PMQRmarker and the most prevalent
determinants were qnrS (20/34) and qnrB (18/34). Almost three
from every four strains (76.5%) harbored a PMQR marker and
the most prevalent determinants were qnrS (20/34) and qnrB

(18/34). Other PMQRs such as qnrA (2/34), qnrD (1/34) and the
efflux pumps oqxAB (5/34) and qepA (5/34) were also identified.
These results are consistent with the analysis made by Huang
et al. (2009) in isolates from China, who also found a high ratio
of E. coli strains harboring PMQR determinants and the authors
suggest that this fact may be related to the extended use or misuse
of antimicrobials in poultry.

Although no significant genotypic relation (p > 0.05) was
found between mcr-1-positive strains and plasmid mediated
quinolone resistance genes (PMQR), results obtained in
conjugation experiments suggest that fluoroquinolone and
colistin resistance can be simultaneously co-transferred, since
both transconjugants (EC 190-14 TC and EC 191-07 TC or
EC 191-07 TCS) displayed decreased susceptibility to NAL
and were positive for qnrB gene detection (Table 3). However,
the large number of strains carrying genetic determinants for
fluoroquinolones in healthy broilers was relatively high; this
scenario suggests that other selective forces such as colistin used
as AGP (Morales et al., 2012) or therapeutic antimicrobial misuse
are driving the selection of fluoroquinolone-resistant bacteria.

Resistance to β-Lactams and Detection of Extended

Spectrum β-Lactamase (ESBL) and Plasmidic AmpC

β-Lactamase
The antimicrobial susceptibility analysis showed a relatively high
percentage of AMP resistance 82.4% (28/34) among the mcr-
1-positive strains and a strong relation between susceptibility
to both antimicrobials as determined by disk diffusion tests (R:
0.33, p < 0.05). Considering the susceptibility showed to AMP,
a high percentage of resistance (between 76.5 and 79.4%) was
also observed in oxyimino-cephalosporins (CTX, CRO and CFT,
a cephalosporin used in veterinary medicine) and FEP (70.6%).
However, very little resistance to CAZ and FOX was detected,
while all isolates remained susceptible to carbapenems (IMI and
MEM) (Figure 1B). In contrast, most clinical E. coli strains
were found to be susceptible to a wide range of antimicrobials,
including carbapenems (Lai et al., 2017).

TABLE 3 | Plasmid conjugation studies.

Disk diffusion test* PCR

Strains MIC to colistin (µg/mL) NAL CIP mcr-1/PMQR/CTX-M

E. coli 190-14 8 R R mcr-1+ qnrB+qnrS+CTX-M-2

EC190-14 TC** 4 I S mcr-1+ qnrB

E. coli 191-07 8 I S mcr-1+ qnrB+ CTX-M-2+ CMY-2

EC191-07 TC** 4 I S mcr-1+ qnrB

E. coli J53 0,5 S S –

EC191-07 TCS*** 8 I S mcr-1+ qnrB

Salmonella M1744 1 S – –

*(R) resistant, (I) intermediate and (S) susceptible by disk diffusion test: Nalidixic Acid (NAL), Ciprofloxacin (CIP).

**TC: transconjugants obtained using E. coli J53 as the recipient strain.

***TCS: transconjugants obtained using Salmonella M1744 as the recipient strain.

Frontiers in Microbiology | www.frontiersin.org 6 July 2018 | Volume 9 | Article 1679

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Dominguez et al. Antimicrobial Resistance in Poultry

FIGURE 1 | Antimicrobial susceptibility profiles. Percentage of antimicrobial susceptibility in the isolates analyzed. (A) Fluoroquinolones, (B) β-lactams, and (C) Other

antimicrobials. AMP, ampicillin; AMC, amoxicillin-clavulanic acid; CXM, cefuroxime; CTX, cefotaxime; CAZ, ceftazidime; CRO, ceftriaxone; CFT, ceftiofur; FEP,

cefepime; FOX, cefoxitin; ATM, aztreonam; IMI, imipenem; MEM, meropenem; NAL, nalidixic acid; CIP, ciprofloxacin; ENR, Enrofloxacin; KAN, kanamycin; GEN,

gentamicin; STR, streptomycin; AMI, amikacin; SXT, trimethoprim-sulfamethoxazole; TET, tetracycline; and CLR, chloramphenicol.

CTX-M-producing enterobacteria are widespread among
human population and an increasing number of reports describes
their presence in livestock environments as well as in food from
animal origin (Lazarus et al., 2015). Our findings demonstrate
that also healthy birds may act as a reservoir of blaCTX−M−2

and blaCTX−M−14 genes. In the recent past, CTX-M-2 was the

dominant ESBL group among human clinical Enterobacteriaceae
isolates in South America (Quinteros et al., 2003; Minarini et al.,
2007; Saba Villarroel et al., 2017). From 26 extended- spectrum
cephalosporins (ESC)-resistant and mcr-1-positive strains, 18
strains (18/34, 56%) were CTX-M-2 producers and two produce
CTX-M-14. Five strains harbored both CTX-M genes. CMY-2
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was identified in 4 strains (3 were also CTX-M-2 producers)
(Table 2). According to these results, the main mechanism
responsible for TGC resistance was the production of CTX-M
cefotaximases which explained the low resistance rates to FOX
and CAZ. ESBLs from groups CTX-M-2 and CTX-M-14 were
previously identified in mcr-1-carrying E. coli recovered from
human samples (Rapoport et al., 2016) and from wild birds (kelp
gulls) in the south of Argentina (Liakopoulos et al., 2016).

The cosmopolitan CTX-M-15 variant belonging to the CTX-
M-1 subfamily, which is also widespread in human clinical
isolates from Argentina, (Sennati et al., 2012), could not be found
in this study. This finding was unexpected since reports from
Brazil, where poultry productive systems are similar to Argentina
(Botelho et al., 2015), described the presence of the CTX-M-15
ESBL and the coexistence of CTX-M-8 and CMY-2 in E. coli
isolates recovered from chicken meat.

Many studies in E. coli strains, most of them involving
isolates from animals, have demonstrated the presence of
mcr-1 gene together with ESBL (Rhouma and Letellier,
2017). In the present work, despite the presence of the
CTX-M-2 gene in the parental strain, no co-selection
of ESC-resistant was observed in the transconjugants
(Table 3).

Although 50% of the E. coli strains analyzed carried both
sets of ESBL and PMQR genes, no association between the
presence of ESBL and a specific PMQR mechanism (p > 0.05)
was observed. Additionally, aac (6′)-Ib-cr gene was not detected.
It is remarkable the absence of aac (6′)-Ib-cr gene, and the lack
of association between ESBL and PMQR which is usually found
in some Enterobacteriaceae isolated from human (Andres et al.,
2013; Cruz et al., 2013) in Argentina.

A large variability of PMQR determinants was also observed
in TGC-sensitive (without ESBL) andmcr-1-positive strains with
a similar proportion of qnrB and qnrS genes. To a lesser extent,
some of these strains also showed oqxAB gene. According to the
results of this study, we suggest that E. coli strains from broiler
chickens could be the reservoir not only of the mcr-1 gene, but
also of PMQR and ESBL genes.

Resistance to Other Antimicrobials-Multiple Drug

Resistance (MDR)
Most of the mcr-1-positive strains were determined to carry
ESBL or PMQR-genes and also most of them were resistant
to other classes of antimicrobial agents. This is probably due
to the fact that the aforementioned genes are commonly
found in mobile elements such as conjugative plasmids that
also harbor resistant determinants to different groups of
antimicrobials and confer the MDR phenotype. It is of particular
concern that 39/41 (95.1%) strains considered in this study
(including mcr-1-negative strains) expressed a multi-resistance
phenotype.

The percentage of strains resistant to aminoglycosides and
mcr-1-positive strains was variable and drug dependent.
Resistance rates to this family was STR>KAN (79.4%,
23.6%) and GEN (20.6%). All strains remained susceptible
to AMI (Figure 1C). Resistance to TET (79.4%) was relatively
high, as expected considering the extensive use in animal

medicine, which is in concordance with previous studies
were TET resistance markers are frequently found in
E. coli strains (Argudín et al., 2017). To a lesser extent,
also resistance to SXT (50%) and CLR (44%) was also
detected.

CONCLUSIONS

The results highlight that commercial broiler farms can be
an important reservoir of mcr-1-carrying E. coli strains. In
fact, the high occurrence of E. coli isolates (76%) carrying
the mcr-1 gene is alarming and has not been reported in any
other part of the world (Delgado-Blas et al., 2016; Fernandes
et al., 2016; Kawanishi et al., 2017; Meinersmann et al., 2017;
Monte et al., 2017; Whang et al., 2018). These differences
could be associated with the method of screening used in
the present report since a higher number of unrelated farms
separated from a relatively high distance were considered.
Although this may be related to particularities of the productive
system, the local practices are quite similar to the ones from
other countries in South America that were administering
colistin without any restriction. A potential combination of
antibiotics used in the productive system, climatic variations and
other variables, may influence the spread of mcr-1 and these
scenarios could also contribute to the selection of multi-resistant
bacteria.

In this study, we determined the presence of resistance
determinants in colistin-resistant E. coli strains from the
environment of an intensive production system such as broiler
chickens destined to consumption. A wide range of phenotypic
resistance to both antibiotics in veterinary and human medicine
was identified and resistance to colistin, quinolones and β-
lactams was observed in the analyzed strains. The proportion of
resistance to other antimicrobial families (SXT, TET, CLR, and
aminoglycoside) was relatively high, underlining the presence
of a large number of isolates with a MDR profile. The ability
the co-transference of the qnrB determinant on the mcr-
1-positive transconjugants was corroborated, which suggests
that these resistance genes are likely to be located in the
same plasmid thus transforming it into a more successful
clone.
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