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Spatial patterns and drivers of soil microbial communities have not yet been well
documented. Here, we used geostatistical modeling and Illumina sequencing of 16S
rRNA genes to explore how the main microbial taxa at the phyla level are spatially
distributed in a 25-ha karst broadleaf forest in southwest China. Proteobacteria,
dominated by Alpha- and Deltaproteobacteria, was the most abundant phylum
(34.51%) in the karst forest soils. Other dominating phyla were Actinobacteria (30.73%),
and Acidobacteria (12.24%). Soil microbial taxa showed spatial dependence with
an autocorrelation range of 44.4–883.0 m, most of them within the scope of the
study plots (500 m). An increasing trend was observed for Alphaproteobacteria,
Deltaproteobacteria, and Chloroflexi from north to south in the study area, but
an opposite trend for Actinobacteria, Acidobacteira, and Firmicutes was observed.
Thaumarchaeota, Bacteroidetes, Gemmatimonadetes, and Verrucomicrobia had patchy
patterns, Nitrospirae had a unimodal pattern, and Latescibacteria had an intermittent
pattern with low and high value strips. Location, soil total phosphorus, elevation, and
plant density were significantly correlated with main soil bacterial taxa in the karst forest.
Moreover, the total variation in soil microbial communities better explained by spatial
factors than environmental variables. Furthermore, a large part of variation (76.8%) was
unexplained in the study. Therefore, our results suggested that dispersal limitation was
the primary driver of spatial pattern of soil microbial taxa in broadleaved forest in karst
areas, and other environmental variables (i.e., soil porosity and temperature) should be
taken into consideration.

Keywords: spatial pattern, driver, soil microbial communities, Illumina sequencing, karst forest

INTRODUCTION

The spatial distribution of plants from small to large scales has been documented for a long period
(Levin, 1992). Shifts in vegetation types, plant diversity, community, and biomass in terrestrial
ecosystems can change the characteristics of soil nutrients and soil microbial communities (Batten
et al., 2006; Murugan et al., 2014; Ren et al., 2018). These changes ultimately influence the
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functions of terrestrial ecosystems (Bell et al., 2005; Bardgett
and van der Putten, 2014), which includes decomposition
and biogeochemical nutrient cycling. A few famous ecological
theories have highlighted the importance of resource quantity
and the competition for resources in driving plant diversity
and maintenance mechanisms in terrestrial ecosystems (Tilman,
1982; Hooper et al., 2000; Sterner and Elser, 2002). Meanwhile,
plant diversity has been documented to be positively related
with resource availability and heterogeneity, resulting in niche
differentiation (Hooper et al., 2000; Sardans et al., 2012). Relative
to the number of studies on the spatial distribution of plants,
studies on the spatial patterns of soil microorganisms are recent
and limited, although a growing number of studies have observed
that microbes also exhibit spatial patterns at different scales
(Horner-Devine et al., 2004; Martiny et al., 2006; Ranjard et al.,
2010; Correa-Galeote et al., 2013).

Microorganisms are an integral part of terrestrial ecosystems
and play a pivotal role in maintaining overall ecosystem functions
(van der Heijden et al., 2008; Jing et al., 2015). The soil microbial
community structure varies greatly in different spaces (Horner-
Devine et al., 2004) and among different ecosystems. These
variations are often explained by abiotic (e.g., soil properties)
and biotic factors (e.g., plant functional traits) (de Vries et al.,
2012). Among these factors, soil pH is regarded as a regulator
of diversity in soil bacterial communities, such as Acidobacteria
(Jones et al., 2009; Navarrete et al., 2015) at national and
continental scales (Fierer and Jackson, 2006; Lauber et al., 2009;
Griffith et al., 2011; Mukherjee et al., 2014). Nevertheless, great
uncertainty remains whether soil pH itself is a direct factor or
an indirect factor in shaping the spatial patterns of bacterial
communities, which are influenced by plant traits, agricultural
practices, soil nutrients, and many other factors. Therefore, the
determinants or the underlying mechanisms of soil microbial
community composition are not yet well understood due to a lack
of studies at different spatial scales and locations, particularly in
tropical and subtropical forests with high habitat heterogeneity,
high plant biodiversity, and dynamic climates.

The spatial distribution of microbial communities and their
determinants or underlying mechanisms has been investigated in
many soil types, such as black soils (Liu et al., 2014), wetland (Ligi
et al., 2014; Li et al., 2017), and Antarctic soils (Jung et al., 2011).
However, similar studies in other special soil types (e.g., karst
soil) have not been conducted due to high habitat heterogeneity
and severe ecological degradation (Peng et al., 2008; Zhou et al.,
2010; Jiang et al., 2014). Southwest China is one of the three
largest karst areas in the world (Zhang et al., 2010). Karst is
characterized by substantial soil erosion, widespread exposed
bedrock, and poor soil carrying capacity (Peng et al., 2013),
and the plants have specific adaptations, e.g., calcium-addiction,
drought-tolerance, and lithophytes (Peng et al., 2008). Mixed
evergreen and deciduous broadleaf forest is the representative
vegetation cover in the karst region in southwest China, with
complicated community structures, high biodiversity, and strong
habitat heterogeneity (Zhang et al., 2010; Zhou et al., 2010; Du
et al., 2015). However, the spatial distribution of soil microbial
communities and its determinants remain unknown in the karst
region.

In this study, we investigated the spatial distribution of the
microbial communities in a 25-ha dynamic karst forest plot
located in Mulun National Nature Reserve (MNNR), which is
the largest forest reserve in the karst region and is a component
of Chinese Forest Biodiversity Monitoring Network (CForBio)
(Du et al., 2017). The microbial relative abundance in soil
samples, collected using a grid method in the plot, was analyzed
using Illumina Hiseq sequencing of 16S rRNA genes. The main
objectives of this study were to (1) test whether there were spatial
patterns of relative abundance of the microbial taxa at phylum
level in the 25-ha karst forest plot; (2) generate maps of the
patterns at the forest scale using geostatistical modeling, if spatial
patterns existed; and (3) determine the drivers that influence the
spatial patterns of soil microbial taxa in the karst forest. Our
results can be used to forecast how soil microbial communities
respond to changes in vegetation types in karst areas and to
facilitate the sustainable management of karst ecosystems.

MATERIALS AND METHODS

Study Area Description and Investigation
of Plants and Topography
This study was conducted in the MNNR (107◦54′ 01′′-
108◦05′51′′E, 25◦07′01′′-25◦12′ 22′′N), which is in the
northwestern region of Guangxi Province, China (Supplementary
Figure S1). The MNNR is best preserved and largest primary
karst forest, covering an area of 89.69 km2 with a range
of 19.80 km from east to west and a distance 10.75 km
from south to north. The subtropical monsoon climate
has an average annual temperature of 19.38oC and average
annual precipitation of 1,529.2 mm (mainly from April to
August). In addition, the annual accumulated temperature
above 10 is 6,260oC. The frost-free period is 310 days,
and the mean annual relative humidity is 79% (Song et al.,
2015).

A 25 ha (500× 500 m) forest plot was established in MNNR in
2014, and subsequently the first census was conducted according
to the standard field protocol of the Center for Tropical Forest
Science (CTFS1). The plot was divided into a grid of 625 cells
20 × 20 m in size. All plant characteristics and topographical
factors (elevation, slope, and slope aspect) were measured as
previously described (Condit, 1998; Du et al., 2017), and plant
diversity indices (richness index, Shannon index, and Simpson
index) were determined as previously described in Green et al.
(2005). Plant density was calculated as the number of the trees
per unit area, soil depth was the mean depth of 8–10 points
along an “S” shape in each cell, and rock outcrop coverage
was the mean rock outcrop coverage of the corners and center
of the cell. The spatial location of plot i is represented by
i(X, Y), with the bottom left (southwestern) corner as the
point of origin (0, 0), the Y axis running north and south,
and the X axis running east and west (see in Supplementary
Figure S2).

1http://www.ctfs.si.edu
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Experimental Design and Soil Sampling
For soil microbial sampling, 25 20 × 20 m cells were taken as
one large plot (100 × 100 m), and the samples were collected
in the four corners and the center of each cell (Supplementary
Figure S2). There are a total of 85 soil samples; however,
during the process of transportation and analysis, 3 samples
were contaminated and discarded. Therefore, there were 82 valid
samples in the analysis.

Soil sampling was conducted in October 2016. After removing
the litter, eight random samples (top 0–10 cm) were collected
within a circle with a radius of 2 m (Supplementary Figure
S3) using a soil auger with 5 cm inner diameter. The eight
samples were homogenized into one composite sample per
sampling point. The samples were immediately sent to lab and
sieved through 2-mm mesh to remove rocks, roots, and debris.
A portion of each sample was transported from the field to the
laboratory in a liquid nitrogen tank and then stored at−80oC for
DNA extraction. The remainder of the samples were air-dried and
stored at air temperature prior to physical and chemical analysis.

Soil Physicochemical Properties
Soil pH was determined using a pH meter after shaking
the soil water (1:5 soil/water) suspension for 30 min. Soil
organic carbon (SOC) and total nitrogen (TN) were determined
using an elemental analyzer (Vario MACRO cube; Germany),
total phosphorus (TP) was determined colorimetrically (UV,
Spectrophotometer) after wet digestion with HClO4-H2SO4, and
total potassium (TK) was determined by NaOH fusion-flame
spectrophotometry. Available nitrogen (AN) was determined
using the diffusion-absorption method, available phosphorus
(AP) was determined by NaHCO3 extraction-ammonium
molybdate spectrophotometry, and available potassium (AK) was
determined by (NH4)2CO3 extraction-flame spectrophotometry
(Bao, 2000).

Soil DNA Extraction, PCR Amplification,
and Sequencing of 16S rRNA Gene Data
Soil microbial DNA was extracted from each soil sample
three times from 0.5 g of fresh soil (for a total of 1.5 g
of soil) with the soil DNA kit (Fast DNA R©SPIN Kit for
Soil, MP), according to the manufacturer’s instructions. The
concentration and quality of the extracted DNA were assessed
with a spectrophotometer (NanoDrop2000, Thermo Scientific,
Wilmington, DE, United States) and agarose gel electrophoresis.
The extracted soil DNA was stored at −80oC for PCR
amplification and 16S rRNA gene sequencing.

The V4–V5 region of 16S rRNA gene sequencing was
targeted and amplified via PCR with the primers set
515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 907R
(CCGTCAATTCCTTTG AGTTT-3′) (Biddle et al., 2008). The
primer set provides comprehensive coverage with the highest
taxonomical accuracy for microbial sequences (Mukherjee et al.,
2014; Ren et al., 2016). The PCR reaction was performed in
a 30 µl volume containing 15 µl of Phusion Master Mix 2x
(Thermo Fisher Scientific Inc., Waltham, MA, United States),
3 µl of each primers (6 µM), 10 µl of DNA template (5–10 ng),

and 2 µl H2O. After preparation, the samples denatured at
98◦C for 1 min, then amplified using 30 cycles of 98◦C for
10 s, 50◦C for 30 s, and 72◦C for 30 s, followed by extension at
72◦C for 5 min. Each sample was amplified in three replicates.
Finally, Illumina sequencing from each sample was conducted
on an Illumina’s HiSeq 2000 platform (Illumina, San Diego,
United States) at Novogene Biotechnology Co., Ltd. (Beijing,
China).

The raw reads of microbial 16S rRNA genes were
demultiplexed, quality-filtered, and processed by using QIIME
based on three criteria (Ren et al., 2016). Sequence analysis
was performed using the USEARCH v5.2.32 to filter and
eliminate noise from the data by clustering similar sequences
with <3% dissimilarity. Operational taxonomic units (OTUs)
were clustered at the 97% similarity level using the UPARSE
method (Edgar, 2010). Final OTUs were generated based on the
clustering results, and taxonomic assignment was performed
with the RDP 16S Classifier (Wang et al., 2007).

Statistical Analyses
A geostatistical method was used to model the spatial
structure of the relative abundance of the microbial taxa
in the forest. First, the variables of relative abundance of
the microbial taxa at the phylum level were analyzed using
descriptive statistics. A Kolmogorov–Smirnov test revealed most
of the measured variables followed a normal distribution.
Four variables (i.e., Chloroflexi, Nitrospirae, Latescibacteria, and
Verrucomivrobia) followed a normal distribution after using
the Box-Cox transformation (Supplementary Table S1). Second,
semivariogram models were calculated from GS+ 9.0 based on
the transformed variables. Moran’s I index was used to measure
whether a variable has a spatial dependency and whether the
variable itself has a strong association in the nearest space (Fortin
and Dale, 2005). Semivariance is a statistic measuring the spatial
autocorrelation between samples at different lag distances:

γ
(
h
)
= 0.5 ∗

1
N
(
h
) ∑[

Zi − Zi+h
]2 (1)

Where γ(h) is semivariance for interval distance class h; zi
is measured sample value at point i; zi+h is measured sample
value at point i+h; and N(h) means total number of sample
couples for the lag interval h. Either higher value of the higher
determination coefficient (R2) or lower value of the residual sums
of squares (RSS) of the best fitting model, which indicates that
the spatial structure of soil microbial taxa at the phyla level can
be better reflected (Supplementary Table S2). The distance at
which the value of autocorrelation crossed the expected value
was considered the ‘spatial range,’ which we termed ‘range’ for
short in the study. The range indicated the maximal distance at
which the variable is spatially autocorrelated (Fortin and Dale,
2005). Therefore, the range of main microbial taxa was within
the sampling scale (<500 m), except for Deltaproteobacteria
and Firmicutes (Supplementary Table S2), which suggested that
the sampling scale was large enough to reveal spatial patterns
of the main microbial taxa as well as the drivers of the
spatial patterns. Third, ordinary kriging was used to make
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spatial prediction for points over the entire 500 × 500 m
plot. The kriging maps were generated through ArcGIS 10.3
software.

Environmental factors included spatial position i(X, Y),
soil properties (pH, SOC, TN, TP, TK, AN, AP, and AK),
topographical variables (soil depth, rock outcrop coverage,
elevation, slope, and slope aspect), and plant characteristics
(richness index, Shannon index, Simpson index, and density).
The relationships between spatial position, soil properties,
topographical factors, plant characteristics, and microbial phyla
were determined by Pearson’s correlation analysis in SPSS 18.0
software package. In order to decrease the false discovery rate,
Benjamini-Hochberg procedure were conducted for multiple
testing corrections. The relationship between soil bacterial
phyla and the above mentioned environmental factors were
identified using redundancy analysis (RDA) and conducted using
Canoco 5.0 software. Before the RDA analysis, a detrended
correspondence analysis (DCA) for the relative abundance
of the main microbial taxa was performed to confirm that
the linear ordination method was suitable for analysis of the
microbial taxa data (gradient length <3). The result of RDA
analysis revealed the effect of the environmental factors on
microbial communities based on the arrow length and the angle
between lines (ter Braak and Smilauer, 2002). Furthermore, the
respective effects of spatial and environmental variables were
determined by canonical variation partitioning (Borcard et al.,
1992; Legendre et al., 2009). Partial RDA was performed in
CANOCO 5.0.

RESULTS

Plant Characteristics and Soil Physical
Properties in MNNR
According to the first census in 2014, there were 144,552
individuals belonging to 51 families, 127 genera, and 228
species in the forest plot. The most dominant species were

Crytocarya microcarpa, Itoa orientalis, Platycarya longipes,
and Lindera communis (Du et al., 2017). In the microbial
sampling plots, the mean richness index for woody plants
was 30.5, the mean Shannon–Wiener index was 2.30, and
the mean Simpson index was 0.74, and the mean plant
density was 242 plants per plot (Table 1). Soil pH and
SOC varied from 6.35 to 8.25 and 28.96 to 129.39 g kg−1,
respectively. TN, TP, TK, AN, AP, and AK ranged from 3.00
to 14.41 g kg−1, 0.35 to 3.39 g kg−1, 1.05 to 13.96 g kg−1,
166.71 to 860.20 mg kg−1, 0.95 to 18.54 mg kg−1, and 1.23 to
12.91 mg kg−1, respectively, and had a medium variation with
CV (Coefficient of variation) between 25 and 75%, except for pH
(Table 1).

Soil Microbial Community Structure and
Composition
The relative abundance (>1%) of soil microbial phyla were:
Proteobacteria (34.51%), Actinobacteria (30.73%), Acidobacteria
(12.24%), Chloroflexi (6.00%), Thaumarchaeota (4.17%),
Nitrospirae (3.61%), Bacteroidetes (2.45%), Gemmatimonadetes
(2.00%), Latescibacteria (1.06%), Verrucomicrobia (1.04%),
and Firmicutes (1.04%) (Figure 1, Supplementary Table S1).
Notably, among these sequences, Proteobacteria was the most
dominant phyla in the karst forest (Figure 1), which has two
dominant Proteobacteria classes, Alphaproteobacteria and
Deltaproteobacteria. Thus, Alpha- and Deltaproteobacteria were
included in our analysis. At the class level, Alphaproteobacteria
(18.43%) and Thermoleophilia (11.57%) were the most dominant
classes (Supplementary Figure S4). Within Alphaproteobacteria,
the orders Rhizobiales and Rhodospirillales were the most
abundant in the soil. Within Thermoleophilia, the orders
Gaiellales and Solirubrobacterales were dominate (Supplementary
Figure S4). The CV of Actinobacteria, Alphaproteobacteria, and
Acidobacteria were below 25%, whereas Thaumaechaeota and
Verrucomicrobia were above 75%. Other phyla were between 25
and 75% (Supplementary Table S1).

TABLE 1 | Plant characteristics and soil properties in Mulun National Natural Reserve.

Minimum Maximum Means SE CV (%) Skewness Kurtosis

Plant characteristics

Richness index (R) 3 65 30.50 17.33 56.81 0.338 −0.996

Shannon index 0.10 3.60 2.30 1.04 45.26 −0.507 −1.097

Simpson index 0.03 0.96 0.74 0.27 35.92 −1.052 −0.237

Density (plants·plot−1) 53 735 242 130.9 54.09 1.613 3.459

Basic soil properties

pH 6.35 8.25 7.45 0.47 6.32 −0.572 −0.665

SOC (g kg−1) 28.96 129.39 62.16 21.58 34.72 1.194 1.290

TN (g kg−1) 3.00 14.41 7.38 2.62 35.46 0.999 0.438

TP (g kg−1) 0.25 3.39 1.54 0.74 48.26 0.042 −0.803

TK (g kg−1) 1.05 13.96 5.33 2.93 54.93 0.615 −0.271

AN (mg kg−1) 166.71 860.20 423.84 157.56 37.18 0.736 −0.050

AP (mg kg−1) 0.95 18.54 5.43 3.58 65.89 1.294 1.611

AK (mg kg−1) 1.23 12.91 4.82 2.50 51.91 0.797 0.293

SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; TK, total potassium; AN, available nitrogen; AP, available phosphorus; AK, available potassium.
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FIGURE 1 | Soil bacterial community composition in the karst forest.

Spatial Autocorrelation of Microbial
Communities
There were three trends in the spatial autocorrelation of the
relative abundance of the main microbial phyla in the karst forest
(Figure 2). First, the spatial dependence of Thaumarchaeota
was very small, the Moran’s I index was close to 0, and the
regularity was not strong. The other ten phyla had a certain
degree of spatial dependency, ranging from −0.157 to 0.495,
and with a decreasing order of Bacteroidetes, Nitrospirae,
Proteobacteria, Actinobacteria, Latescibacteria, Firmicutes,
Chloroflexi, Gemmatimona, Acidobacteria, and Verrucomicrobia.
Secondly, Proteobacteria, Nitrospirae, and Firmicutes had a
similar spatial structure in that the Moran’s I index of these phyla
gradually declined as the lag distance increased and reached 0
around 226.27 m. Then, the Moran’s I index of the other phyla
decreased to negative and then increased after a minimum as
the lag distance was extended, which illustrated a distinct spatial
structure.

The Gaussian model fit best for Alpha- and
Deltaproteobacteria, an exponential model fit best for
Thaumarchaeota, Nitrospirae, Verrucomocrobia, and Firmicutes,
and a spherical model fit best for the other bacterial phyla
(Supplementary Table S2 and Figure 3). Geostatistical modeling
showed a very low nugget effect (C0) and autocorrelation
range of 44.4–883.0 m for the main microbial phyla relative
abundance in the karst forest soil (Supplementary Table S2 and
Figure 3). The range of most of the main microbial taxa (except
Deltaproteobacteria and Firmicutes) was less than the sampling
range (500 m). Moreover, the range of Thaumarchaeota and
Verrucomicrobia was very small, 44.4 and 84.3 m, respectively
(Supplementary Table S2).

The kriging maps showed an increasing trend in the
spatial distribution of Alphaproteobacteria, Deltaproteobacteria,
and Chloroflexi from the north to the south of the forest
field (Figure 4), but Actinobacteria, Acidobacteira, and
Firmicutes showed an opposite trend (Figure 4). Moreover,
Thaumarchaeota, Bacteroidetes, Gemmatimonadetes, and
Verrucomicrobia had a distinct patchy pattern (Figure 4).
Nitrospirae displayed a unimodal distribution pattern with the
peak value of relative abundance in the middle part of the plot

(Figure 4). By and large, Latescibacteria exhibited an intermittent
pattern with high and low value strips (Figure 4).

Relationship Between Soil Microbial
Taxa and Environmental Factors
Pearson’s correlation analysis showed a significant correlation
between Y values of the plot locations, phosphorus, elevation,
slope, plant density, plant diversity (i.e., richness index, Shannon
index, and Simpson index), and the relative abundance of
many soil microbial taxa (Table 2). Dynamics in soil microbial
community composition, induced by relative abundance, were
most closely related to the plot location, phosphorus, and
plant factors. However, microbial community composition was
unrelated to SOC, AK, soil depth, rock outcrop coverage, and
slope aspect. We also found that plant traits and topographical
factors were highly correlated with X value, TK and TP were
highly correlated, tree abundance and Simpson index were
highly correlated with Shannon index, soil depth and rock
outcrop coverage were highly correlated, and slope and elevation
were also highly correlated (Supplementary Table S3). Thus,
these correlated variables were removed before RDA analysis.
According to the result of forward selection, the variables
including pH, AN, Rockcov, TN, AK, SOC, and Aspect, were
removed in the RDA analysis.

The relationship between environmental variables (i.e., Y, TP,
AP, Elev, Shannon, and Den) and the dominant microbial taxa
relative abundance were examined using RDA (Figure 5). The
results showed that environmental variables, especially Y value
of location, TP, elevation, and plant density, significantly affected
the soil dominant microbial community. Furthermore, the
relative abundance of Firmicutes, Actinobacteria, Bacteroidetes,
and Chloroflexi was positively correlated with Y value of location,
while Alpha- and Deltaproteobacteria showed the opposite
trend. Latescibacteria, Gemmatimonadetes, Acidobacteria,
Verrucomicrobia, and Bacteroidetes were significantly affected
by soil TP, elevation, and plant density. Variance partitioning
indicated that environmental factors explained 8.4% of variation
in spatial distribution of soil microbial taxa relative abundance,
and spatial factors explained 13.7% of the variation. The
interaction between environmental factors and spatial factors
was 1.1% of the variation (Figure 6).

DISCUSSION

Soil Microbial Community Structure and
Composition
In the study, there were 11 phyla with >1% relative
abundance in the karst forest soils, i.e., Proteobacteria,
Actinobacteria, Acidobacteria, Chloroflexi, Thaumarchaeota,
Nitrospirae, Bacteroidetes, Gemmatimonadetes, Latescibacteria,
Verrucomicrobia, and Firmicutes (Figure 2 and Supplementary
Table S1). Moreover, about 77% of the obtained sequences
in the karst forest soils belonged to three dominant phyla,
i.e., Proteobacteria (34.51%), Actinobacteria (30.73%), and
Acidobacteria (12.24%) (Figure 1 and Supplementary Figure S4).
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FIGURE 2 | Moran’s I index of relative abundance of the main phyla in the karst forest.

The contribution of the dominant phyla was similar to the
studies in black soils (78.0% of nine dominant groups; Liu et al.,
2014), in Chinese boreal forest soils (76% of four dominant
phyla; Xiang et al., 2014), and in Oklahoma prairie soil (75% of
the three dominant phyla; Sheik et al., 2011), but higher than the
studies in Loess afforested soils (69.9% of three dominant groups;
Ren et al., 2016) and in wetland soils (65% of six dominant
groups; Ligi et al., 2014), and lower than in Arctic soils (83.0% of
five dominant groups; Chu et al., 2010).

It should be noted that the samples involved in the studied
by Liu et al. (2014) and Chu et al. (2010) were obtained from

agricultural and tundra soils, respectively. The most dominant
phyla had strong correlations with soil pH in arctic soils (Chu
et al., 2010), while no significant correlations were observed for
Alphaproteobacteria in soils from lower latitude biomes (Lauber
et al., 2009). Although the largest difference in measured soil
pH was only 2.01 pH units, the large differences in soil C and
N content in black soils, soil microbial community composition,
phylotyope richness, and phylogentic diversity were significantly
correlated with soil pH (Liu et al., 2014). The samples in
the study by Ren et al. (2016) were collected from afforested
soils, and soil N fractions, especially dissolved organic nitrogen
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FIGURE 3 | Semivariograms of relative abundance of the main microbial phyla. Semivariance models and parameters for all the studied phyla are given in
Supplementary Table S3.

(DON), were significantly correlated with most microbial groups
and microbial diversity. Therefore, studies that compare the
microbial communities between different soils types (e.g., black
soil, wetland soil, and karst soil) or among different land use types
(e.g., agriculture, tundra, prairie, and forest) need to be carried
out in the future.

Spatial Variations of Microbial Taxa
The relative abundances of the main microbial taxa at the phylum
level were not randomly distributed at the 25-ha karst forest plot
and could be mapped using geostatistical modeling. Our results

confirmed that most microbial processes in soil have spatial
variation at the local scale (Parkin, 1993). The results of Moran’s
I index indicated both Deltaproteobacteria and Firmicutes
showed autocorrelation patterns over larger scales (883.0 and
710.9 m, respectively) compared with other microbial phyla
(ranging from 44.4 to 412.8 m) (Figure 2 and Supplementary
Table S2). Therefore, due to the scale considered in our study,
almost no patchiness was observed for Deltaproteobacteria or
Firmicutes, whereas smaller scale patchiness was found for
other phyla. To better carry out spatial analysis of these two
phyla, it is necessary to moderately reduce the scale or to
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FIGURE 4 | Spatial distribution of the main soil microbial phyla in the karst forest.

increase sampling density to avoid missing related important
information.

A very low nugget effect for most microbial communities
in the study (Supplementary Table S2 and Figure 3) was
also observed by Philippot et al. (2009) and Ritz et al.
(2004) for other microbial properties. Although there is little
literature about sampling at a similar spatial scale (500 m),
the spatial dependence of soil microbial properties and taxa
at different scales has been reported. For example, at the
meter scale, extreme spatial variations in community-level
microbiological properties and N-cycling microbial communities

existed in upland grasslands (Ritz et al., 2004) and constructed
wetland sediments (Correa-Galeote et al., 2013), respectively.
The total and relative abundance of eight bacterial taxa
displayed strong spatial distributions at the pasture scale
(39.6 × 14.4 m), with varying or even contrasting patterns.
For example, the relative abundance of both Acidobacteria
and Verrumcomicrobia was lower in the central field, while
the opposite trend was observed for Bacteroidetes (Philippot
et al., 2009). Community components for both ammonia-
oxidizing bacteria (AOB) and archaea (AOA) exhibited spatial
patterns at the hectare scale (Wessén et al., 2011). At the
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TABLE 2 | Pearson’s correlation coefficients between the main phyla and environmental factors (n = 82).

Actinob Alphap Acidob Deltap Chlorof Thaumar Nitrosp Bactero Gemmati Latesci Verruco Firmicu

Y 0.475∗ −0.590∗ 0.161 −0.615∗ 0.469∗ −0.171 −0.408∗ 0.421∗ −0.131 −0.108 −0.167 0.523∗

TN −0.055 −0.134 0.349∗ −0.162 0.170 0.040 −0.108 0.064 0.058 −0.017 −0.116 0.064

TP −0.272 −0.174 0.257 0.117 0.226 0.150 0.226 −0.184 0.251 0.331∗ −0.192 0.030

AP −0.141 0.019 0.183 0.221 0.064 −0.030 0.101 −0.293 0.366∗ 0.176 −0.048 −0.256

S 0.244 0.098 0.025 −0.245 −0.121 −0.043 −0.284 0.128 −0.286 −0.343∗ 0.103 −0.028

Shannon 0.221 0.116 0.129 −0.259 −0.069 −0.043 −0.329∗ 0.075 −0.301 −0.369∗ 0.105 −0.106

Simpson 0.229 0.120 0.109 −0.285 −0.081 −0.048 −0.369∗ 0.117 −0.309 −0.424∗ 0.120 −0.113

Den 0.283 0.091 −0.315∗ −0.271 −0.208 −0.017 −0.233 0.243 −0.085 −0.306∗ 0.082 0.086

Elev 0.139 0.314∗ −0.120 −0.125 −0.213 −0.208 −0.276 0.182 −0.132 −0.295 0.266 −0.034

Slope 0.166 0.211 −0.064 −0.218 −0.239 0.048 −0.321∗ 0.148 −0.304 −0.391∗ 0.063 −0.062

∗ indicates that correlations are significant at Q-value < 0.01 after p-value adjusting by Benjamini-Hochberg procedure. Data of the variables with weak relationships
with soil microbial taxa are not shown. These are the abbreviation of microbial taxa: Actinobacteria (Actinob), Alphaproteobacteria (Alphap), Acidobacteria
(Acidoba), Deltaproteobacteria (Deltap), Chloroflexi (Chlorof), Thaumarchaeota (Thaumar), Nitrospirae (Nitrosp), Bacteroidetes (Bactero), Gemmatimonadetes (Gemmati),
Latescibacteria (Latesci), Verrucomicrobia (Verruco), and Firmicutes (Frimicu); the abbreviation of environmental characteristics: total nitrogen (TN), total phosphorus (TP),
available phosphorus (AP); Y represent the location of the plots; elevation (Elev); Richness index (S), Shannon index (Shannon), Simpson index (Simpson), plant density
(Den).

FIGURE 5 | Ordination plots of the results from the redundancy analysis (RDA)
to identify the relationships among the microbial taxa (blue arrows) and
environmental factors (red arrows). These are the abbreviation of microbial
taxa: Actinobacteria (Actinobc), Alphaproteobacteria (α-proteo), Acidobacteria
(Acidobac), Deltaproteobacteria (δ-proteo), Chloroflexi (Chlorofl),
Thaumarchaeota (Thaumarc), Nitrospirae (Nitrospr), Bacteroidetes (Bacteroi),
Gemmatimonadetes (Gemmatim), Latescibacteria (Latescib), Verrucomicrobia
(Verrucom), and Firmicutes (Frimicut); the abbreviation of environmental
factors: the location of the plots (Y), total phosphorus (TP), available
phosphorus (AP); elevation (Elev), Shannon index (Shannon), plant density
(Den). Each vector points to the direction of increase for a given microbial
phylum and its length indicates the strength of the correlation between the
variable and the ordination scores.

landscape scale, the abundance of total bacteria, crenarchaea,
nitrate reducers, denitrifiers- and ammonia oxidizers exhibited
spatial distribution across 31,500 km2 (Bru et al., 2011). Thus,
based on these studies, we deduced that the distribution of soil
microbial taxa relative abundance in the karst forest was also
not random on the meter scale and can be modeled at a forest
scale.

FIGURE 6 | Variation partitioning of the main microbial taxa relative
abundance. (A) spatial variation that is not shared by the environmental
variables; (B) spatially structured environmental variation; (C) non-spatial
environmental variation; and (D) unexplained variation and stochastic
fluctuations.

Correlation Between Soil Microbial Taxa
and Environmental Factors
In our study, i(X, Y) represented the location of sample plot i by
grid method from the origin. Y value showed to account most for
soil microbial community composition in the karst forest among
the selected environmental factors (Figure 5). It is well confirmed
that soil properties, including soil microbial taxa, are spatially
differentiated by both internal factors (natural conditions),
which accounted for causing a strong spatial variability of soil
properties, and by external factors (field management), which are
thought to be responsible for the weak spatial dependence of soil
properties (Atreya et al., 2008).

Soil TP was significantly correlated with main bacterial taxa
in the karst forest (Figure 5), which was responsible much
for the distribution of microbial community composition. Soil
phosphorus, most of which was obtained from the parent
material, was gradually depleted and fixed in plants and
animal tissues and its concentrations became unsatisfactory
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for microorganisms (McGill and Cole, 1981), which can
restrict the development of microbial community (Jangid et al.,
2014). Moreover, the growth-rate hypothesis (Sterner and Elser,
2002) suggested that microorganisms belonging to fast-growing
organisms require high P demand for the synthesis of ribosomes,
ATP, DNA, and RNA (Peñuelas and Sardans, 2009). Therefore,
to a large extent, P supply should be an important factor for
microbial community composition and distribution in the karst
forest soils.

Topographical factors, such as elevation and slope, were
significantly negative correlated with most soil microbial taxa
across the forest field (Figure 5). On one hand, this is because
fine particles eroding from higher elevation and then deposing
at the lower areas of the field where relatively fine soil offers
more affordable living environment for microbes (Constancias
et al., 2015). On the other hand, this topographical difference in
soil microbial taxa resulted from the soil hydrological condition
regulating soil carbon flux (Dai et al., 2012; Song et al.,
2017), which affects soil aeration and influences soil microbial
respiration (Dai et al., 2012). Soil depth and rock outcrop
coverage slightly affected soil microbial taxa, even though shallow
soil and high rock outcrop coverage is characteristic of karst
(Song et al., 2015). This weak relationship might be because
soil microorganisms are adapted to survive on the soil surface,
appearing as colonies on the surface of pore walls.

Plant density had more effect on the soil microbial community
composition in the karst forest than plant diversity indices
(Figure 5). Higher plant density means more fine roots and a
competition for soil nutrient in the soil. Root exudation extremely
affects the availability of soil organic C and influences soil
nutrient status (Phillips et al., 2011), which ultimately affects
microbial niches, diversity, and activity (Sinsabaugh et al., 2008;
Lopez-Sangil et al., 2011). Moreover, it has been observed that
karst forests with more fine root biomass are favorable for
soil microbial growth via decomposition and mineralization
(Krashevska et al., 2015; Lai et al., 2016) as in afforested
soils (Ren et al., 2016). In parallel, the relative abundance of
Nitrospirae, Gemmatimonadetes, and Latescibacteri was lower
and Actinobacteria was higher with increased plant diversity
(Figure 5 and Table 2), indicating that plant diversity can drive
the changes in microbial diversity (Meier and Bowman, 2008; de
Graaff et al., 2010).

Soil pH has been documented as the major factor determining
the soil microbial community composition in many soils and
ecosystems, such as soils across North and South America
(Lauber et al., 2009), British soils (Griffith et al., 2011), Antarctic
soils (Jung et al., 2011), black soils (Liu et al., 2014), wetlands
(Ligi et al., 2014; Li et al., 2017), and a karst cave ecosystem
(Yun et al., 2016). It is worthy to note the samples in these
studies were collected from different soil types and the soil pH
was highly variable, or that the samples were collected from one
soil type with a large variation in pH and slight variation in
other soil properties (such as soil C and N content). However,
in our study, the largest difference in soil pH was only 1.90 pH
units (seen in Table 1), and we found a low correlation between
pH and the main microbial phyla relative abundance (Data not
shown). Thus, our results indicated that soil pH did not play

an important role in shaping microbial community composition
in the karst forest soil. In addition, Fierer et al. (2007) found
that the C mineralization rate was the best predictor of relative
abundance of bacterial phyla. The soil C mineralization rate was
not measured in our study, but we did find that SOC content had
a low correlation with soil microbial phyla (Data not shown). This
observation may be partially explained by relative abundance
of microbial taxa. It was hardly affected by a fluctuation in the
amount of starting material (e.g., SOC) between samples and thus
did not depend on the exact quantification of DNA extracted
from the soil and its inherent bias (Philippot et al., 2009).

Drivers of Spatial Patterns of Microbial
Taxa
The spatial distribution of soil microbial communities of the
karst forest was heterogeneous and complex. The kriging maps
showed that the microbial communities displayed different or
even contrary spatial patterns, suggesting that they have different
responses to spatial abiotic or biotic factors. For example,
Alphaproteobacteria, Deltaproteobacteria, and Chloroflexi had
an increasing trend from the north to the south in the
forest plot, whereas the opposite was found for Actinobacteria,
Acidobacteira, and Firmicutes (Figure 4). Overall, these six
phyla could be differentiated into copiotrophic or oligotrophic
categories. Our results indicated that the spatial heterogeneity
of soil nutrients affect the r- and K-selected categories of
microbial taxa (Fierer et al., 2007). In addition, the spatial pattern
of Actinobacteria and Acidobacteira were roughly identical
(Figure 4), but the trend of the latter was weaker, which
may be related to sampling period peaking in plant litter and
root exudates that prefer Actinobacteria rather than the more
oligotrophic Acidobacteria (Fierer et al., 2007). Furthermore,
increases in the relative abundance of Actinobacteria may be due
to the reduction of Acidobacteira, which might also be partly
explained by these two groups share similar niches (Marco, 2008).

Like soil nutrients, bacterial communities were spatially
distributed in the black soil zone in northeast China in
accordance with soil pH and soil carbon content (Liu et al.,
2014). In wetlands, complex soils, and sediments, water regimes
were key factors determining bacterial community structure
(Ligi et al., 2014); nitrate and C:N ratio were most dominant
in shaping the archaeal community structure (Li et al., 2017).
In the Antarctic terrestrial ecosystem, soil microbial nitrogen
cycle was dramatically altered by temperature and nitrogen,
especially warming was detrimental to the ammonia-oxidizing
archaeal community (Jung et al., 2011). In our study, the selected
environmental factors, Y value of spatial location, elevation, TP,
and plant density drove the soil microbial taxa distribution in
the karst forest soils (Figure 5). Moreover, variance partitioning
showed that spatial factors better explained the total variation of
soil microbial communities than environmental factors, which
indicated that dispersal limitation was the primary driver of
soil microbial spatial pattern in broadleaved forests in karst
areas (Martiny et al., 2006). However, a large portion of the
variation (76.8%) was unexplained in our study. This suggested
that the spatial patterns of soil bacterial taxa in the karst
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forest soils were complex. The unexplained factors may include
unmeasured environmental variables (e.g., soil moisture and
temperature), inter- and intra-specific relationships of among
microbial communities and among plant species, as well as plant-
microorganism interactions.

CONCLUSION

The dominant microbial phylum in the karst forest soils was
Proteobacteria (34.51%), which was dominated by Alpha- and
Deltaproteobacteria. Actinobacteria (30.73%) and Acidobacteria
(12.24%) were other dominating phyla. We demonstrated that
spatial patterns of the microbial taxa relative abundance at the
phyla level could be detected and modeled at the study scale,
which suggested that the microbial communities were spatially
distributed in the karst forest soil of southwest China. Moreover,
kriging maps displayed that no single spatial pattern was shared
by all the main bacterial communities, which indicated that
the patterns of microbial phyla in the karst forest soils were
heterogeneous and complex. Furthermore, location, soil TP,
elevation, and plant density were significantly correlated with
main soil bacterial taxa in the karst forest. However, the total
variation in soil microbial communities better explained by
spatial factors than environmental variables. Moreover, a large
portion of the variation was unexplained in our study. Our results
suggested that dispersal limitation was the primary drivers of soil
microbial distribution in broadleaved forest in karst areas, and
environmental factors (e.g., soil porosity and temperature) may
be taken into consideration.
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