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Among all the emerging and re-emerging animal diseases, influenza group is the

prototype member associated with severe respiratory infections in wide host species.

Wherein, Equine influenza (EI) is the main cause of respiratory illness in equines across

globe and is caused by equine influenza A virus (EIV-A) which has impacted the equine

industry internationally due to high morbidity and marginal morality. The virus transmits

easily by direct contact and inhalation making its spread global and leaving only limited

areas untouched. Hitherto reports confirm that this virus crosses the species barriers

and found to affect canines and few other animal species (cat and camel). EIV is

continuously evolving with changes at the amino acid level wreaking the control program

a tedious task. Until now, no natural EI origin infections have been reported explicitly in

humans. Recent advances in the diagnostics have led to efficient surveillance and rapid

detection of EIV infections at the onset of outbreaks. Incessant surveillance programs

will aid in opting a better control strategy for this virus by updating the circulating

vaccine strains. Recurrent vaccination failures against this virus due to antigenic drift and

shift have been disappointing, however better understanding of the virus pathogenesis

would make it easier to design effective vaccines predominantly targeting the conserved

epitopes (HA glycoprotein). Additionally, the cold adapted and canarypox vectored

vaccines are proving effective in ceasing the severity of disease. Furthermore, better

understanding of its genetics and molecular biology will help in estimating the rate

of evolution and occurrence of pandemics in future. Here, we highlight the advances

occurred in understanding the etiology, epidemiology and pathobiology of EIV and a

special focus is on designing and developing effective diagnostics, vaccines and control

strategies for mitigating the emerging menace by EIV.
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INTRODUCTION

Equine influenza (EI) is an extremely contagious disease of horses
(including wild horses), which is caused by Influenza A viruses.
These viruses are known for high rates of transmission in a
wide variety of animal species. Equine influenza virus (EIV),
the causative agent of EI, is considered to be one of the most
important viral respiratory pathogens of equines. The disease
is characterized by flu-like symptoms affecting predominantly
the respiratory tract (Wilson, 1993; Slater and Hannant, 2000;
van Maanen and Cullinane, 2002; Newton and Mumford, 2005;
Cullinane et al., 2006; Landolt et al., 2007; OIE, 2008; Stack et al.,
2013; Kapoor and Dhama, 2014; Yin et al., 2014). The presence of
influenza infections has been suggested in horses since the time of
Hippocrates and Absyrtus, the latter being a Greek veterinarian,

described a disease resembling influenza in 412 BC and 433
AD, respectively. In 1872, an outbreak of influenza occurred
throughout the North America and affected large population of
horses resulting in crippled transportation of goods, unloading of
ships and stoppage of almost all essential services (Law, 1874). In
India, one of the largest EI outbreak occurred in 1987 affecting
more than 27,000 equines and causing death of several hundred
(Uppal et al., 1989). In Australia during 2007, an EI outbreak

infected ∼10,000 equines despite keeping strict preventive and
control measures. The disease was restricted after great efforts at
the colossal cost of about one billion Australian dollars (Cowled
et al., 2009).

Equine influenza is mainly caused by two subtypes of
influenza A viruses namely H7N7 (first isolated in the year 1956)
and H3N8 (first isolated in the year 1963; Sovinova et al., 1958;
Waddel et al., 1963). Previously, H7N7 was considered as the

major cause of epidemics whereas latter H3N8 strain is mainly
responsible for outbreaks across the globe (Mathew et al., 2010;
Bryant et al., 2011; Alves Beuttemmüller et al., 2016). Genetic
analysis has revealed close relatedness of H3N8 strains of EI with
avian influenza virus (AIV), which may indicate co-existence of
influenza viruses in aves and equines (Cullinane and Newton,
2013). Notably, EIV has been seen to infect unusual host, dogs
(Kirkland et al., 2010; Wang et al., 2017). Although, before 2004,
canines were considered resistant to influenza virus infection, the
recent epidemic of influenza in canines came as a surprise (Gibbs
and Anderson, 2010). Interspecies transmission of the virus
has been reported in racing greyhounds in the USA where the
isolated virus showed close relatedness to H3N8 virus (Crawford
et al., 2005). Further studies confirmed that though this virus was
earlier considered to be confined to the equine host exclusively,
it has been demonstrated in canines (Crawford et al., 2005; Gibbs
and Anderson, 2010; Hayward et al., 2010; Landolt, 2014), zebras,
camels (Yondon et al., 2014), and humans (Larson et al., 2015).

The evolution (intra-host) of EIV has been recorded in naive
horses and during field outbreaks (Murcia et al., 2010; Hughes
et al., 2012). Antigenic drift (caused by point mutation) has
resulted in emergence of “European” and “American” lineages
of H3N8 (Wilson, 1993; Daly et al., 1996, 2004; Oxburgh and
Klingeborn, 1999; Purzycka et al., 2004; Cullinane and Newton,
2013). As of now, human infections with EIV have not been
reported, and only serological evidences exists without virus

isolation from specimens. Although, zoonotic implications of
EIV have not yet been fully elucidated, nevertheless, the virus
can pose a threat to laboratory personnel (Alexander and Brown,
2000; OIE, 2008). Since detection of EIV in dogs, it is presumed
that this virus can re-assort (H3N8) with human influenza virus
and might lead to the emergence of novel strains (Na et al.,
2016).

Although vaccination is the most useful prophylactic strategy;
continuous genetic evolution of the virus demands genetic
characterization of currently circulating EIVs for the selection
of a candidate vaccine strain. As vaccine failures occur in
several parts of the world there is need for a better vaccine
to completely eradicate equine influenza (Kinsley et al., 2016).
Hence, understanding of the molecular mechanisms involved
with its cross-species transmission is of prime importance to
devise any prophylactic and control strategy (Holland, 2003;
Smyth, 2007; Joseph et al., 2017).

The present review comprehensively describes EIV and
the disease it causes, epidemiology, transmission, pathogenesis
and pathology, advances in diagnosis, vaccine development
and appropriate prevention, and control strategies to be
adapted.

ETIOLOGY

Based on thematrix and nucleoprotein genes of influenza viruses,
they have been classified as type A, B, C, and D. Type A viruses
mainly infect animals and humans while type B and C viruses
infect only humans. A close relative of Type C virus, Type D was
first reported in the year 2011 from swine and later identified
from cattle, sheep, and goats (Ferguson et al., 2016). Sero-
surveys showed that type D antibodies were found in humans
and equines also (Nedland et al., 2018). AIV is considered as an
ancestor to all other influenza viruses of mammalian and non-
mammalian species. H7N7 andH3N8, the major subtypes of EIV,
were previously referred as equine 1 and 2 viruses, respectively
(Daly et al., 2011; Chambers, 2014; Sreenivasan et al., 2018).
EIV is a segmented RNA virus with 80–120 nm in diameter
and is classified under the family Orthomyxoviridae belonging
to the genus Influenza A (Timoney, 1996). Influenza A viruses
possess eight single segmented negative sense RNA strands and
are sub-typed based on the two surface glycoproteins that make
45% of the mass of this virus, namely hemagglutinin (HA)
and neuraminidase (NA) (Webby et al., 2007; Cullinane and
Newton, 2013; Lewis et al., 2014). The shape of EIV particle
is greatly determined by segment 7 (Elton et al., 2013). The
segmented genome of EIV encodes at least 10 classical proteins.
The proteins that are encoded by the segmented genome are:
structural proteins which are termed as HA, NA, nucleoprotein
(NP), matrix proteins (M1 and M2), three polymerase proteins
(PB1, PB2, and PA), one nuclear export protein (NEP) and a non-
structural protein named as NS1. As a result of complementary
sequences and frame shift other minor yet important proteins are
also expressed. HA and NA glycoproteins are termed as spikes as
these projects outside the envelope, essential for viral entry and
release (Timoney, 1996; Easterday et al., 1997; Figure 1).
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FIGURE 1 | Structure of Equine Influenza Virus. EIV is a segmented RNA virus possessing eight (single) segmented negative sense RNA strands. Segmented genome

encodes eight structural proteins and at least two non-structural proteins.

Complete transcription of segment 8 leads to expression of
NS1 while pre-mature splicing leads to expression of NEP (Lamb
and Lai, 1980). Earlier NEP was thought to be a non-structural
protein and termed as NS2 and later studies indicated that this
protein was found within virion and have interaction with M
protein (Paterson and Fodor, 2012). NEP is essential for the
release of viral ribonucleoprotein from the host nucleus. Viral
RNA segments 2 and 3 codes for PB1 and PA which are the
major virulence factors. Further, PB1 subunit can give rise to
three proteins namely, PB1, PB1-F2, and PB1-N40. +1 reading
frame of PB1 segment codes for the PB1-F2 (on average 90 amino
acid length) which has apoptosis induction function (Krumbholz
et al., 2011). N40 is another version of PB1 where there is
truncation in the N terminal region of PB1 (Wise et al., 2009).
PA-X is a recently described protein which is the outcome of
ribosomal frame shifting of segment 3 mRNA during translation
(Jagger et al., 2012). It is noteworthy that the PA-X protein of
the virus causes suppression of host gene expression (Feng et al.,
2016; Oishi et al., 2018).

NS1, a homodimer protein (215–237 amino acids), is an
important virulence factor of influenza virus as it modulates
several viral and host cellular mechanisms during influenza
replication cycle. There are two functional domains in case
of NS1 protein named as RNA binding domain (N terminal
end) and effector domain (C terminal end; Chien et al., 2004).
NS1 possess different epitopes hence having multifunctional
activities. NS1 protein plays a crucial role in influenza infection
by antagonizing type I interferon of host and reducing IFN
β production (Hale et al., 2008). On the basis of nucleotide
homology, NS segment of influenza A virus are divided into
A and B allele. All mammalian influenza isolates except equine
origin H3N8 belong to allele A (Guo et al., 1992).

HA and NA proteins are the important surface antigens in
EIC and antibodies generated against them provide resistance
to infection (Landolt, 2014). Neutralizing antibodies are formed
against HA that can block virus entry and antigenic drift at this
molecule can lead to vaccine failure (Yates and Mumford, 2000).
Similarly, protective antibodies against NA aggregates the virus
on host cell surface and hinders the virus release from the cells
(Sylte and Suarez, 2009). Heterotypic immunity is provided at
minimum level by humoral responses; whereas cross-reactive
response (mediated by cytotoxic T lymphocytes) is observed
between the viral subtypes, true for all the subtypes of type A
viruses (Hemann et al., 2013; McKinstry et al., 2013; Landolt,
2014). Subtle changes in the constitution of amino acidmay result
in immune escape due to different antigenicity (Park et al., 2009)
and recently, it has been revealed that there are nine substitutions
in the sequences of HA of Brazilian EIV isolates in comparison to
the vaccine strain (Florida Clade 1; Favaro et al., 2018).

A detailed investigation of 1989 UK outbreak using reverse
genetics and site-directed mutagenesis determined the role of
amino acid substitutions within HA glycoprotein (Woodward
et al., 2015), and mutations at positions 159, 189, and 227 were
found to be associated with altered antigenicity, as revealed
by HI assays. The antigenic site B was suggested to be the
major antigenic site (Daly et al., 1996) and K189 in it is also
important for differentiation in Eurasian sub-lineage (Lewis et al.,
2011). K189 residue retains a very important role in pertaining
antigenicity and switching between uncharged, acidic and basic
amino acid is responsible for differed antigenic properties (Ye
et al., 2013). The same position has been noticed important for
altered antigenic phenotype in H3N2 viruses (Koel et al., 2013),
and the samemutation has been found culprit for human vaccine
breakdown in Iran during 2005–2006 (Moattari et al., 2010).
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EIV SUBTYPES, LINEAGES, AND
SUBLINEAGES

EIV has two recognized subtypes namely H7N7 (subtype 1)
and H3N8 (subtype 2), of which H3N8 predominantly circulates
in equines. H3N8 subtype was isolated for the first time in
1963 from the horses showing the symptoms of flu in USA,
designated as A/eq/Miami/63 and is considered as prototype
virus (Waddel et al., 1963). Earlier, it was hypothesized that
H3N8 subtype viruses evolved as a single lineage (Kawaoka
et al., 1989). Based on the sequence analysis of the HA gene, the
H3N8 EIV shows two genetic and antigenic variants (Figure 2)
evolving after 1980s namely Eurasian and American lineages
(Daly et al., 1996). Subsequently, American lineage evolved into
three sublineages namely Argentinian, Kentucky, and Florida
(Lai et al., 2001). Further, evolution of the Florida sublineage has
resulted in the emergence of two groups of viruses with divergent
HA sequences (Figure 2) which are provisionally referred to
as Florida sublineage clades 1 and 2 viruses (Bryant et al.,
2011). Currently, Clade 1 and Clade 2 lineage viruses have been
circulating across the globe and leading to outbreaks. Clade
1 viruses have been circulating more in American continent
while Clade 2 viruses have been incriminated for most of the
outbreaks in Europe and Asia. Both clades have been reported
in major outbreaks throughout the world (Bryant et al., 2009).
However, outbreaks due to both of them keep on occurring
across the geographic barriers. Florida Clade 1 viruses have
been responsible for major outbreaks in Japan and Australia
in 2007–08 (Bryant et al., 2009) while Clade 2 viruses caused
huge outbreaks in China, India, and Mongolia (Virmani et al.,
2010a). A/eq/South Africa/04/2003-like or A/eq/Ohio/2003-like
viruses are representative of clade 1, A/eq/Richmond/1/2007-
like viruses represents clade 2 and Newmarket/2/93 represents
Eurasian lineage (Laabassi, 2016). Since 2013, some of the
isolates from Europe have been consistently showing two
amino acid changes viz. A144V and I179V (Figure 2) in the
antigenic region and have been referred two as subgroups
in Clade 2 lineage. The changes are in the antigenic site;
however, they have not affected the HI assay using the post-
infection Ferret antisera (Woodward et al., 2014; Rash et al.,
2017).

EPIDEMIOLOGY AND EVOLUTION

Since 1956, when marked widespread respiratory epidemic
disease occurred in equines due to EIV, Europe and North
America are the most endemic regions for EI, and almost all
nations in the world have witnessed outbreaks caused by EIV
except few small island countries like New Zealand and Iceland.
Currently, EI is prevalent worldwide viz. Europe, Canada, USA,
Turkey, Scandinavia, and South America (Sovinova et al., 1958;
Waddel et al., 1963; Gerber, 1970; Uppal et al., 1987; Wood
and Mumford, 1992; Wilson, 1993; Timoney, 1996; van Maanen
and Cullinane, 2002; Radostits et al., 2003; Purzycka et al.,
2004; Newton and Mumford, 2005; Mathew et al., 2006; Landolt
et al., 2007; Smyth, 2007; Foord et al., 2009; Sajid et al., 2013;

Gahan et al., 2017). Increase in equine traffic has led to the
spread of EIV to other countries including South Africa in 2003.
Australia has reported the disease for the first time in 2007 and
the disease was re-introduced to Japan and South Africa (Ito
et al., 2008; OIE, 2008; Yamanaka et al., 2008a; Foord et al.,
2009; Alves Beuttemmüller et al., 2016). Improper quarantine
of sub-clinically affected animals, which were not sufficiently
vaccinated, led to spread of this virus to Australia as seen in the
Australian outbreak in the year 2007 when about 76,000 horses
were found infected (Cullinane and Newton, 2013). During
this outbreak, EIV was also noticed in dogs that were in close
proximity to horses but without any lateral transmission (dog-to-
dog; Kirkland et al., 2010; Crispe et al., 2011). Similar observation
of Transmission of EIV subtype H3N8 to English foxhounds has
also been reported during an outbreak in the year 2002 in the
United Kingdom (Daly et al., 2008). Most EIV strains isolated
recently all over the world originate from the Florida group.
Kwasnik et al. (2016) compared available GenBank database
of full-length NS sequences of EIV with Florida group. The
alignment indicated I194V common in all American lineages
and may serve as a discriminator from Eurasian lineages. EIV
does not show any seasonal incidences thus can occur at any
time of the year (Chambers, 2014; Landolt, 2014). Mortality due
to EIV is rare, which can happen in foals devoid of maternally
derived antibodies and also in affected horses and donkeys that is
devoid of rest. Also, due to the presence of maternally derived
antibodies the incidence of this disease is quite low in foals
(Landolt, 2014).

Several prototypes of the virus have been isolated in during
1956 to 1989 including influenza A/equine/Prague/1/56 (H7N7),
influenza A/equine/Miami/ 1/63 (H3N8), while influenza
A/equine/Jilin/1/89 (H3N8), which has emerged by trans-
species transmission from birds in China in the year 1989
(Chambers, 1992; Guo et al., 1992). H7N7 was nominated
as the prototype EIV and there was no report of isolation
of H7N7 after the year 1979 (Webster, 1993). H7N7 has
only been reported twice in the Asian continent; first time
in Malaysia in the year 1977 and later for the second time in
India in the year 1987 based on sero-survey studies (Uppal
and Yadav, 1987; Uppal et al., 1987). Disappearance of H7N7
may be explained on the basis of the codon usage concept
where it was observed that in this strain possessed strong
codon biasness is strong and not guided by mutation pressure
or nucleotide composition (Kumar et al., 2016). In the year
1963, H3N8 subtype caused a major epidemic in the USA
(Florida), which was later designated as equine subtype 2 (Daly
et al., 2004). Evidence suggests that there was a spread of the
H3N8 virus from Florida to countries like Australia, Japan as
well as China (Murcia et al., 2013; Karamendin et al., 2014).
Now, the H3N8 subtype virus mainly circulates throughout
the world. South America is considered to be the origin
of the spread of H3N8 to other countries (Perglione et al.,
2016).

Several reports regarding outbreaks and evolution of the
virus are documented throughout the world and comprehensive
reports from various such studies from different continents are
documented in the following section.
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FIGURE 2 | Phylogenetic analysis of hemagglutinin (HA) genes nucleotide sequences from 57 Equine Influenza Viruses (EIVs). The maximum likelihood tree was

constructed using stringent T92 + G algorithm which was identified using the find best DNA/protein model tool available in MEGA 6. The reliability of the trees was

assessed by bootstrap with 1,000 replications with cut off at 50 are shown in the tree. The phylogram depicts five major clusters of global EIVs. Phylogenetic group’s

viz., Florida sub-lineage clade 1, Florida sub-lineage clade 2, American, Eurasian and Pre-divergent, are mentioned by bars on the right. The major mutations (I179V

and A144V) observed in the Clade 2 viruses of Florida sublineage in recent isolates have been denoted by solid dots.
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North America
A/equine/Montana/9564-1/2015 (H3N8) was isolated from an
outbreak in USA during 2015 from the unvaccinated equines
and sequence analysis showed that the virus was identical to
A/equine/Tennessee/29A/2014 (H3N8) based on its polymerase
acidic (PA), polymerase basic protein 1 (PB1), hemagglutinin
(HA), matrix (M) and nucleoprotein (NP), while analysis of
non-structural proteins (NS), neuraminidase (NA), and PB2
showed maximum identity with A/equine/Malaysia/M201/2015
(H3N8). The virus could grow on various primary cells derived
from bovine, equine, human, and swine implying that it has
the potential to cross species barrier and produces infection
(Sreenivasan et al., 2018).

A Canadian study at a racetrack showed 76% prevalence
of EIV (Morley et al., 2000). A surveillance study in Ontario,
Canada showed that morbidity rate of EIV was 56.6% among
the equine respiratory outbreaks. H3N8 was also isolated from
15 horses affected during five different outbreaks (Diaz-Mendez
et al., 2010).

A recent sero-survey conducted in West Indies among 140
horses and 40 donkey serum samples revealed 49 samples positive
for EI antibodies. This was the first report of EIV infection from
Leeward Islands of West Indies (Bolfa et al., 2017).

South America
Gaíva e Silva et al. (2014) observed seropositivity of EIV in
92% of equines amongst Brazil equine establishments. The
high prevalence of antibodies against EIV suggested that the
virus circulated extensively among the animals, and statistical
analysis indicated that the movement and high aggregation
of animals are associated with virus transmission. In the year
2015, EIV outbreak was reported from both the vaccinated
and unvaccinated equines in Brazil. Notably, all the 12 isolates
recovered during the outbreak were classified as Florida Clade 1
EIV. The reason behind these outbreaks were identified either the
use of old vaccine without updation or the use of updated vaccine
without proper trail (Favaro et al., 2018).

Europe
A genetic analysis of HA1 domain of hemagglutinin H3 of EIV
isolated during 2005 to 2010 was determined and the genetic
evolution of French EIV strains and strains isolated globally was
performed (Legrand et al., 2015). The study revealed that EIVs
evolved in France during 2005–2010 in a similar manner as other
parts of world. Genetic evolution study of all the EIV isolated
in France from 1967 to 2015 was studied and it was found that
till 2003 American and Eurasian lineages were predominating
while the Florida sub-lineage Clade 2 predominated after 2005
(Fougerolle et al., 2017).

Genetic characterization of Italian isolates revealed a close
relatedness to American, European, and also the prototype
vaccine lineage A/eq/South Africa/4/2003 isolate (Damiani et al.,
2008). First incidence of Florida clade 1 virus in Nordic countries
was reported in the year 2011 in Sweden which supports the use
of both clade 1 and 2 Florida sublineage viruses in the vaccine
(Back et al., 2016). HA1 gene of 18 EIV isolated during 2007–
2010 in Ireland was carried out and it was found that all isolates

belonged to Florida sublineage hence Expert Surveillance Panel
recommended the use of both clades of Florida sublineage in
the vaccine (Gildea et al., 2012). Later in 2014, EIV outbreaks
were reported in 19 premises of Ireland. Though there was clear
vaccination history against EIV which may be due to the non-
updation of vaccines with Clade 2 of the Florida sublineage
(Gildea et al., 2018). Phylogenetic analysis of HA and NA gene of
Greek EIV isolates recovered during the year 2003–2007 showed
that they are related to Eurasian lineage and Florida sublineage
clade 2, respectively. This study suggests that there may be
possibility of reassortment (Bountouri et al., 2011). Recently in
February 2018 there was report of equine influenza from Scotland
and the virus belonged to Florida clade 1 sublineage and this
sublineage has not been reported in UK after 2009 (Whitlock
et al., 2018).

Africa
African countries also reported this virus. A study in Nigerian
horses showed the presence of H3 and H7 subtypes in their
sera by ELISA (Meseko et al., 2016). Later, in a serosurvey
conducted in Nigeria employing nucleoprotein-based ELISA,
173 out of 284 animals screened were found to be positive
for the presence of EIV antibodies. Thus, a thorough
screening is warranted in these areas to carve out the clear
picture of the disease status and to adopt better control
programs (Meseko et al., 2016). Sequencing of three H3N8
isolates from Morocco namely A/equine/Nador/1/1997,
A/equine/Essaouira/2/2004 and A/equine/Essaouira/3/2004
showed that A/equine/Nador/1/1997 had relatedness
with European lineage while A/equine/Essaouira/2/2004
and A/equine/Essaouira/3/2004 had homology with
A/equine/Fontainbleu/1/1979. A/equine/Essaouira/2/2004
and A/equine/Essaouira/3/2004 also showed 12 substitutions
in NS1 protein when compared with the reference
A/equine/Miami/1963 strain (Boukharta et al., 2015).

Asia
During 2007–2008, China and its neighboring countries;
Mongolia, India and Japan were invaded by various EIV strains
(Qi et al., 2010). Further, phylogenetic analysis revealed that
the Chinese strains, Indian strain (Jammu-Katra/6/08) and the
Mongolian strain (Mongolia/1/08) were of Florida sublineage
clade 2 type. All strains were derived from European strains of
this clade as the Newmarket/1/07 and Cheshire/1/07 strains but
were unrelated to Japanese strains isolated around the same time
(Florida sublineage clade 1) or to Chinese strains isolated in
the 1990s (European lineage). There were some unique amino
acid changes in the antigenic sites in Asian strains of Florida
sublineage clade 2. The loss of a glycosylation site in the Chinese
Liaoning/9/08 strain, leads to evolution of few new characteristics
(Qi et al., 2010).

Since 2007, several outbreaks of EI have occurred in
Kazakhstan, western Mongolia, India, and western China and
all these have similarities with EIVs circulating in the same
period in neighboring countries (Karamendin et al., 2014).
Genetic characterization of the viruses revealed the formation
of an EIV cluster and continued evolution of this lineage
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in central Asia between 2007 and 2012. The main genetic
changes observed were in the HA gene without any antigenic
drift. Recently, H3N8 A/Equine/Kyonggi/SA1/2011 (KG11) was
isolated in Korea which had naturally truncated NS1 protein
coding gene (Lee et al., 2017). Recently, genome of two equine
influenza strains namely A/equine/Kostanay/9/2012(H3N8) and
A/equine/LKZ/9/2012(H3N8) isolated from Kazakhstan was
sequenced completely. It was reported that though the isolates
were isolated at the same time there was sequence difference
at some points indicating the evolution of equine influence
(Burashev et al., 2018).

In India, the influenza like symptoms in equines were first
reported in 1964 from the Bombay Turf Club, Mumbai, where
around 400 horses showed symptoms of coughing (Manjrekar
et al., 1965). Since then, India has experienced two major
epizootics, first of which was recorded during January to
August 1987, which involved over 83,000 equines in north
and central India (Uppal and Yadav, 1987; Uppal et al., 1989).
Two virus isolates of H3N8 subtype namely Ludhiana/87 and
Bhiwani isolate were confirmed during the outbreak in 1987.
Second epizootic was reported in 2008–2009 after a gap of 20
years, which initially started from Jammu and Kashmir and
covered almost 14 states in the country (Virmani et al., 2008,
2010a,b). Based on the place of isolation, the isolates were
named as A/equi-2/Ahmadabad, A/equi-2/Jammu-Katra/08 and
A/equi-2/Mysore/08. HA gene of the isolates were analyzed
phylogenetically which showed relatedness Florida sublineage
Clade 2 in American lineage (H3N8) and also very similar to
Chinese isolates of 2007–2008 (Virmani et al., 2010b). Similarly,
analysis based on M gene showed homology of 98.41% and
99.54% with other clade 2 Asian origin viruses for M1 and
M2 amino acids sequences, respectively. Asian, Chinese and
Mongolian isolates had three and four unique amino acid
residues in the M1 and M2 proteins (Virmani et al., 2011).
Phylogenetic analysis of the NA gene demonstrated that few
Indian isolates differed from the Jammu-Katra/06/08 isolate. The
Indian isolates were clubbed in Yokohama/10 isolate subgroup
together with Chinese, Mongolian, and Kazakhstan isolates (Bera
et al., 2013).

In the year 2007, an outbreak had been reported in
China among Asian wild horses (Equus przewalskii). The
virus had been isolated and completely sequenced and then
designated as strain A/equine/Xinjiang/4/2007 which showed
99% homology with Florida-2 sublineage rather than with
strain A/equine/Qinghai/1/1994 (European lineage) responsible
for previous outbreaks in China (Yin et al., 2014). In March
2017, an EIV outbreak in donkeys from Shandong province
of China was reported where the virus was found to be
A/donkey/Shandong/1/2017 (H3N8) belonging to the Florida
sublineage clade 2. Amino acid sequence comparison with the
vaccine strain A/equine/Richmond/1/2007 showed substitutions
at A, B, and C antigenic regions. The report suggested the
circulation of newly emerging EIV in donkeys in China (Yang
et al., 2018).

The Japanese EIV isolate Kanazawa/07 phylogenetically
relates to American sublineage Florida virus clade (Ito et al.,
2008). Some scholars have claimed that the 1889 human

pandemic culprit was H3N8 EIV (Xie et al., 2016). An EIV isolate
with truncated NS1 gene was isolated in South Korea which
belonged to Florida sublineage clade 1. Truncation in the NS1
gene has not affected the replication of the virus (Na et al., 2014).

During the period 2015–2016, an outbreak of EI among
equines of several districts of Khyber Pakhtunkhwa Province
of Pakistan was noticed. An extensive epidemiological survey
was conducted during the outbreak and it was found that
A/equine/Pakistan/16 viruses was suggested to be outcome of
reassortment between equine and avian influenza viruses as it
possessed H3N2 or H7N3 likeM andNP genes which was unique
compared to other viruses (Khan et al., 2017).

Turkey reported their first EIV outbreak in the year 2013 and
the virus was found to be a Florida clade 2 sublineage H3N8
which was similar to the one circulating in Europe (Gahan et al.,
2017). Influenza virus A (A/camel/Mongolia/335/2012[H3N8])
has been isolated from camel in Mongolia, which is more evident
of expansion in the host spectrum of this virus (Yondon et al.,
2014). Survey carried out in the four provinces of Mongolia
during 2016–17 showed that seven samples to be positive by
qPCR and two samples were suspected positive for EIV out of
680 nasal swabs of horses examined but none yielded growth in
MDCK cell line. Similarly, there was no positive case observed
out of 131 camels tested. This study reported a sporadic incidence
of enzootic EIV in Mongolia (Sack et al., 2017).

Australia
In Australia, the first outbreak of EIV was reported in the year
2007. The major outbreak appeared in New South Wales and
Queensland affecting more than 1,400 equines within a month
(Burnell et al., 2014).

Disease Transmission
The virus transmission occurs by inhalation through aerosol
that can spread effectively through air up to 1–2 km of distance.
Droplet infection plays a major role in the transmission as nasal
discharge/fomites aid in animal to animal transfer (Timoney,
1996; Easterday et al., 1997). Horse-to-horse spread is fairly rapid
and faster than other respiratory infections in the equine species
(Chambers, 2014). International trade and traffic also leads to
spread of disease to disease free zones of the world. Virus can
endure for 3 days in the environment leading to the spread in
other animals through fomites. The incubation period is 1–3 days
and the infected horses have been found to shed the virus up to
10 days via nasal discharge (Daly et al., 2004). Crowded housing
practices of equines usually aid in the fast spread of the EIV
(Figure 3).

Being a contagious disease, the rate of EIV infection is almost
100 per cent in unvaccinated horses. Age groups of 1–5 year-
old naïve equines are more susceptible to EIV. Immune status of
the animals plays an important in the onset of disease. Partially
immune animals tend to become infected sub-clinically. Further,
the spread of virus in partially immune animals is slower than in
naïve animals (Landolt, 2014). EIV is a self-limiting sterile disease
in horses since the virus does not persist in recovered animals
(Cullinane and Newton, 2013). It was speculated that interspecies
jump to dogs might be due to proximity with infected horses as
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FIGURE 3 | Transmission of EIV. Droplet infection is an important mode of transmission. Transmission between animals includes crowded housing practices,

non-vaccination, young horses of 1–5 years and international trade. Dog gets EIV by consuming infected dead horse meat.

happened in the first report of H3N8 in dogs in Florida, 2004
and/ or by eating the infected horse-meat (Crawford et al., 2005;
Newton et al., 2007).

Cross-Species Transmission
Influenza virus shows partial host restriction and this
characteristic is attributed to the HA gene. HA as a viral receptor
binding protein, binds to the sialic acid (SA) host cell receptors.
Binding is dependent upon the SA species (N-acetylneuraminic
acid or N-glycolneuraminic acid) and its linkage with galactose
moiety; either α(2 → 6) linkage or α(2 → 3) linkage. Human
influenza viruses prefers SA α(2→6)-gal in N-acetylneuraminic
acid form, whereas avian, equine, and canine influenza viruses
prefer binding to SA α(2 →3)-gal in N-glycolylneuraminic acid
form (Ito and Kawaoka, 2000). HA gene analysis has thrown
much light on the evolution of equine and canine influenza
viruses (Shi et al., 2010). Comparing the sequences of EIV
isolated from equine and canine host showed differences or
changes that occurred to meet the requirement for host cell
adaptation and tropism. But not much change has been found
to occur in the influenza virus biology during virus interspecies
jumping (Collins et al., 2014; Feng et al., 2015). The canine
influenza virus (CIV), A/canine/Colorado/30604/2006 (CO06,
H3N8) evolved from an equine strain found to be only mildly
pathogenic in equines due to a change in receptor preference
acquired for viral entry into the host cell during mutation
(Yamanaka et al., 2010). EIV have limited host specificity with
the exception of reports of H3N8 virus transmission in dogs

(Kirkland et al., 2010). A limited transmission of EIV H3N8 has
been reported among dogs in the United Kingdom as well as
Australia (Parrish et al., 2015). The equine and canine H3N8
viruses have minimum difference biologically and both show
mutation in PA-X protein (Feng et al., 2015, 2016). Simultaneous
circulation of H3N8 viruses in dogs and horses makes bi-
directional virus transmission possible (Rivailler et al., 2010).
Studies have indicated the inability of H3N8 CIV isolates to
replicate and spread in equids and suggested the involvement of
factors other than receptor binding specificity in infection with
EIV (Kirkland et al., 2010; Pecoraro et al., 2013; Landolt, 2014).
Reciprocally, equine H3N8 lineages are absent in dogs (Rivailler
et al., 2010). It is interesting to note that due to substitution of
amino acid in the binding site there may be modification in the
H3N8 replication in the canine respiratory tract (Collins et al.,
2014). In line, experimental transmission of EIV H3N8 to cats
has also been reported (Su et al., 2014), indicating the wider
host spectrum of EIVs in the event of exposure. In the year
2012–2013, EIV (H3N8) was also isolated from a Bactrian camel
in Mongolia (Yondon et al., 2014). Out of 460 nasal swabs only
one isolate A/camel/Mongolia/335/2012[H3N8] was recovered
highlighting the need for further investigations in camels to find
the pathobiology of EIV in camels.

The phylogenetic analysis of H3N8 viruses isolated from
dogs and horses revealed monophyletic and distinct evolution
of both viruses. However, analysis of a limited number of EIVs
suggested substantial separation in the transmission of viruses
causing clinically apparent influenza in dogs and horses (Rivailler
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et al., 2010). Yamanaka et al. (2009) tested the possibilities of
interspecies transmission of EIV to dogs due to close contact
with experimentally EIV infected horses. The infected horses
were kept with healthy dogs in three groups in close proximity
for 15 days and HI test revealed sero-conversion in all with
viral shedding in dogs of two groups without apparent clinical
symptoms. The same study was performed in inverse order
by Yamanaka et al. (2012a) with healthy horses and CIV
infected dogs kept in close contact to investigate the interspecies
transmission. Though all the dogs infected with CIV presented
clinical signs of lung consolidations after euthanasia, none of
the horse showed clinical signs, virus shedding, seroconversion
or lesions in the respiratory tract. These findings thus revealed
that a single dog infected with CIV is not sufficient enough
to be a source of CIV infection in horses. Short et al.
(2015) have reviewed influenza A viruses comprehensively by
describing interspecies virus transmission and analyzing the
current knowledge regarding adaption of influenza viruses to a
new host.

Two isolates of H3N8 EIV were isolated from swine in China
when pigs were screened for swine influenza (Tu et al., 2009).
Though pigs possess both α-2,6 galactose and α-2,3 galactose
sialic acid receptors, a study with EIV does not produce fever
and other notable histopathological changes. H3 HA of influenza
viruses has extended pathogenic potential, but analysis showed
that evolution of H3 from equine and canine origin is different
from H3 of swine, avian, and human viruses (Shi et al., 2010).
Further, the potential of H3N8 influenza virus from canine,
equine, avian, and seal origin has been tested for its capability
to infect pigs. Avian and seal H3N8 viruses replicate substantially
causing detectable lesions in pigs without previous adaptation.
No specific antibodies against hemagglutinin in any H3N8
infected pigs could be detected. Therefore, special attention is
required toward viruses of the H3N8 subtype since these may
infect pigs without detectable anti-hemagglutinin antibodies and
thereby pose a risk of genetic reassortment where pigs act as
mixing vessel for influenza viruses (Solórzano et al., 2015).

Equine Influenza and Human Infection
Although there are sparse reports of EIV infection in man,
the data regarding the phenomenon originated from Mongolia,
where horse-to-man population ratio is highest in the world.
It is presumed that the probable cause of human pandemic in
year 1889 is supposed to be due to the involvement of H3N8
EIV (Elbadry et al., 2014; McAuley et al., 2015). However,
to note due to close association (both temporal as well as
geographical) between human as well as equines, influenza-like
disease epizootics had been observed before the advent of various
serological and molecular assays to detect the virus (Morens
and Taubenberger, 2010). It is reported that the development of
influenza-like illness (ILI) among Mongolian children occurred
after exposure to infected equines (Khurelbaatar et al., 2014). Few
anecdotal reports are also suggesting the suffering of Mongolian
children with ILI due to the exposure to EIV infected horses (Xie
et al., 2016). After the H3N8 epizootic in New South Wales and
Queensland, Australia in 2007, a cross sectional study was carried
out enrolling 89 humans exposed to infected horses along with 11

controls. Hemagglutination, micro-neutralization, and enzyme-
linked lectin assays were carried out in serum samples to detect
H3N8 antibodies, but with a low titer of antibodies indicating the
absence of acute infection, which could be the outcome of cross
reacting antibodies (Larson et al., 2015). Also, the experimental
data revealed that the H3N8 virus could not attenuate following
passage in humans, as it was still capable of infecting and causing
illness in horses (Couch et al., 1969). In a cohort study conducted
among Mongolian adults, after occupational exposure to EIV
infected horse, ILI was observed, and upon quantitative real
time PCR and virus culture, 36% ILI cases were found influenza
A positive without evidence of EIV (Khurelbaatar et al., 2013,
2014). During Australian outbreak of EI in the year 2007, human
samples collected showed only little seropositivity for the equine
strain, which was concluded by the fact that human vaccines had
cross-reactivity to this virus or humans were not susceptible to
EIV (Burnell et al., 2014).

EQUINE INFLUENZA: THE DISEASE

Clinical Manifestations
Clinical signs of EI include the loss of appetite, fever, general
weakness, poor performance, harsh dry cough, hyperemia of
nasal and conjunctival mucosae, tachycardia, dyspnea, stiffness
in legs due to limb edema and muscle soreness, enlarged lymph
nodes, serous nasal discharge, which may turn yellowish due
to secondary bacterial infection and abortion. There is high
morbidity rate in EI while mortality rate is low, and death usually
occurs due to pneumonia as a sequela. In rare cases, myocarditis
and chronic obstructive pulmonary disease is seen especially
when horses return to training too soon. Encephalitis in horses
and rapid fatal pneumonia in foals and donkeys has also been
recorded but its pathogenesis is not clear (Gerber, 1970; Radostits
et al., 2003; Newton and Mumford, 2005; Cullinane et al., 2006;
Daly et al., 2006; Landolt et al., 2007). Both the subtypes produce
similar clinical symptoms, but these are more severe in case
of H3N8 infection (Chambers, 2014). Incubation period usually
depends on the immune status of the animals (varies from 18 h
to 5 days under experimental settings) and can be very short, up
to 24 h in naïve horses (Cullinane and Newton, 2013). Fever of
39.4–41.1◦C may last for 2–3 days. Carrier status does not exist,
but sub-clinical infection in recently vaccinated animals may
go unnoticed. Usually horses recover within 1–2 weeks, while
severely sick animals require a month time to recover (Cullinane
and Newton, 2013). Clinical signs in dog include fever, cough,
occasionally suppurative bronchopneumonia and per acute death
(Crawford et al., 2005).

Pathogenesis and Pathology
EIV mainly damages the upper and lower respiratory tract’s
ciliated epithelial cells thereby causing inability to clear foreign
substances. The spike glycoprotein, HA, attaches with sialic
acid receptors localized on host cell surface and subsequent
receptor-mediated endocytosis process proceeds to deliver the
virus particle inside of cell and remain in an endosome. Lower
pH environment in this cell apartment triggers fusion process
of membranes of the virus and endosome. Acidic pH alters
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not only alters the conformation in HA0 but also opens the
M2 ion channel and acidifies the viral core and the vRNP
(composed of proteins NP, PA, PB1, and PB2) enters the
nucleus through host cell’s cytoplasm. The viral RNA dependent
RNA polymerase (RdRp) initiates the RNA synthesis internally
on viral RNA and utilizes host cell’s machinery for its own
purpose. After completing the viral proteins synthesis vRNPs
leave the nucleus all that is left for the virus to do is form
viral particles and leave the cell. Being an enveloped entity,
it comes out the host cell’s through budding (Radostits et al.,
2003; Figure 4). Replication of EIV leads to virus particles being
released from one cell to enter another cell in the airway,
thereby damaging the respiratory tract leading to necrosis of the
respiratory epithelial cells, protein rich fluid exudation into the
airways, cilia getting clumped and impairing the muco-ciliary
apparatus.

Horse respiratory epithelium possess high level of Neu5Gc2-
3Gal moiety, which is essential for replication of the virus
(Suzuki, 2000). EIV NA possess higher affinity for this moiety.
This is important at the early stage of infection in order to
release the progeny from the infected cell (Takahashi et al.,

2016). Cells infected with EIV undergo apoptosis, which is the
common pattern of cell death (Hinshaw et al., 1994). Activation
and cleavage of caspase is essential for cytotoxicity caused by
the virus (Lin et al., 2002). Non-structural protein 1 (NS1) of
EIV is pivotal in disease pathogenesis and differences observed
in disease severity due to variation in this protein (Elton
and Bryant, 2011). NS1 facilitates virus replication along with
having an inhibitory effect on anti-viral strategies applied by
the host. Viral replication is supported by NS1 by inhibiting
host RNA processing machinery and in turn utilizing these host
components for viral RNA transcription preferably. NS1 further
inhibits the host anti-viral response by preventing activation of
various host defense components such as interferon regulatory
factor 3 (IRF-3), NF-kB, and other transcription factors (Barba
and Daly, 2016). Cytotoxic T cell response is generated against
M, NP, and PB2 which helps in viral clearance (Landolt, 2014).
Of interest, eukaryotic cells express a wide range of small
regulatory RNAs, including miRNAs that have the potential to
inhibit the expression of mRNAs (e.g., viral) showing sequence
complementarity. However, a study hypothesized that human
viruses including influenza A viruses might have evolved in a

FIGURE 4 | Replication and pathogenesis of EIV. EIV damages the upper and lower respiratory tract’s ciliated epithelial cells thereby causes inability to clear foreign

substances. Spike glycoprotein HA fastens to the receptors present on the respiratory epithelial cells and it enters the cells by endocytosis. After endocytosis, EIV

undergoes fusion and uncoating. Opening of M2 channel leads to proton entry and subsequent release of viral RNA followed by synthesis of viral structures leading to

assembly of EIV. EIV is released from the infected cells by the process of budding.
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manner so that it resists endogenous inhibition by miRNAs
(Bogerd et al., 2014).

Viral shedding can be observed for a period of 7–10 days,
while viral genome (RNA) can be detected for 15 days or
more by PCR (Chambers, 2014). This infection is seldom
fatal in horses except in colostrum (specific immunoglobulin
rich) deprived newborn foals (Chambers, 2014). Due to
accumulation of fluid in the respiratory tract, there are chances
of secondary bacterial infection and organisms like Streptococcus
equi var. zooepidemicus increases the inflammation leading to
bronchopneumonia (Radostits et al., 2003). Thus, EI disease is
further worsened by concurrent bacterial infection acting as a
helping hand in fatal episode of equine influenza (Daly et al.,
2004). Respiratory epithelium takes around 3 weeks to recover
which aggravates or provide gateway for secondary bacterial
infection (Landolt, 2014; Na et al., 2016).

Bronchiolitis is the common lesion noticed with serous
exudates bilaterally. Gross pathology reveals diffuse to very
extensive pulmonary consolidation and histological changes like
necrosis of bronchioli and alveoli, infiltration of neutrophils,
formation of hyaline membranes and airway epithelium
undergoing hyperplasia and squamous metaplasia (Patterson-
Kane et al., 2008). Studies revealed that a secretory layer of
mucous is present in the nasal cavity of the equine species that
can prevent the attachment of HA protein of influenza virus.
Similarly, the nasal passage also possesses sialo-receptors that
can mask receptors specific to influenza (Scocco and Pedini,
2008). EIVA/equine/South Africa/2003 in dogs revealed similar
pathology as that of CIV causing extensive damage to the
respiratory epithelium. This damage was more extensive than
that caused by 1963 EIV in canines. This shows that the recent
EIV strains can infect dogs readily (Gonzalez et al., 2014).
Pavulraj et al. (2015) have studied the pathology of EIV (H3N8)
in a murine model. The pattern of disease progression, lesions
and virus recovery from nasal washings and lungs in mice were
found comparable to natural and experimental EIV infection in
equines. These findings establish BALB/c mice as an attractive
small animal model for studying EIV (H3N8) infection. Authors
also reported that BALB/c mice could be a better candidate for
testing the EIV vaccines before trial in equines (Pavulraj et al.,
2017).

Diagnosis
There is an array of diagnostic techniques available for EIV
infection viz. isolation of virus, serological assays, antigen and
genomic RNA detection (Mumford, 1990; Chambers et al., 1994;
Gupta et al., 2003; Cullinane et al., 2006; Landolt et al., 2007;
OIE, 2008; Cullinane and Newton, 2013; Kapoor and Dhama,
2014). However, the clinical diagnosis of EIV remains a challenge,
where high fever and dry cough are predominantly noticed.
The differential diagnosis includes other respiratory diseases
like equine adenoviral infection, equine herpesvirus infection,
equine rhinopneumonitis, equine viral arteritis, travel sickness
(pleuropnemonia), and also strangles (Radostits et al., 2003).

Swab samples from nasopharyngeal region can be taken
immediately after the onset of clinical symptoms (i.e., within 3–
5 days). Choice of sampling must be very careful as it affects

the accuracy of results. Nasopharyngeal swab yields more density
of virus than the nasal swabs (Chambers and Reedy, 2014a).
Transportation of the samples in appropriate ice-cold containers
is essential. If samples are to be transported for more than 2
days, these should be kept at −60◦C or at lower temperatures.
Allantoic or amniotic routes are performed for isolation of EIV
and fluids from these cavities are subjected to HA and a titer
of more than 16 is considered positive. If the titer is low then
further blind passages have to be given. Isolation of virus is
usually done in embryonated chicken eggs by amniotic route.
Chorioallantoic membranes can also be used for isolation of
the virus and instead of HA, qRT-PCR can be employed for
detection of the virus rapidly (Gora et al., 2017). Cell lines
like Madin Darby canine kidney (MDCK) are suitably used for
virus isolation (Easterday et al., 1997). Both chicken egg and
MDCK cell lines allow viral mutations, but embryonated eggs
are generally preferred for isolation due to comparatively lesser
heterogeneity in them (Chambers and Reedy, 2014b). Samples
that show isolation negative results should be passaged again
and up to five blind passages may be necessary for samples from
vaccinated horses.

Seroconversion can also be employed for diagnosis of the
disease and assays such as HI, single radial hemolysis (SRH),
single radial immunodiffusion (SRID) and enzyme linked
immunosorbent assay (ELISA) are commonly used (OIE, 2008).
Antigen capture ELISA for H3N8 virus using a monoclonal
antibody against nucleoprotein can be employed at places lacking
facilities for isolation of the virus (Cook et al., 1988; Livesay
et al., 1993). ELISA to detect antibodies against nucleoproteins
can be used to differentiate infected animals from vaccinated
ones as the same did not detect antibodies generated after
canary pox vectored vaccines for this virus that contain HA
protein (Kirkland and Delbridge, 2011; Galvin et al., 2013). It
has been suggested to use ELISA (cell-based) for measuring anti-
non-structural (NS1) protein antibodies which has found its
application in differentiating infected from vaccinated animals
(DIVA) in equines (Rozek et al., 2011). Characterization of the
isolate can be done by HI using specific antisera, but due to
the presence of inhibitors of hemagglutination (such as α-2
macroglobulin) in equine sera complicates the interpretation of
this test (Chambers, 2014). This can be overcome by pre-treating
the sera with Tween-80 and ether or Kaolin (Chambers, 2014;
Chambers and Reedy, 2014c). For identification of susceptible
population of horses and for the purpose of disease investigations
related to outbreak in immunized horses, single radial hemolysis
(SRH) test has been found to be useful (Gildea et al., 2010, 2011).
SRH tests give higher correlation between serum antibody titer
and protection level from the disease and also indicate sterile
immunity (Chambers, 2014; Chambers and Reedy, 2014c). SRID
is a higher version of chick cell agglutination test and there is
no high variation among tests (Wood et al., 1983). Paired serum
samples should be used for serological tests and seroconversion
(as reflected by a four times higher antibody titer) indicates recent
influenza virus infection.

Tests aiming at genomic material detection like reverse
transcription-polymerase chain reaction (RT-PCR) and real-time
PCR can be used for EIV diagnosis (Donofrio et al., 1994; Foord
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et al., 2009; Read et al., 2012). A qRT-PCR test for the matrix gene
of type A influenza viruses was used during the 2007 Australian
EI outbreak to confirm the presence of the virus in animals to be
exported (Diallo et al., 2011). However, at the end of the outbreak,
four horses were found positive due to contamination of the
samples with the vaccine (Diallo et al., 2011). A real-time RT-
PCR (rRT-PCR) assay has also been employed for the detection
of virus in the nasal swab of horses in Mongolia (Yondon et al.,
2013).

The use specific primers in RT-PCR assay for conserved region
of this virus was found to give rapid results with high sensitivity
even in case where viral load in excretions was very less.
Furthermore, viruses of unknown lineages could also be detected
by using such primers (Aeschbacher et al., 2015). Multiplex RT-
PCR test to detect H3N8 has been developed which is expected
to detect newly EIVs (Lee et al., 2016). In one study, it was
found that DFA (rapid antigen detection test kit) used to detect
nucleoprotein in nasal swabs is a very sensitive antigen test and
can act as supportive test for laboratory diagnosis of EIV in
clinical samples (Galvin et al., 2014). Using specific primers, EIV
typing can also be done and RNA-DNA hybridization test has
also been reported (Gupta et al., 2003). Nested-PCR has also been
developed which showed that it is useful for diagnosis of EIV
(Oxburgh and Hagström, 1999). Immuno-PCR, a more sensitive
assay than the RT-PCR has been developed for detection of NS1
protein (Ozaki et al., 2000). Real-time light cycler RT-PCR has
been reported to be more sensitive than either the isolation of
virus or ELISA (Quinlivan et al., 2005).

RT-PCR followed by sequencing has been used for diagnosis
and subtyping of the neuraminidase (Alvarez et al., 2008).
TaqMan RT-PCR targeting nucleoprotein (NP), matrix (M) and
HA gene of both H7N7 and H8N8 subtypes has also been
developed. The results of this developed assay do not cross
react with any of the other known equine respiratory viruses
(Lu et al., 2009). Reverse transcriptase-loop mediated isothermal
amplification (RT-LAMP) has been developed to detect HA
gene of both H3N8 and H7N7 EIV, which is more sensitive
than RT-PCR. Further, this test can also be used to differentiate
H3N8 and H7N7 in clinical samples (Nemoto et al., 2011,
2012). Recently, insulated isothermal RT-PCR (iiRT-PCR) has
been developed to detect HA3 gene of EIV, which is a highly
sensitive and specific test (Balasuriya et al., 2014). The test
involves three steps viz. rehydration of lyophilized reagents,
sample nucleic acid addition and then placing on POCKITTM

Nucleic Acid Analyzer device. This test is rapid as it requires
only 1 h to complete the reaction on this portable device and
does not require any post-amplification processing (Balasuriya,
2014; Balasuriya et al., 2014). Pyrosequencing has also been
recently implicated in identifying clade differentiation of EIV
at the time of outbreak (Bernardino et al., 2016). Many rapid
antigen detection tests (ImmunoAce Flu, BD Flu examan, Quick
chaser Flu A, B, ESPLINE Influenza A&B-N, etc.) have been
developed for diagnosis of this virus. However, the sensitivity of
these tests is very low, also they detect virus for short period of
time as compared to the molecular tests such as RT-PCR thus
giving higher rate of false negative results (Yamanaka et al., 2008b,
2016a). A sensitive silver amplification immunochromatography

was developed for early detection of EIV (Yamanaka et al.,
2017a).

PREVENTION AND CONTROL

Vaccines
To deal with emerging viral diseases of equines including EI, it
is mandatory to strengthen the medical/veterinary services with
adopting appropriate preventive measures such as vaccines and
adjuvants (Bayry, 2013; Chambers and Balasuriya, 2016; Paillot
et al., 2017). It has been seen that vaccination has been practiced
since 1960s, however, its efficacy is still a matter of debate due
to the use of less potent vaccines, improper vaccination schedule
and also use of outdated virus strains, and due to continues
drift in the viral genome (Bryans et al., 1966; Minke et al.,
2004; Mathew et al., 2006; Meeusen et al., 2007). Hence, use of
the virus from the most recent outbreak as vaccine renders
better protection (Barbic et al., 2009). Moreover, experience
from the field cases has shown that vaccination was successful
in preventing H7N7 infection but outbreaks due to H3N8 are
prevalent both in vaccinated and non-vaccinated animals. H3N8
subtypes are the main cause of EIV infection and vaccine virus
different from prevailing subtypes leads to subclinical infection,
which is followed by viral shedding from vaccinated animals as
well. This further contributes to the spread of disease (Daly et al.,
2004). Influenza A viruses are able to evade host immunity even
in vaccinated horses, and study of intra- and inter-host evolution
of EIV in vaccinated horses, revealed the similar level and
structure of genetic diversity with those in naïve horses. However,
intra-host bottlenecks were more stringent in vaccinated animals
and mutations were present near putative antigenic sites as
shown by Murcia et al. (2013). The virus isolates collected from
the outbreak area determines the vaccine strain selection, and
hence essentially surveillance programmes should have sufficient
funding with active involvement of equine veterinarians (Elton
and Cullinane, 2013).

Antigenic drift at the HA gene (a major protein of influenza
A virus) led to vaccine failure in various parts of the
world (Mumford and Wood, 1993; Wilson, 1993). Genetic
reassortment taking place during a mixed infection can lead to
the development of new strains and ultimately vaccine failure
(Bryant et al., 2009). To deal with this problem, continuous
checks and monitoring through surveillance programs and
updating of vaccines with recent strains remains the best and
effective way in prevention and control of this disease. Such
methods have proven to be successful in Ireland during 2007–
2010, where regular surveillance provided scientific or effective
control of EI disease. The study revealed that the EIV strain
changed from prevalence of Eurasian lineage to clade 1 and
clade 2 of Florida lineage. Accordingly, changes made in vaccine
strains lead to scientific or effective control of the disease
(Gildea et al., 2012). Similar results were obtained by proper
surveillance programs in South America where incidence of
this disease have reduced prominently after incorporation of
Florida clade 2 strains in vaccines (Perglione et al., 2016). A
study was conducted in United Kingdom to know the antigenic
changes occurred in EIV isolates during 2013–2015 so as to
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get a clear picture on the efficacy of vaccine. Result showed
that Florida sublineage clade 2 was diverging. The study also
suggested inclusion of Florida sublineage clade 1 and 2 in the
vaccine for EIV (Rash et al., 2017). Thus, an epidemiological
surveillance of influenza virus along with monitoring of impact
of immunization is extremely important. The disease control
is influenced by antigenic variation of the virus, target group,
goal of immunization, rate of antigenic variation, and vaccine
composition (Horspool and King, 2013).

There is protection of ponies from vaccinated dams but
antibodies titer decline as the days passes, hence it is essential
to protect the ponies by vaccinating with the recent virus strain
prevalent or circulating in the population (Townsend et al., 1999;
Meeusen et al., 2007). Vaccination will not completely eliminate
the chance of infection and booster vaccines are essential to keep
the disease under control (Nelson et al., 1998; Daly et al., 2004;
Yamanaka et al., 2008a). Herds with 75% vaccination coverage
exhibit better disease control exposed to virulent infections.
Considering vaccine efficacy, it is important to assess it’s HA
content because it is the main component that determine viral
entry into the cell (Daly et al., 2004).

The World Organization for Animal Health (OIE) is the apex
body to decide the strain to be used for vaccination in commercial
vaccine preparations. Every year the molecular data of HA gene
sequencing is taken into account and antigenic characterization is
carried out by using reference sera to take cross protection studies
results into account. This data is reviewed by Expert Surveillance
Panel (ESP) constituting members from WHO and OIE. Then,
they suggest whether there is a need to update the existing
vaccine. Such program however failed by the disparity in the level
of surveillance carried out in different countries (Cullinane et al.,
2010). New strains are included only in case, where previously
recommended strains are not providing optimum protection.
Also, clinicians must be vigilant enough to decide which vaccine
strain to be incorporated in the prophylactic regimen (Cullinane
et al., 2010). Regular monitoring is required so that any mutation
in the circulating virus needs to be identified timely and thereby
the available vaccines can be updated accordingly. Recently
in the year 2016, EIV vaccine in Japan has been updated
with A/equine/Yokohama/aq13/2010 and study showed that
combining both old and new vaccine provide better protection
(Yamanaka et al., 2017b). Complete genomic sequences of both
the vaccine strains namely A/equine/Yokohama/aq13/2010 and
A/equine/Ibaraki/1/2007 that is being used in the vaccine strain
in Japan from 2016 has been published very recently (Nemoto
et al., 2018). Vaccines must be administered strategically and
appropriately to obtain optimum immune response and desired
protection against EIV in equines (Daly and Murcia, 2018).

To update the existing inactivated EI vaccine used in Japan
it was decided to include Florida sublineage clade 2 virus.
Study was conducted employing A/equine/Carlow/2011
(H3N8), A/equine/Richmond/1/2007 (H3N8) and
A/equine/Yokohama/aq13/2010 (H3N8) and the results
showed that A/equine/Yokohama/aq13/2010 had higher HI
titer hence it was considered to be the better strain for updating
the existing vaccine (Gamoh and Nakamura, 2017). If other
countries also conduct such studies similarly then it will be very

useful for them to implement such strategy when necessary to
save equine population from the havocs of an outbreak.

The below section details the advances in designing and
developing EIV vaccines and vaccination strategies that are
actively being used for equine immunization.

Killed/Inactivated Vaccine Adjuvanted With

ISCOM-Matrix (Prequenza®)
Commercially available EIV vaccines are killed vaccines of whole
cell H7N7 and H3N8 subtypes (Park et al., 2003). The inactivated
vaccines protect horses from disease with no viral shedding.
Inactivated vaccines require booster regimen for better efficacy
and are best suited for vaccinating dams so as to protect foals
from infection. Formaldehyde, β-propriolactone, ethylene-imine,
and thimerosal are frequently used for inactivating viruses for
vaccine formulations. An inactivated EI vaccine elicits protective
response against circulating strain of Florida clade 2 sublineage.
Duvaxyn IE-T Plus R© inactivated virus vaccine was given at
the interval of 4 weeks and protection from clinical symptoms
was observed with reduced viral shedding (Paillot et al., 2013a).
Starting at 6 months of age, the vaccine is re-administered at an
interval of 3–12 months based on the risk of infection. Killed
vaccine adjuvanted with ISCOM-matrix (Prequenza R©) has been
formulated and found to provide longer duration of immunity
(Bengtsson, 2013). This vaccine was found safe to use in pregnant
mares and foals (Heldens et al., 2009). EquipTM F (Schering
Plough Animal Health, Hertfordshire, UK) vaccine contains a
H7N7 strain and two H3N8 strains, each from American lineage
as well as Eurasian lineage. It is an ISCOM-based vaccine which
significantly reduces the clinical symptoms and prevent virus
shedding in ponies (Paillot et al., 2008). It induced EIV-specific
IFN-γ production through activating Th1 cells (Paillot et al.,
2006a). The study of Paillot et al. (2010) was focused on immunity
in absence of updated vaccine strain. Ponies were immunized
twice with commercial vaccine Duvaxyn IE-T Plus R© with an
interval of 14 days and challenged in a containment facility by
exposure to a nebulized aerosol of a genetically different strain.
The results indicated reduction in pyrexia and virus shedding.
However, duration of protective immunity is shorter for a non-
updated vaccine and is prone for any further antigenic drift.

Adjuvants in vaccine are immune stimulating components,
which aid in boosting humoral and cell mediated response
(Horspool and King, 2013). Aluminum salts like aluminum
phosphate and aluminum hydroxide, organic adjuvants like
squalene, oil-based adjuvants like MF59, mycobacterial adjuvant
like Freund’s complete adjuvant and monophosphoryl-lipid
A/trehalose dicorynomycolate (Ribi’s adjuvant) are few good
examples of adjuvants. They are aimed at presenting antigen
to immune cells, targeting toward antigen presenting cells,
and enhancement of cell-mediated immunity (Edelman, 2000).
Now-a-days, it is suggested to use A/equi-1 and A/equi-2
strains similar to American and European lineages (Heldens
et al., 2004). Certain vaccine virus strains used in inactivated
vaccines show cross-protection as observed in case of Japanese
strain A/equine/La Plata/1993 (LP93) and Florida lineage
strains [A/equine/Carlow/2011 (CL11)] (Yamanaka et al., 2016b).
However, Japanese strain A/equine/La Plata/1993 used in vaccine
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was not able to generate cross-neutralizing antibodies against
Florida sublineage clade 2 (isolated from Ireland and UK)
EIV due to single substitution (from alanine to valine) at 144
position in the antigenic A site of the HA gene (Yamanaka et al.,
2015). Administration of combined inactivated equine influenza
virus vaccine with equine herpes virus vaccine has shown
increased immune response against EIV (Gildea et al., 2016).
Few associated disadvantages with these inactivated vaccines
are their poor immunogenicity and predominant short-term
humoral immunity, which necessitates repeated immunization
(Heldens et al., 2004).

In India, development of a low cost indigenously developed
EIV vaccine was necessitated due to the suffering of more than
83,000 equines during 1987 (Uppal and Yadav, 1987). Indian
Council of Agricultural Research-National Research Centre on
Equines (NRCE) in collaboration with Animal Health Trust,
Newmarket, U.K. has developed an EI vaccine employing
A/eq/Ludhiana/87 isolate. Vaccine induces satisfactory humoral
and protective immunity when challenged with live A/ Equi-2
viral isolates (Sussex/89 and Ludhiana/87) when administered in
two doses 4 weeks apart. To prepare inactivated EIV vaccine,
isolates from various regions of the country viz. Ahmadabad
(Gujarat), Katra (Jammu), Gopeshwar (Uttarakhand), and
Mysore (Karnataka) were cloned and A/eq/Katra (Jammu)/06/08
(H3N8) virus was used for updating the vaccine on the basis
of sequence analysis. Inactivated vaccine along with aluminum
hydroxide gel adjuvant was found to be protective and safe as
tested in guinea pigs and horses. Vaccine trials conducted in
150 field horses showed development of protective immunity,
without any untoward signs. Subsequent trials in thoroughbred
horses also gave encouraging results as all the six animals showed
protective immune response after booster dose (NRCE Annual
Report, 2010).

Subunit Vaccines
Subunit vaccines encompass purified viral antigens. Among
these, two main vaccines are the immune-stimulating complexes
(ISCOM)-based vaccines or ISCOMATRIX vaccines. ISCOM
based vaccines have ISCOM particles with cage like structures
formed spontaneously by viral protein combination with
cholesterol, phospholipids and Quillaja saponins. ISCOMATRIX
are essentially like vaccines but don’t possess cage like structure
(Elton and Bryant, 2011). ISCOM based EIV vaccine induces
strong antibody response along with elevated levels of IFN-γ
(Paillot et al., 2008). Use of ISCOM based EIV vaccine through
intranasal route in systemic prime/mucosal boost vaccination
program gave transient higher virus-specific IgA in nasal wash
(Crouch et al., 2005). Since inactivated vaccines against EIV
produce short-term antibody response other methods like
ISCOM based vaccine technology has been developed in order
to simulate natural infection. Cell mediated immune response is
also stimulated by ISCOM based vaccines for EIV as indicated
by high IFN-γ production in peripheral blood lymphocytic cells
(Paillot and Prowse, 2012). A study using A/eq/Kentucky/98
ISCOM based vaccine administered intramuscularly gave good
protection when challenged with reference virus H3N8 of
American lineage (Crouch et al., 2004). Recently, a subunit

vaccine and a DNA vaccine based on HA stem region of
A/equine/Argentina/1/93 (H3N8) virus was tested in mice and
it showed 100% protection when challenged with equine strains
while 70–100% protection with human strains (H3N8). The
study also showed that challenge with human strain H1N1
(A/PR/8/34) did not protect the vaccinated animals, hence the
developed vaccine protects animals only against homosubtypic
strains (Ibañez et al., 2018).

Cold Adapted (Ca) Vaccines
These vaccines have been developed to aim at improving
both humoral and cellular immunity, therefore mimicking the
protective immunity generated by natural infection (Paillot et al.,
2006b; Paillot, 2014). The Ca EIV vaccine strain is able to
replicate efficiently in upper respiratory tract to generate local
and systemic immune responses. The most advantageous part is
that the Ca strain doesn’t replicate in the lower respiratory tract,
the niche of wild type influenza virus and therefore symptoms
like bronchitis, pneumonia, and pulmonary edema do not occur
(Townsend et al., 2001).

Modified-Live Cold-Adapted Equine Influenza A2
These vaccines are administered intra-nasally and have been
found to be safe and reduced the onset of EIV outbreak
(Chambers et al., 2001; Townsend et al., 2001). Intranasal
vaccine resulted in local protection against EIV though the
circulating level of antibody reduces as time progresses. Though,
administration of this vaccine to yearlings was found to be
safe, they are not recommended for use in pregnant mares in
late gestation. In vitro studies demonstrated that this vaccine
could generate cell-mediated immune response in yearlings and
pregnant mares 14 days post-vaccination (Tabynov et al., 2014).

Canarypox Vector Vaccines
These vaccines are available to be administered intra-nasally,
while boosters are needed at an interval of 6 months (Minke
et al., 2007). These vectored vaccines produce a good amount of
colostral antibodies; hence are suitable for vaccination of mares
at late gestation (Daly et al., 2004). The canarypox-vectored
vaccine (ProteqFlu R©, Merial) was chosen to vaccinate horses in
the United States of America because it can evoke antibodies
against HA only. As a consequence, in diagnostic ELISA, NP can
be detected and discrimination between infected and vaccinated
animals is possible (Daly et al., 2011; Paillot and El-Hage, 2016).
Also, such vaccines can induce an immune response early and
for longer duration of time against American lineage of EIV
(Soboll et al., 2010). Since canarypox vectored vaccine provide
longer duration of immunity, they sufficiently protect the equine
population during an annual period between booster doses
(Minke et al., 2007). Paillot et al. (2006a) studied the stimulation
of the immune system after immunization with canarypox-
based vaccine and subsequent challenge to a nebulized aerosol
of EIV. Presence of humoral response was evidenced by serum
antibody level and cell mediated response that was measured
by production of IFN-γ. Post-challenge, the clinical signs were
reduced with increased IFN-γ protein synthesis in vaccinated
ponies. Fougerolle et al. (2016) demonstrated that all horses did
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not develop protective immunity after vaccination, resulting in
an increased risk of infection and transmission. A field study
was conducted to understand the poor response to primary
EI immunization. During a study, 174 foals in 3 stud farms
were immunized with canarypox-based vaccine and detectable
antibody titer was observed after 2nd vaccination. After 3rd
vaccination, there were still 19.2% poor antibody responders.
The study proved its importance in evaluating herd immunity
and its role in implementing correct vaccination management.
Vaccination schedule would be different for different groups
of equids. Vaccinating the breeding horse in later stages of
pregnancy improved the antibody titer in colostrum. Foals are
vaccinated routinely at the age of 6 months when the maternal
antibody level decreases. Foals from unvaccinated dams need to
be vaccinated early in their life (Daly et al., 2004; Heldens et al.,
2007).

Modified Vaccinia Ankara Vector (MVA)
The vector carrying HA and NP gene elicited good antibody
response and also IFN-γ and mRNA production (Breathnach
et al., 2004). Two of the recombinant modified vaccinia Ankara
vector constructs with HA or NP genes were found to protect the
ponies from clinical disease very effectively whereas vaccine with
HA gene was found better thanNP gene in terms of the protective
outcome (Breathnach et al., 2006).

Modified Herpes Virus-1 Vectored Vaccine
Equine herpes virus-1 vectored vaccine carrying H3 gene of EIV
generated robust protective immune response against influenza
(VA05 and NY-99 strains) in horses (Van de Walle et al., 2010).
This vaccine was found to be significantly more effective in terms
of reduced viral shedding and mild clinical symptoms during
the 1997 outbreak of EIV in Australia (Paillot and El-Hage,
2016). In addition, during this outbreak in 1997, both the ISCOM
matrix based and canarypox vectored EI vaccine were found to be
equally efficient in preventing clinical disease (Bryant et al., 2010).

Reverse Genetics Based Vaccines
For influenza viruses including EIV, the field of reverse genetics
(plasmid based) allows expression of the components of the virus
involved in replication of the viral genome and transcription of
gene (Nogales and Martínez-Sobrido, 2017). Live virus vaccine
has been developed by reverse genetics technique employing
HA and NA gene of eq/GA/81 wild-type (wt) virus along with
the six internal protein genes of the ca A/Ann Arbor/6/60
(H2N2) vaccine donor virus, which form the base of seasonal
live attenuated influenza vaccine licensed in the market. This
vaccine was found to provide protection in mice and ferrets
after heterologous challenge with H3N8 (eq/Newmarket/03)
wt virus (Baz et al., 2015). Another vaccine generated by
reverse genetics technology is a novel reassortant of ca strain
A/HK/Otar/6:2/2010 containing HA and NA genes from wild-
type strain A/equine/Otar/764/2007 (H3N8) and internal genes
from ca A/Hong Kong/1/68/162/35CA (H3N2) strain in the
form of nasal spray. The vaccine was found safe for intranasal
administration in both yearlings and pregnant mares and it
replicated exclusively in upper respiratory tract and did not

lead to generalized infection (Tabynov et al., 2014). Carboxy-
terminally truncated NS1 proteins are incapable of inhibiting
type 1 IFN production by cells and are replication attenuated
and thus are a vaccine candidate. Mutation at 126th amino
acid position of NS1 protein, and subsequent aerosol or
intranasal inoculation did not produce pyrexia with fewer
clinical signs of illness and decreased virus shedding upon
challenge (Chambers et al., 2009). Very recently, based on
the reverse genetics vaccine approach, a temperature sensitive
H3N8 EIV vaccine was developed that showed better protection
both in mice and also in horse when challenged with wild
type virus. As this mutant was developed by reverse genetics
approach so it is possible to upgrade the vaccine strain
whenever there is a mutation in the circulating virus and thus
making it feasible to control the outbreak (Rodriguez et al.,
2018).

DNA Vaccines
DNA vaccines delivered through gene gun have been suggested
for EIV (Lunn et al., 1999; Olsen, 2000; Dhama et al., 2008).
DNA vaccines carrying HA gene elicited good cell mediated
and humoral immunity eliciting IgG response, but it does not
provoke IgA response (Soboll et al., 2003). These DNA vaccines
based on H3N8 virus are quite safe and effective in eliciting both
homologous and heterologous immune response (Ault et al.,
2012). For the purpose of DNA vaccination, intra-lymphatic
immunotherapy (ILIT) is the recent strategy, into which HA
encoding plasmid is being injected in the sub-mandibular lymph
node on days 0, 28, and 98 and such vaccination induced
EIV specific immune response comparable to immune response
evoked after natural infection, but lower than the conventional
canarypox-based EIV vaccine (Landolt et al., 2010). Intranodal
immunization allows vaccine delivery directly at the site of B
and T lymphocytes priming, so improved immunity is expected.
However, practical feasibility of this technique in the field
is questionable due to the skills required for sub-mandibular
injection with the risk of inaccurate injection in lymph node
(Paillot, 2014).

After reviewing all existing vaccines, Consultative Committee
for Emergency Animal Diseases (CCEAD) recommended to
prefer a recombinant (canarypox) vectored vaccine owing to its
ability to readily evoke efficient immune response against both
the American and European lineage viruses (Perkins et al., 2011).
Paillot et al. (2013b) have conducted experiments to reveal the
pattern of EIV shedding after infection in vaccinated horses. The
information turned out to be helpful regarding changes to current
quarantine requirements. The findings showed that the viral
shedding detection is better in nasopharyngeal swabs than nasal
swab in terms of frequency and amount of virus. Recently a study
reported the use of individual nebulization for challenge infection
in equines as the present method of the use of room nebulization
showed decreased pathogenicity after challenge. The authors also
suggested that the use of individual nebulization can decrease the
use of animal numbers in a group, thus follows the 3R’s principle
(Replacement, Reduction, and Refinement) (Garrett et al., 2017).

Different vaccine platforms available for prevention of EIV
infection are presented in Table 1, Figure 5.
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Biosecurity
Apart from vaccination, other strategies that contribute toward
the control of EI include follow up of strict biosecurity measures,
restricted movement and traffic, proper quarantine practices,
and post vaccination surveillance programs. Importance of
implementing quarantine practices strictly can be understood
from the experience of the 2007 outbreak in Australia that
occurred due to negligence at the time of importation of horses
(Watson et al., 2011). In New Zealand, on experimental basis,
InterSpread Plus (stochastic simulation model) was used in order
to evaluate the efficacy of control programs. Out of various
strategies evaluated for control of this disease, vaccination
combined with complete movement restriction was found to be
very effective in this direction in New Zealand (Rosanowski et al.,
2016).

Biosecurity measures and appropriate management practices
are essential for prevention and control of EI. In the event
of outbreak, adoption of biosecurity measures can provide
protection to horses (Schemann et al., 2012). Simple preventive
measures based on personal hygiene, decontamination, and
other biosecurity practices prevented spread of infection in
Queensland, Australia (Frazer et al., 2011). A protocol of
hygiene practices devised by a practice in which all veterinarians
were involved on a daily basis in visiting infected premises,
including sampling, handling of equines, treatment of clinical
cases, and other common veterinary work has been described,
which should be strictly followed in face of an equine influenza
outbreak (Major, 2011). The implementation of strategy like high
health, high performance (HHP) by OIE provides the mitigation
measures for mitigating the spread of equine diseases including
EI (Dominguez et al., 2015).

There are various factors and many different players
responsible for prevention and control of EI in equine
sports arena viz. vaccine producers, vaccine regulators, OIE,
various government bodies in different countries, veterinary
practitioners, owners, riders, trainers, etc. (Cooke, 2013). Each
has a unique and important role to play in proper management
of equestrian sports (Cooke, 2013). A cross sectional study was
conducted on 759 Australian horse owners to determine their
biosecurity practices and perceptions. It demonstrated that the
young aged people, or people having no commercial involvement
with horses or having no business impact of EI outbreak, were
likely to have poor biosecurity compliance (Arthur and Suann,
2011).

Treatment
Mainly the managemental practices should be followed in
animals affected with EIV. As a general protocol horses should
be rested for the number of days/weeks equal to the number of
days/weeks they had suffered fever which can aid in recovery
of the respiratory epithelium (Chambers et al., 1995). Gradual
work can be provided after complete rest as sudden work
load can lead to chronic obstructive pulmonary disease and
mycocarditis. Free air flow should be present in the stall during
the resting period so that good quality oxygen supply will be
available. Good hygienic food, water and dust free bedding
materials should be provided at the stall (Chambers et al.,
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FIGURE 5 | Different vaccine platforms available for EIV. Platforms include killed vaccine, inactivated vaccine, subunit vaccine, DNA vaccine, subunit vaccine, vectored

vaccine, reverse genetics-based vaccine.

1995). Though amantadine has been tried, there are no specific
antiviral drugs available in the market for the treatment of
EIV (Radostits et al., 2003). Treatment is mainly symptomatic
and antibiotics like penicillin G or trimethoprim/sulfonamide
are administered to prevent from secondary bacterial infections
due to Actinobacillus species and Streptococcus species. Non-
steroidal anti-inflammatory drugs like phenylbutazone, flunixin
meglumine, or dipyrone can be administered to reduce fever
(Wilson, 1993). Neuraminidase inhibitors such as peramivir at
the early stage of infection are recommended. This drug was
found to reduce virus shedding and as such limits the spread
of infection from one horse to another (Yamanaka et al., 2015).
Peramivir is a selective NA inhibitor having strong affinity for
NA and with a slow off-rate of NA from NA-peramivir complex,
providing a prolonged inhibitory effect and subsequent lower
dose requirement. Single intra-venous dose of peramivir (7.8–9.3
mg/kg of body weight) exhibited significant reduction in pyrexia,
nasal discharge and cough and also in duration of viral shedding.
It indicated the great potential of peramivir as treatment of

equine influenza and also in line able to contain the spread of the
disease (Yamanaka et al., 2012b; Cullinane and Newton, 2013).

Few of the promising anti-viral therapeutic regimens such
as the use of cytokines, microRNA, si-RNA, TLRs, potent
immunomodulators, nanotechnology based therapeutics, herbal
and plant metabolites, and others which might have feasibilities
to counter EIV needs to exploited optimally (Blecher et al., 2011;
Dhama et al., 2013, 2014, 2018; Malik et al., 2013; Junquera et al.,
2014; Prasad et al., 2018).

CONCLUSION AND FUTURE PROSPECTS

Equine influenza, a highly contagious respiratory disease of
horses mainly caused by H3N8, is a major problem globally.
There are many EIV subtypes circulating and which provide no
cross-protection to other strains. Recurrent epidemics lead to
reduction in horse performance. The EI outbreaks have regularly
been witnessed in non-vaccinated as well as vaccinated herds
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and thus this disease has acquired a serious issue worldwide.
Continuous emergence of newer strains due to mutations is yet
another hindrance to the definite solution of this disease by
means of vaccination. Though, no human cases in practice have
been noticed yet it should be realized that under experimental
settings this virus has shown the ability to infect humans with
antibody induction. Of note, this virus has crossed the species
barrier by causing disease in various other species (dogs, cats,
camels). This should raise alarm as dogs are closely associated
with humans and they may act as a mixing vessel for equine
and human influenza virus facilitating emergence of new human
influenza strains. It is imperative now to develop an efficient
canine influenza virus vaccine and imply proper vaccination
strategy in dogs to prevent such infections.

Recent advances in diagnosis and surveillance of EIV need to
be exploited to their full potential to monitor the epidemiology
of this virus in details and recording incidences and disease
outbreaks of EI. Regular monitoring of equine population for
EIV strains is mandatory to transpire the effective vaccination
strategies. Better methods for assessing vaccine potency also
need to be designed. A thorough understanding of disease
pathogenesis will help in selecting protective epitopes for
vaccine designing. Regular monitoring and surveillance of the
virus can also help to update the available vaccine with the
new variants that occur as due course of time owing to the
evolution of the virus. Such regular updation of vaccine and

also testing the potency and efficacy of the updated vaccine

are also mandatory to prevent and protect equine population
from EIV keeping in view the evolution of the virus. It is the
right time to opt various types of advancements in vaccine
manufacturing and adjuvants technology for developing safe and
effective EIV vaccines. Also, vaccine delivery methods can be
standardized for superior quality of immune response. Further
improvements in assays monitoring EIV specific antibody levels
in the serum can be done, which better correlate with protection
status.
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