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Iron (Fe) redox-based metabolisms likely supported life on early Earth and may support

life on other Fe-rich rocky planets such as Mars. Modern systems that support active

Fe redox cycling such as Chocolate Pots (CP) hot springs provide insight into how

life could have functioned in such environments. Previous research demonstrated that

Fe- and Si-rich and slightly acidic to circumneutral-pH springs at CP host active

dissimilatory Fe(III) reducing microorganisms. However, the abundance and distribution

of Fe(III)-reducing communities at CP is not well-understood, especially as they exist

in situ. In addition, the potential for direct Fe(II) oxidation by lithotrophs in CP springs

is understudied, in particular when compared to indirect oxidation promoted by oxygen

producing Cyanobacteria. Here, a culture-independent approach, including 16S rRNA

gene amplicon and shotgun metagenomic sequencing, was used to determine the

distribution of putative Fe cycling microorganisms in vent fluids and sediment cores

collected along the outflow channel of CP. Metagenome-assembled genomes (MAGs)

of organisms native to sediment and planktonic microbial communities were screened

for extracellular electron transfer (EET) systems putatively involved in Fe redox cycling

and for CO2 fixation pathways. Abundant MAGs containing putative EET systems were

identified as part of the sediment community at locations where Fe(III) reduction activity

has previously been documented. MAGs encoding both putative EET systems and CO2

fixation pathways, inferred to be FeOB, were also present, but were less abundant

components of the communities. These results suggest that the majority of the Fe(III)

oxides that support in situ Fe(III) reduction are derived from abiotic oxidation. This study

provides new insights into the interplay between Fe redox cycling and CO2 fixation

in sustaining chemotrophic communities in CP with attendant implications for other

neutral-pH hot springs.

Keywords: chocolate pots, yellowstone, iron(III)-reducing bacteria, iron(II)-oxidizing bacteria, metagenomics,

extracellular electron transfer
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INTRODUCTION

Environments containing high concentrations of redox active
elements, such as iron (Fe), are important areas of study
because of the potential for these elements support the energy
metabolism of microbial cells. In its oxidized state [Fe(III)] Fe
can serve as a terminal electron acceptor for dissimilatory iron
reduction (DIR) by Fe(III)-reducing bacteria (FeRB) (Lovley
et al., 2004). In its reduced form [Fe(II)] Fe can serve as an
electron donor for lithoautotrophic Fe(II)-oxidizing bacteria
(FeOB) (Emerson et al., 2010). Although less prominent in
modern Earth environments, Fe(II) can also serve as an electron
donor for photosynthetic reactions (Crowe et al., 2008; Llirós
et al., 2015; Camacho et al., 2017). Fe is the most abundant redox-
active metal in the Earth’s crust (Taylor and McLennan, 1985)
and on astrobiologically relevant worlds, like Mars (Taylor and
McLennan, 1985, 2009). Researchers have suggested that both
Fe(II) oxidation and Fe(III) reduction have been active microbial
metabolic processes since before the Great Oxidation Event (ca.
2.4 Ga) when Fe(II) concentrations in the Archean ocean were
high (Hafenbradl et al., 1996; Vargas et al., 1998; Emerson, 2000).
Additionally, it is hypothesized that DIR was one of the earliest
forms of microbial respiration (Vargas et al., 1998).

Chocolate Pots (CP) is an Fe(II)- and Si-rich circumneutral-
pH geothermal spring in the northwestern portion of
Yellowstone National Park. The anoxic spring water issuing
from the vent source at CP is of a similar composition to what is
predicted for the Archean ocean (Canfield, 2005). Additionally,
mineralogical analyses of the Martian surface have identified
deposits indicative of circumneutral-pH (Arvidson et al., 2014),
and relic hot spring environments (Squyres et al., 2008; Ruff
and Farmer, 2016). Together, this makes CP a suitable analog
environment in terms of gaining insight into metabolic processes
that could have supported life on early Earth and possibly Mars.

For the past two decades, investigators have used CP as a
model environment to study ancient Fe deposition by focusing
on the role the microbial community plays in the formation of Fe
oxide deposits. In particular, significant attention has been placed
on understanding the role of oxygen produced by photosynthetic
microbial mat communities in promoting the indirect, abiotic
oxidation of Fe(II) (Pierson et al., 1999; Pierson and Parenteau,
2000; Trouwborst et al., 2007; Parenteau and Cady, 2010;
Parenteau et al., 2014). The potential for lithoautotrophic Fe(II)
oxidation has been considered as well, however after unsuccessful
culturing of putative FeOB (Emerson and Weiss, 2004) and little
experimental evidence to support their activity in the microbial
mats (Trouwborst et al., 2007), research has not been continued
in this area.

The potential for DIR in redox transformation of Fe-Si oxides
at CP was cited early on (Pierson et al., 1999), but in-depth
studies of the anaerobic heterotrophicmicrobial community have
been relatively recent. For example, natural amorphous Fe(III)-
oxides from CP were shown to host communities containing
known and putative FeRB (Fortney et al., 2016). Subsequent
incubation experiments combined with stable isotope probing
(SIP) experiments using 13C-labeled acetate identified putative
FeRB under acetate-stimulated and unamended incubation

conditions (Fortney et al., 2018). However, constraints on the
spatial distribution of FeRB within the sediment column of CP
were not examined in detail.

In this study we used DNA sequencing to further investigate
the spatial distribution of microorganisms involved in Fe cycling
in CP vent waters, along the flow path of the outflow channel,
and as a function of sediment column depth along the flow path.
16S rRNA gene amplicon sequencing was conducted on filtered
spring water samples and sediment core samples collected from
the vent and further downstream with increasing distances from
the vent pool. Shotgun metagenomic sequences were obtained
from the top 1 cm of three of these sediment cores as well as
filtered vent pool water biomass in order to identify abundant
taxa containing genes involved in extracellular electron transfer
(EET) and CO2 fixation. Our results provide further support
for an active FeRB community in the CP sediments, especially
proximal to the vent pool. In contrast, although our genomic
data supports the metabolic potential for lithoautotrophic FeOB,
they do not appear to be prominent members of the microbial
community.

MATERIALS AND METHODS

Sample Collection and Processing
A total of six small (ca. 1× 10 cm) sediment cores were collected
from the CP vent pool and along the flow path in August
2013 (Figure 1). Spring water was filtered from the hot spring
source and the vent pool source in October 2015 using an in-
line 0.2µm polyethersulfone (PES) membrane and a peristaltic
pump. In an anaerobic chamber, core samples were thawed,
extruded, and sectioned into 1 cm intervals. Subsections were
split for sequential HCl extraction for Fe geochemical and isotope
analyses (Fortney et al., in prep.) and DNA extraction.

DNA Extraction and Sequencing
DNA was extracted according to previously described methods
(Fortney et al., 2016). DNA extracts from the core samples
were PCR amplified using the universal primer set 515f/806r
(Caporaso et al., 2011) targeting 16S rRNA genes and were
multiplexed using standard Roche MID primer tags. Amplicons
were sequenced at the University of Wisconsin Biotech Center
(UWBC, https://www.biotech.wisc.edu/) using the Roche 454
FLX+ pyrosequencing platform. DNA from the top 1 cm sample
from cores 1, 2, and 3 was submitted to UWBC for paired-end 2
×100 bp Illumina HiSeq 2000 shotgun metagenomic sequencing.

PES membrane filters were cut in half and sliced into
strips using a sterile razor blade for use in DNA extraction.
DNA from replicate extracts was pooled and submitted to
UWBC for paired-end 2 × 250 bp Illumina HiSeq Rapid
shotgun metagenomic sequencing. An additional DNA sample
was submitted to Argonne National Labs for PCR amplification
(using the universal primers 515f/806r) prior to paired-end 2 ×

200 bp Illumina MiSeq 16S amplicon sequencing.

Analysis of 16S rRNA Gene Amplicon Data
Raw sequences were processed using QIIME following the
protocol for 454 pyrosequencing data or Illumina MiSeq 16S
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FIGURE 1 | (A) View from the top of the main hot spring mound looking toward the Gibbon River. Flow path is marked with neon-green flags. Approximate area of the

vent pool is marked with a white dotted line. (B) Top-down view of the pool at the main hot spring vent pool at Chocolate Pots. The site for the sediment core

collection in 2013 is indicated with an S. The vent source (partially obscured by grasses) where spring water was collected in 2015 is indicated with a W.

rRNA gene amplicon sequencing data, according to previously
published methods (Fortney et al., 2016, 2018).

Metagenome Assembly, Binning, and
Assessment of MAGs
Raw shotgun metagenomic sequence from the CP sediment core
DNA samples was assembled using metaSPAdes 3.9 (Bankevich
et al., 2012; Nurk et al., 2016). Binning was accomplished using
CONCOCT 0.4.0 (Alneberg et al., 2014) along with some manual
binning based on %GC and coverage to produce metagenome-
assembled genomes (MAGs). Differential read coverage was
obtained by mapping reads from each metagenome against
the contigs from the combined metagenomic assembly (co-
assembly) using SNAP 0.15.4 (Zaharia et al., 2011) with default
settings, and Samtools 1.3.1 to obtain the coverage of each contig
(http://samtools.sourceforge.net) (Li et al., 2009). MAG quality
(i.e., completeness, contamination, and strain heterogeneity) was
determined using CheckM 1.0.7 (Parks et al., 2015). Putative
phylogenetic identities of each MAG were determined through
a consensus between the identities provided by CheckM and the
classification based on the lowest common ancestor of essential
housekeeping genes based on sequence homology. The CheckM
algorithm infers phylogeny based on placement of the MAG
within the reference genome tree constructed from 43 conserved
phylogenetic marker genes. The 111 bacterial housekeeping
genes expected to be encoded in each MAG were identified
using previously described methods (Albertsen et al., 2013),
including gene prediction by Prodigal (Hyatt et al., 2010) and
essential housekeeping gene identification by HMMer search
against HMM models (Finn et al., 2011); protein sequences of
the detected essential housekeeping genes were aligned to the
NCBI nr database (current as of June 8, 2016) using BLASTp.
BLAST output was input into MEGAN (Huson et al., 2007) to
determine the lowest common ancestor of these genes to aid

in taxonomic classification of each MAG. Dendroscope 3.5.9
(Huson and Scornavacca, 2012) was used to project phylogenetic
trees using the CheckM output.

Metagenomic sequence data from the vent pool DNA sample
was processed identically with the following exceptions: Raw
reads were quality-trimmed, merged, and sequencing adapters
were removed in CLC Genomic Workbench 7.5.1 (http://www.
clcbio.com) at the UWBC computer center. Processed reads were
assembled with raw reads in metaSPAdes 3.10 using the “trusted
contigs” command in order to improve assembly quality (e.g.,
N50). Manual kmer sizes of 21, 33, 55, 77, 99, and 127 were
used for assembly. Read mapping was unnecessary in the Vent
metagenome because it was a single sample, and coverage for
each contig is contained in the metaSPAdes output. Assembly,
automated binning, read mapping, and BLAST for both the CP
core and vent pool metagenomes were all run using the UW-
Madison Center For High Throughput Computing (CHTC) in
the Department of Computer Sciences (http://chtc.cs.wisc.edu/).

Inference of Metabolic Potential
Metagenomic assemblies were uploaded to IMG/M ER (https://
img.jgi.doe.gov/cgi-bin/mer/main.cgi) for gene annotation
(Mavromatis et al., 2009). Metagenomes were screened for
homologs of EET systems found in FeRB (e.g., the Geobacter-like
pcc system; Liu et al., 2014; Shi et al., 2014) using previously
published methods (Fortney et al., 2016). Metagenomes
were also screened for EET systems found in known FeRB
(Shewanella spp., mtrABC; Hartshorne et al., 2009) and
FeOB (Acidithiobacillus ferrooxidans, cyc2; Sideroxydans
spp. mtoABCD; Rhodobacter ferrooxidans, foxEZY ; and
Rhodopseudomonas palustris, pioABC; Ilbert and Bonnefoy,
2013, and references therein) using command-line BLAST
and the BLASTp function in IMG. Genes coding for putative
EET systems, which are not homologous to known models,
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were identified according to previously published methods
(Fortney et al., 2018). MAGs encoding putative outer-membrane
porins, and multiheme c-type cytochromes (c-cyts) with
predicted extracellular and periplasmic locations, as well as
other supplemental genes predicted to be involved in Fe
transformation pathways, are hereafter referred to as pcc-like
EET systems. MAGs with genes fitting the above criteria but
lacking extracellular c-cyts are hereafter referred to as mto-like
EET systems.

Metagenomes were screened for four different CO2 fixation
pathways: the reductive pentose phosphate cycle [Calvin-
Benson-Bassham (CBB)], reductive tricarboxylic acid cycle
(rTCA), reductive acetyl-CoA pathway [Wood-Ljungdahl (WL)],
and 3-hydroxypropionate (3HP) bicycle. Metagenomes were
not screened for the 3-hydroxypropionate/4-hydroxybutyrate
pathway or the dicarboxylate/4-hydroxybutyrate pathway
because these systems are thus far restricted to thermophilic
Archaea isolated from hydrothermal systems much hotter than
CP (Hügler and Sievert, 2011). MAGs potentially involved in
CO2 fixation were positively identified by the presence of all
genes predicted to be in a given pathway. Details are provided in
Supplementary Material 1.1.

To determine whether CO2 fixation pathways identified were
associated with lithotrophs or phototrophs, MAGs related to
known phototrophic organisms were screened for phototrophy-
related genes. Firstly, MAGs were screened for genes coding
for photoreaction centers and associated photosynthetic genes
[e.g., photosystems II and I (PS-II and -I), puhA and pufLM]
using queries from anoxygenic (Chloroflexus aurantiacus J-
10-fl, R. palustris 42OL, Blastochloris viridis DSM 133, and
Roseiflexus castenholzii HLO8) and oxygenic (Cyanothece sp.
BH68, Oscillatoria sp. PCC 10802, Pseudanabaena sp. PCC 6802,
and Synechococcus sp. JA-3-3Ab) phototrophs within the IMG
database. Next, MAGs were screened for photosynthetic gene
categories in annotations (e.g., pfam, COG, EC).

Linking 16S rRNA Amplicon Data to MAGs
16S rRNA gene sequences were recovered from the metagenomic
libraries using the CheckM algorithm and aligned to the
respective 16S rRNA gene in the amplicon libraries by BLASTn
search. This allowed for identification of a representative MAG
for a given 16S rRNA sequence defined OTU, and vise-versa in
order to correlate abundant MAGs and OTUs between sequence
libraries.

Accession Numbers and Sequence Files
All metagenomic contigs for the CP core metagenomic co-
assemblies and the CP vent pool water column assembly
are available through IMG/M ER under taxon identification
numbers 3300010938 and 3300014149, respectively. Nucleotide
and amino acid sequences for each of the MAGs from the CP
core metagenomic co-assembly and the CP vent pool water
column assembly are available as compressed FASTA files in the
Supplemental Material of this paper. Processed reads (FASTA
files) from the 16S rRNA gene amplicon sequencing of the CP
cores and CP vent pool water column, and raw OTU table text
files are available as in the Supplementary Material of this paper.

RESULTS AND DISCUSSION

Description of Chocolate Pots Hot Springs
The Chocolate Pots are a series of vent features along and
within the Gibbon River∼5 km south of the Norris Geyser Basin
(Allen and Day, 1935; McCleskey et al., 2010). The hot spring
studied here (Thermal ID: GCPNN002; 44.71008,−110.7413) is
located along the southeastern bank of the Gibbon River and is
comprised of a main hot spring vent and pool which flows over
Fe(III) oxide deposits about 10m down the bank to the river. The
vent pool and flow path (see Figure 1) were the foci of this study.
Two satellite vents located about half way down the bank were
not sampled as part of this study.

The temperature of the core sampling site in the vent pool in
2013 was 50.7◦C, and decreased to 40.8◦C at the collection site
of core 6. The temperature where the effluent from CP meets
the Gibbon River was 38.1◦C. The pH of the Vent coring site
was 5.94, increasing to 7.90 at the site of core 6, and 8.25 upon
entering the river. The concentration of aqueous Fe(II) was ca.
0.1 mmol L−1 at the Vent and decreased to <0.01 mmol L−1 by
the site of core 4. Water was at a slightly higher temperature (ca.
51.4◦C), and lower pH (ca. 5.79) at the vent source where water
samples were collected in 2015 (see Supplementary Table 1 for
details).

Composition of the CP Sediment Cores
and Vent Pool Microbial Communities: 16S
rRNA Gene Amplicon Sequence Analysis
CP Sediment Cores

A total of 370544 high-quality 16S rRNA gene amplicon
sequences were obtained from 42 sediment core subsamples.
Following quality trimming and processing through QIIME (e.g.,
OTU picking) a total of 18088 reads were distributed between
885 OTUs (excluding singletons) at 97% identity. Overall, the
microbial community of the CP core samples is diverse with only
22 OTUs (out of 320 OTUs collapsed to the Family level) having
>1% read abundance in the 16S amplicon library (Table 1).
However, these few OTUs comprise 61% of all reads in the
libraries. OTUs with unassigned taxa comprised 10–15% of the
reads.

Principal coordinate analysis of the 16S rRNA gene libraries
revealed a few major trends in microbial community structure
within and among the cores. Broadly, microbial communities
associated with core 1 were distinct from those associated with
core 2, and both were distinct from communities from the
distal cores (Figure 2). The variation in community dissimilarity
captured by core 1 along the depth transect encompassed that
associated with the other cores combined. Within core 1, the
samples from the top 2 cm diverged considerably from the deeper
samples. Likewise, the surface samples tended to be separate from
samples deeper within each core, in particular in cores 2 and 5.
This resulted in trajectories in community dissimilarity following
a trend with increasing depth (at least as it relates to PC1 and
PC2) for cores 1, 2, and 5.

The dominant OTUs across all libraries were related to a
crenarchaeote [ca. 9% of total reads, 87% 16S rRNA gene identity
(ID) to an anaerobic methanogenic archaeon; Chin et al., 1999),
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FIGURE 2 | Principal coordinate analysis (PCoA) ordination of pair-wise sample dissimilarity using weighted UniFrac metrics comparing samples from the 16S rRNA

gene amplicon library of all CP cores and depth intervals. Zoomed-in panel highlights the less pronounced distribution of samples from cores 3, 4, and 5. Surface

sample from each core is labeled in bold, and subsections are labeled with increasing depth. The 16S rRNA gene amplicon library from the CP vent pool water

column sample was aligned and normalized to the CP core libraries in order to plot along with the core samples.

and two Chlorobi (ca. 5% of total reads, each, 84% ID to
Ignavibacterium album; Iino et al., 2010) (Table 1). The abundant
Crenarchaeota OTU was most prevalent in the lower depths of
core 1 (below 2 cm) comprising 17.3–41.9% of the reads in the
respective libraries; it was also present in the core 2 samples
below 1 cm depth (3.4–13.2% read abundance). An additional
abundant Crenarchaeota-related OTU was present in only the
core 1 samples at all depth intervals at 7.3–12.2% read abundance
(Table 1).

The role of Archaea in the CP community remains
understudied at this time and requires further analysis in this
environment. Several prominent OTUs and MAGs identified
as archaeal relatives were identified in the 16S amplicon
libraries and metagenomic libraries, respectively. Although
the Archaea undoubtedly contributed significantly to the
distribution observed in the core samples from the amplicon
library, the archaeal OTUs in this study were not related to
organisms known to be involved in Fe redox metabolism or CO2

fixation. Additionally, putative genes involved in these metabolic
systems were not identified in the archaealMAGs in our study. As
such, the Archaea are not a focus for the remainder of this paper.

Although not extremely abundant in the CP community,
when all sediment cores were considered together (ca. 0.8%
read abundance), OTUs related to Thermodesulfovibrio (90%
ID to Thermodesulfovibrio yellowstonii; Henry et al., 1994;
Sekiguchi et al., 2008) are particularly abundant in the topmost
layers of core 1 (ca. 6–8% read abundance), less abundant
at core 2 (ca. 1–2% read abundance), absent from core 3
(Table 1) and the majority of the core samples from deeper
and farther downstream (data not shown). The presence of

abundant Thermodesulfovibrio-related OTUs in samples from
core 1 (CP vent) is not surprising since members of this genus
have been shown to reduce Fe(III) (Sekiguchi et al., 2008). Results
from previous Fe(III) reducing incubations and recent SIP
experiments have suggested that Thermodesulfovibrio relatives
native to CP may contribute to Fe(III) reduction in situ (Fortney
et al., 2016, 2018). Additionally, these studies showed decreasing
levels of Fe(III) reduction activity with increasing distance from
the CP vent. The presence of Thermodesulfovibrio-related OTUs
in samples from cores 1 and 2, and not in core samples
further downstream from CP vent is consistent with results from
these studies and together support the potential involvement of
Thermodesulfovibrio in Fe(III) oxide reduction in CP. Additional
abundant OTUs in the core library, including those related to
Acetothermales (4.7% read abundance), Nitrospirales (3.8% read
abundance), and Acidobacteria (3.5% read abundance) tended
to be present in greater abundance in the deeper and more
distal core samples, and were largely absent from core 1 samples,
especially the top few centimeters (Table 1).

Microbial communities in surface samples from cores 2
to 5 exhibited the greatest separation from deeper samples
within those respective cores (Figure 2). Notably, these surface
communities comprised abundant OTUs (ca. 4–14% read
abundance, Table 1) affiliated with the lithoautotrophic Fe(II)
oxidizing betaproteobacterium Sideroxydans paludicola (98% ID;
Weiss et al., 2007). This OTU was largely absent from deeper
samples from within the cores suggesting it was a likely driver
of the overall separation of the surface and subsurface samples
within these cores (Figure 2). The restricted distribution of this
OTU in surface samples may be attributable to its dependence on
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microaerophilic conditions to catalyze Fe(II) dependent growth.
The presence of abundant OTUs (4–14% read abundance)
related to Sideroxydans lends support to the hypothesis that
chemolithotrophic Fe(II) oxidation could contribute to Fe redox
cycling at CP.

CP Vent Pool

A total of 20,618 high-quality 16S rRNA gene amplicon
sequences were obtained from the vent pool sample. Following
processing though QIIME a total of 8,587 reads were distributed
across 675 OTUs (excluding singletons) at 97% identity. The vent
pool was also a diverse microbial community with only 8 OTUs
(out of 267 OTUs collapsed to the Family level) with >1% read
abundance (Table 2). Together, these OTUs accounted for 43% of
all reads. OTUs with unassigned taxa made up 27% of the reads
in the vent pool library.

Not surprisingly, the CP vent pool sample was distinct from
the core samples (Figure 2). With the exception of relatives
of Sideroxydans and Thermodesulfovibrionaceae, there was no
overlap between the abundant OTUs in the CP sediment cores
and CP vent pool libraries. A Pseudanabaenaceae-related OTU
dominated the vent pool community and accounted for 20%
of the total reads in the library. The second most abundant
OTU was affiliated with Thermodesulfovibrionaceae (90% ID to
T. yellowstonii; Henry et al., 1994; Sekiguchi et al., 2008) at 10%
read abundance. The remaining abundant OTUs each comprised
about 2% of the total reads in the library and were related to the
lithoautotrophic FeOB Sideroxydans (99% ID to S. paludicola;
Weiss et al., 2007) and the anoxygenic phototroph Roseiflexus
(99% ID to Roseiflexus sp. RS-1; Klatt et al., 2007; van der Meer
et al., 2010).

Pseudanabaenaceae are cyanobacteria that have previously
been identified as one of the primary microbial mat-forming
species at CP where they form floating streamers at the highest
temperature locations (e.g., near the vent, ca. 52◦C; Pierson et al.,
1999; Pierson and Parenteau, 2000; Parenteau and Cady, 2010).
Although less abundant in the amplicon library, Chloroflexi,
including an OTU related to Roseiflexus, (2.6% read abundance,
99% ID to Roseiflexus sp. RS-1; Klatt et al., 2007; van der
Meer et al., 2010) are also recognized as principal members
of the CP mat community (Pierson et al., 1999; Pierson and
Parenteau, 2000; Parenteau and Cady, 2010) and thus were also
expected in the CP water column. Intriguingly, the presence of
relatively abundant OTUs related to Thermodesulfovibrio as well
as Sideroxydans and Roseiflexus in the vent pool water column
(in addition to the presence of Thermodesulfovibrio relatives in
the vent sediment) suggests that a coupled Fe redox cycle could
be operative at the CP vent.

Composition of the CP Sediment Cores
and Vent Pool Microbial Communities:
Metagenomic Sequence Analysis
CP Sediment Cores

The communities inhabiting the top 1 cm depth transects of
cores 1, 2, and 3 contained a representative set of OTUs found
in all other core libraries based on 16S rRNA gene amplicon T
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analysis. Thus, shotgun metagenomic sequence libraries were
obtained from DNA extracted from these three samples. Details
on the assembly statistics of the co-assembly can be found in
Supplementary Material 1.2. We obtained a total of 167 MAGs
from the co-assembly, and the average read coverage of all
MAGs in the co-assembly was 15.09. The assemblies were then
screened for genes coding for putative EET systems and CO2

fixation pathways to assess the possibility of Fe redox cycling and
contribution to primary production in CP.

We defined “abundant” MAGs as those with higher than
average read coverage, and focused on these for further analysis.
From the co-assembly of the three metagenomes, 11 abundant
MAGs were shown to encode putative EET systems (see section
Materials and Methods), four encoded putative CO2 fixation
pathways, and three MAGs encoded both. These 18 MAGs
accounted for >40% of total mapped reads, suggesting the high
abundance of populations represented by these MAGs, and
the importance of putative EET and CO2 fixation processes
in the environment. The remaining abundant MAGs (n = 22,
27.9% mapped reads, Figure 3) did not contain either pathway
and these organisms were not considered further in this study.
MAGs with below average coverage (n = 127, 30.1% mapped
reads) were also not subjected to further analysis. The microbial
community of each core was considered individually in addition

to the co-assembly in order to determine how the metabolic
potential changes with distance moving away from the hot spring
vent (Figure 3). Core 1 contained 88 MAGs with an average
normalized coverage of 7.94, core 2 contained 95 MAGs with an
average normalized coverage of 9.75, and core 3 contained only
62 MAGs with an average normalized coverage of 11.27.

A separation of microbial communities from the three
cores was evident both when considering the collection of
MAGs as a whole and in relation to MAGs containing either a
putative EET system or CO2 fixation pathway (Figures 3–5).
The high-coverage MAGs from the metagenomic libraries
were representative of the abundant OTUs from the amplicon
libraries (Supplementary Table 2). Core 1 was predominantly
composed of Chloroflexi, Ignavibacteriales, Thermodesulfovibrio,
Acidobacteria, and Deferrisoma. Chloroflexi are known
members of the microbial mat community at CP and not
unexpected in the core 1 sediment (Parenteau and Cady, 2010).
Thermodesulfovibrio, Acidobacteria, and Ignavibacteriales
have all been previously cited as principal members of
the CP Community (Fortney et al., 2016, 2018; Figure 4,
Supplementary Figures 3, 4). Aside from the archaeal MAGs,
core 2 also contained high-coverage Ignavibacteriales and
Sideroxydans MAGs. Core 3 comprised a high-coverage
Caldithrix MAG, two MAGs related to Ignavibacteriales and a

FIGURE 3 | Exploded pie chart on the left shows a distribution of MAGs and percentage of metagenomic sequence reads mapped to MAGs containing metabolic

pathways of interest. Middle bars represent the MAGs identified in the three individual core metagenomes and the numbers of MAGs containing pathways of interest

and percentage of reads mapped to those MAGs. Pie charts on the right show the breakdown of specific EET systems or CO2 fixation pathways present in each core

sample. The total listed below each pie and bar chart represents the ratio of mapped reads in a given metagenomic assembly or pathway to the total number of

mapped reads for that assembly. EET, extracellular electron transfer; CBB, Calvin-Benson-Bassham cycle; WL, Wood-Ljungdahl pathway; rTCA, reductive

tricarboxylic acid cycle; 3HP, 3-hydroxypropionate bicycle.
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FIGURE 4 | Rank-abundance plots of cores 1, 2, and 3 highlight the 20 most abundant taxa within each core sample. An average normalized read coverage of 7.94,

9.75, and 11.27 for MAGs in cores 1, 2, and 3, respectively, is marked with a horizontal dotted line. MAGs containing putative EET systems or CO2 fixation pathways

are bolded and labeled with and E or C, respectively, or both for MAGs containing both putative metabolisms. MAG numbers are listed in parentheses.
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FIGURE 5 | Distribution of MAGs from the metagenomic co-assembly of the CP cores containing putative metabolic pathways of interest, and percentage of

metagenomic reads mapped to those MAGs. EET, extracellular electron transfer; CBB, Calvin-Benson-Bassham cycle; WL, Wood-Ljungdahl pathway; rTCA,

reductive tricarboxylic acid cycle; 3HP, 3-hydroxypropionate bicycle.

Deferrisoma MAG. A number of high-coverage MAGs related
to Ignavibacteriales, Acidobacteria, Caldithrix, and Deferrisoma
encoded putative EET systems and were distributed between
different core samples. This observation, when coupled with
the documented Fe(III) reduction activity at core sites 1 and
3 (see Fortney et al., 2018), suggests that the Fe(III) reducing
community at CP is complex and diverse.

Cores 1 and 2 presented more similarity in terms
of MAGs encoding putative EET systems than either
individual community had with that of core 3 (Figure 4,
Supplementary Figure 3). While the overall number of MAGs
encoding a particular EET system was similar between the cores
(Figure 3), in core 3 over 50% of all assembled reads mapped
to MAGs containing putative EET systems. In contrast, for
cores 1 and 2, only 20% of the assembled reads were mapped to
EET-containing MAGs. This is an interesting result considering
the activity levels of Fe(III)-reduction observed in previous
studies (Fortney et al., 2018). For example, Fe(III)-reduction is
more active at the CP vent (i.e., core 1) whereas the genomic
potential for Fe(III)-reduction (e.g., the presence of a putative
EET system) is more evident at core 3. Not only was the overall
read abundance of EET-containing MAGs driving the separation
between cores 1, 2, and 3 but the distribution of abundant MAGs,
most of which contained putative EET systems, is also a likely
driver.

CP Vent Pool Water Column

A shotgun metagenomic sequence library was obtained
from DNA extracted from membrane filters collected from
the vent pool at CP. The average adjusted coverage (see
Supplementary Text 1.2) of all MAGs in the metagenomic
assembly was 28.61. The high-coverage MAGs from
the metagenomic library were representative of the
abundant OTUs from the 16S rRNA gene amplicon library
(Supplementary Table 3). Eleven MAGs had an above-average
coverage and comprised 79.2% of the mapped metagenomic
reads. One MAG encoded a putative EET system and two
MAGs encoded a putative CO2 fixation pathway; these two
MAGs comprised over 20% of the mapped reads in the entire
metagenomic assembly. One MAG encoded both systems. The
remaining high-coverage MAGs did not encode metabolic
pathways directly relevant to Fe cycling and thus were not
considered further in this study. The below-average coverage
MAGs (n = 32, 20.2% mapped reads) which did not encode
putative EET systems or CO2 fixation pathways are also not
considered in the remainder of this study.

EET systems are much less prevalent in the CP vent pool water
column metagenomic assembly than in the surface samples from
sediment cores 1, 2, and 3. Less than 4% of the metagenomic
reads in the vent pool water column assembly mapped to MAGs
containing these pathways (Figure 6), as compared to >30% in
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FIGURE 6 | Distribution of MAGs from the metagenomic assembly of the CP vent pool water column containing putative metabolic pathways of interest and the

percentage of metagenomic reads mapped to those MAGs. EET, extracellular electron transfer; CBB, Calvin-Benson-Bassham cycle; WL, Wood-Ljungdahl pathway;

rTCA, reductive tricarboxylic acid cycle; 3HP, 3-hydroxypropionate bicycle.

the CP core co-assembly (Figures 3, 5). The type of putative
EET system was also quite different between the metagenomic
assemblies; in particular there was a lack of high-coverage MAGs
encoding a Geobacter-like pcc system in the CP vent pool
(Figure 6).

Carbon dioxide fixation was a prominent metabolic process
in the vent pool water column metagenome. Approximately
24% of the metagenomic reads mapped to only three MAGs
containing these putative metabolic systems (Figure 6). The
highest read-coverage MAG was related to the cyanobacterium
Pseudanabaena and encoded a full CBB cycle. NoMAGs encoded
alternative archaeal pathways utilizing RuBisCO nor did any
high-coverage MAGs encode a complete putative rTCA cycle.
Although, two Chlorobi related MAGs encoded a partially
complete rTCA cycle, which is expected for members of this
phylum. A partially complete 3HP bicycle was identified in one
MAG related to Roseiflexus (Supplementary Figure 4). Putative
CO2 fixation pathways were identified in additional lower-
coverage MAGs including a relative of Sideroxydans.

The highest coverage MAG after the Pseudanabaena
relative was a Chlorobi identified as Pelodictyon. An additional
Chlorobi, Chloroherpeton, was present in the vent pool
water column metagenomic assembly, though at a more

moderate read-coverage (Supplementary Figure 3). While
Pelodictyon (now called Chlorobium; Imhoff, 2003) and
Chloroherpeton have not specifically been identified at CP before,
anoxygenic phototrophic Chlorobi related to “Candidatus
Thermochlorobacter aerophilum” have been previously
described as part of the microbial mat community (Klatt et al.,
2013). A high-coverage Pseudanabaena MAG was unsurprising
given its abundance as part of the mat community at CP
(Parenteau and Cady, 2010, and references therein). As described
above in reference to the OTU libraries, multiple MAGs related
to Chloroflexi, Thermodesulfovibrio, and Ignavibacteriales were
identified in the CP vent pool metagenomic library and are
expected members of the microbial community. Although
multiple MAGs of the aforementioned taxa were identified in the
metagenome, only one particularly high-coverage representative
MAG of each organism was present (Supplementary Figure 4,
Supplementary Table 3).

One of the guiding hypotheses of this study was that putative
lithoautotrophic FeOB are present and active at CP. Given
that the Sideroxydans MAG in the CP vent pool metagenomic
assembly had only slightly below-average read coverage, it
would appear that this group of organisms may have a modest
presence in CP vent pool microbial community. Metagenomic
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read coverage and inferred microbial abundance based on
16S rRNA gene amplicon OTU abundance track reasonable
well (Tables 1, 2, and Supplementary Tables 2, 3). In previous
Fe(III)-reducing incubation experiments a high abundance of
putative FeRB correlated with high levels of Fe(III) reduction
activity(Fortney et al., 2016, 2018). However, it is necessary to
point out that in terms of the energetics of Fe-based microbial
metabolisms, Fe(III) reduction yields greater free energy for cell
processes, including cell division, than does Fe(II) oxidation
(Neubauer et al., 2002; Bird et al., 2011). Even if FeRB and FeOB
have equivalent levels of activity, e.g., the same number of moles
of Fe metabolized, one would expect a lower cell density of FeOB
simply because of the lower energy potential of the metabolic
reaction. Nevertheless, as is detailed below, the metabolic
potential of this MAG along with its inferred phylogeny supports
the hypothesized presence of lithoautotrophic FeOB at CP.

Presence of Putative EET Systems at CP
and the Potential for Fe(III) Reduction
It is important to acknowledge that although several MAGs
in both metagenomic assemblies contain putative EET systems,
the presence of these gene homologs does not in and of itself
prove the existence of Fe(III) reduction activity (Shi et al., 2014).
However, the previously documented Fe(III) reduction activity
from materials collected from these locations at CP (Fortney
et al., 2018), coupled with the genomic results identifying the
metabolic potential for EET systems, support the hypothesis that
these taxa are involved in Fe(III) reduction in situ. In contrast,
experimental evidence for lithoautotrophic Fe(II) oxidation is
currently not available and the operation of this metabolic
pathway at CP is more speculative.

CP Cores

Sequences homologous to the porin from the well characterized
Geobacter-like pcc EET system were identified in several
abundant MAGs in the metagenomic co-assembly, whereas
homologs to the Shewanella-like mtrABC or any of the
model Fe(II)-oxidizing EET systems were not identified in the
metagenomic co-assembly of the cores. Searches for non-model
EET systems identified pcc-like systems in abundant MAGs from
all three cores and mto-like systems in abundant MAGs from all
cores (Figures 3, 5, Supplementary Figure 3).

Homologs to the Geobacter-like pcc porin (Liu et al.,
2014; Shi et al., 2014) were located in MAGs identified
Ignavibacteriales (n = 7) and Deferrisoma camini (n = 2;
Supplementary Figure 3). The genome of Ignavibacterium
album is known to encode a Geobacter-like pcc-porin (Shi
et al., 2014); the same is true for the related Ignavibacteriales
species, Melioribacter roseus (Fortney et al., 2016). The three
Ignavibacteriales MAGs identified as having only a partially
complete Geobacter-like pcc system are missing a homolog to
gsu1999, an additional periplasmic c-cyt predicted to be in this
EET system (Santos et al., 2015; Shi et al., 2016). It should be
noted that while the Ignavibacterium genome is expected to
encode this homolog, the Melioribacter genome is not known
to encode this gene as part of its Geobacter-like pcc system, and
Melioribacter is still capable of carrying out Fe(III) reduction
(Podosokorskaya et al., 2013). Deferrisoma spp. are known to

be FeRB (Slobodkina et al., 2012; Pérez-Rodríguez et al., 2016),
and although the exact mechanism for Fe(III) reduction has
not been described in this organism, the published genome
for D. camini S3R1 encodes a homolog of the Geobacter-like
pcc-porin (IMG gene ID 2517273319) and accompanying c-
cyts that were predicted in the EET system model (Shi et al.,
2016). Although the c-cyts in D. camini were predicted to be
only periplasmic, extracellular c-cyts were detected elsewhere
in the genomes. Unexpectedly, we also identified the metabolic
potential for autotrophic Fe(III) reduction in one D. camini
MAG, that is, the presence of both a putative EET system and
CO2 fixation pathway (see “Presence of putative CO2 fixation
systems” section below, and Supplementary Figure 3).While not
observed in D. camini, a related Deferrisoma sp. has previously
demonstrated this capability (Pérez-Rodríguez et al., 2016).

Putative EET systems that were not homologous to the
Geobacter-like pcc-system were detected in MAGs identified
as “Candidatus Nitrospira defluvii,” Acidobacteria (n = 3),
and Desulfobacterium anilini. A pcc-like EET system was also
detected in the Caldithrix MAG, and while Caldithrix spp.
are not known to be FeRB (Miroshnichenko et al., 2003,
2010; Kublanov et al., 2017), the ability to use Fe(III) as a
terminal electron acceptor has not been explicitly tested in these
organisms. In any case, the published genome for Caldithrix
abyssi LF13 also encodes a homolog of the Geobacter-like pcc
porin (IMG gene IDs 2720325731) as well as the predicted
associated c-cyts. “Ca. N. defluvii” and Desulfobacterium spp.
are known as nitrite oxidizing bacteria and sulfate reducing
bacteria, respectively (Brysch et al., 1987; Lücker et al., 2010;
Suzuki et al., 2014). D. autotrophicum is capable of reducing
Fe(III), although not as a means of respiration (Lovley, 2006),
and a similar process may be taking place here. The detection of
putative EET systems in the Acidobacteria MAGs is consistent
with previous data indicating that organisms within this
lineage (e.g., Geothrix fermentans and Thermoanaerobaculum
aquaticum) can reduce Fe(III) (Coates et al., 1999; Losey et al.,
2013). Acidobacteria have also been identified in metagenomic
assemblies of Fe(III) enrichment cultures (Fortney et al., 2016)
and Fe(III) reducing incubations derived from CP (Fortney et al.,
2018).

The MAG identified as Gemmatimonas aurantiaca encoded
an mto-like EET system, although it is necessary to reiterate that
our classification of “mto-like” simply refers to the lack of an
identified extracellular c-cyt that is predicted for Fe(III) reducing
EET systems as opposed to any specific knowledge about the
metabolic potential of a particular MAG. The representative
isolate G. aurantiaca T-27T has not been specifically investigated
for its ability to oxidize Fe(II) or reduce Fe(III) (Zhang et al.,
2003). Curiously, the two Thermodesulfovibrio MAGs (although
only one MAG was particularly abundant) also encoded putative
“mto-like” EET systems. However, a possible explanation for the
“missing” extracellular c-cyt, as is also potentially the case for
the Gemmatimonas MAG, could be due to the metagenomic
assembly and binning process, which failed to generate contigs
containing this gene. This is especially likely given the previous
identification of the Geobacter-like pcc and pcc-like EET systems
in MAGs related to Thermodesulfovibrio (Fortney et al., 2016,
2018) and, as is discussed below, the identification of a complete
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pcc-like EET system in the CP vent pool Thermodesulfovibrio-like
MAG (Supplementary Figure 4).

It was surprising to determine that the Sideroxydans MAG
did not contain any evidence for an EET system. No 16S rRNA
gene was recovered from this MAG so it cannot be specifically
related back to the 16S rRNA gene amplicon library of the
sediment core samples. However, based on a similar change in
relative abundance/coverage between the sediment cores and the
phylogenetic identity of this MAG, we can reasonable conclude
this MAG derives from the same organism. Given the close
relatedness of the 16S rRNA gene amplicon to the known FeOB
S. paludicola, we would expect the MAG to present the same
putative metabolic potential. The lack of detection of an EET
system in this MAG suggests that it may be differentiated from
S. paludicolametabolically.

CP Vent Pool Water Column

Two above-average coverage MAGs from the vent pool
metagenome encoded putative EET systems. An mto-like
EET system was identified in a MAG belonging to the
Ignavibacteriales, and a pcc-like EET system was identified in
a Thermodesulfovibrio relative. The presence of putative EET
systems in MAGs related to either of these taxa is consistent
with our previous work (Fortney et al., 2016, 2018). However, the
putative EET system in the IgnavibacterialesMAG is identified as
“mto-like.” Although as discussed above, this classification refers
to the lack of an extracellular c-cyt proximal to the putative porin
and may simply represent an incomplete EET system.

It is interesting to note that several putative EET systems,
both Geobacter-like pcc and pcc-like, were identified in low
coverage MAGs including multiple Thermodesulfovibrio,
Ignavibacteriales, and Deferrisoma MAGs, among others
(Supplementary Figure 4). In contrast to the MAG from the
CP sediment core metagenomic co-assembly, the Sideroxydans
MAG from the CP vent pool metagenomic assembly encoded
a putative EET system. However, it was identified as pcc-like
and shared no homology to the mtoABCD system, which is
expected for Sideroxydans spp. (Emerson et al., 2013). Metabolic
differentiation between planktonic and sediment microbial
communities at CP is potentially based on the geochemical
differences between the solid phase (i.e., sediment) and dissolved
species in the aqueous phase. This is consistent with the
observations made at other hot springs in Yellowstone (Colman
et al., 2016, and references therein). Qualitatively, the CP vent
pool has been observed to be dynamic and well mixed. However,
high-resolution measurements of geochemical gradients within
the water column may provide additional insight into the
differentiation between planktonic and sediment microbial
communities.

Presence of Putative CO2 Fixation Systems
at CP and the Potential for Litho- or
Photo-Autotrophy
CP Cores

Overall, MAGs encoding putative CO2 fixation pathways were
less abundant than those encoding putative EET systems

(Supplementary Figure 3). CO2 fixation appeared to be a
less prevalent metabolic process in the CP sediment core
system, especially in core 3, as compared to potential Fe-
based metabolisms (i.e., MAGs containing an EET system)
(Figure 5). Genes encoding the WL pathway were the most
abundant in terms of both the number of MAGs encoding
a complete CO2 fixation pathway and the high percentage of
metagenomic reads which mapped to these MAGs relative to
other putative CO2 fixation pathways. Genes encoding the WL
pathway were detected in MAGs identified in core 1 (n = 5)
and core 2 (n = 1) while genes encoding the CBB pathway were
detected in one MAG identified in both sediment cores 2 and
3. Genes encoding for the rTCA pathway were detected in a
single MAG in core 2 (Figure 3). One archaeal MAG encoded
a homolog to thiazole-adenylate synthase, the alternate ribulose
bisphosphate regenerating enzyme proposed by Finn and Tabita
(2004); however this MAG was only partially complete as
sedoheptulose-1,7-bisphosphatase, a key enzyme in the pathway,
was not detected. We were unable to identify a complete 3HP
bicycle in any of the MAGs from the metagenomic co-assembly.
Only one moderately abundant MAG identified as a relative of
Dehalococcoides from core 3 coded for a partial 3HP pathway
(Supplementary Figure 3). However, this MAG did not code for
a homolog of malonyl-CoA reductase (EC:1.2.1.17), a key marker
gene predicted to be in the pathway. This apparent absence of
a complete 3HP pathway in this MAG is consistent with the
previous suggestion that members of this genus do not encode
this pathway (Hügler and Sievert, 2011).

As expected based on the genome sequence of Sideroxydans
lithotrophicus ES-1 available on IMG (genome ID 646564569)
and previous studies of Sideroxydans spp. (Weiss et al., 2007;
Emerson et al., 2013), the Sideroxydans MAG identified in
the CP sediment cores encoded a full CBB cycle. However,
the detection of a complete CBB pathway in one of the
low-coverage Thermodesulfovibrio MAGs was unexpected since
Thermodesulfovibrio spp. are not known to be autotrophic
(Henry et al., 1994; Sekiguchi et al., 2008; Orcutt et al., 2015).

Genes encoding a full WL pathway were identified in
five MAGs (Figure 5). Although one MAG was identified as
D. anilini, it has since been reclassified as the genusDesulfatiglans
(Suzuki et al., 2014). Its distant relative, Desulfobacterium
autotrophicum, has been shown to use the WL pathway to
fix CO2 (Schauder et al., 1989). While the two genera are
distinct (ca. 85% 16S rRNA gene sequence similarity) and
Desulfatiglans are not known to be autotrophic (Suzuki et al.,
2014). Desulfatiglans and Desulfobacterium are both members
of the family Desulfobacteraceae, and an operative WL pathway
has been identified in several other species within this family,
including Desulfonema, Desulfosarcina (Kuever et al., 2005),
Desulfospira (Finster et al., 1997), and Desulfotignum (Kuever
et al., 2001; Schink et al., 2002; Ommedal and Torsvik, 2007).
The evolutionary history of these organisms may offer an
explanation for why a putative WL pathway was also detected
in the Desulfatiglans MAG. Furthermore, heterotrophic acetate
assimilation has been shown to occur using the WL pathway run
in reverse (oxidative acetyl-CoA pathway) (Schauder et al., 1989;
Hattori et al., 2005; Can et al., 2014); this is also the case for
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several of the aforementioned Desulfobacteraceae (Kuever et al.,
2005). This is a possible explanation for the detection of genes
encoding the WL pathway in MAGs identified as Chloroflexi
and Deltaproteobacteria, both of which are known to encode
the WL pathway (Hügler and Sievert, 2011; Can et al., 2014).
Heterotrophic metabolism via the oxidative acetyl-CoA pathway
additionally offers an explanation for the detection of genes
encoding a full WL pathway in one of the MAGs identified
as Thermodesulfovibrio. An incomplete WL pathway [lacking
carbon monoxide dehydrogenase (CODH)] has been detected
in other Thermodesulfovibrio spp. (Henry et al., 1994; Frank
et al., 2016) and it is plausible that the Thermodesulfovibrio-
relatives native to CP have acquired the missing CODH
gene through horizontal gene transfer. Further investigation
is required to fully resolve the metabolic capabilities of these
organisms.

Genes encoding ATP-citrate lyase (aclAB) have been used
previously as genetic markers of the rTCA cycle in microbial
communities (Hügler et al., 2005). However, caution has been
stressed in using aclAB alone as indication for the presence
of rTCA (Williams et al., 2006). More recent studies have
identified additional mechanisms that bacteria can use to
cleave citrate (i.e., citryl-CoA synthase and citryl-CoA lyase, see
Supplementary Text 1.1 for details) along with other enzymes
(i.e., 2-oxoglutarate synthase) that can catalyze the irreversible
reactions unique to the pathway (Hügler and Sievert, 2011). For
these reasons, we took a conservative approach when looking
for the presence of the key marker genes along with all other
genes predicted in the pathway as a positive indication for the
rTCA cycle in a bin. As a result the high-coverage “Ca. Nitrospira
defluvii” MAG was the only positive identification of a full rTCA
cycle, which is consistent with previous reports of this pathway in
“Ca. N. defluvii” (Lücker et al., 2010).

Definitive abundant phototrophic MAGs were not present in
the CP sediment coremetagenomic co-assembly. Genes encoding
PS-II and -I were detected in cyanobacterial MAGs (e.g.,
Oscillatoriales, Pseudanabaena, and Synechococcus). However,
these MAGs had very low read-coverage (ca. 2–5x) and were not
considered further in this study.

CP Vent Pool Water Column

The two cyanobacterial MAGs, Synechococcus and
Pseudanabaena coded for full a CBB cycle and complete
PS-II and -I gene complex. The SideroxydansMAG also encoded
a full CBB pathway (Supplementary Figure 4), as expected based
of previous genomic characterization of this genus (see above).
A single abundant MAG, Thermodesulfovibrio, encoded a full
WL pathway. As is described above in regard to the CP sediment
core metagenomic co-assembly, this Thermodesulfovibrio-
relative may have acquired CODH through horizontal gene
transfer, although further phylogenetic analysis is needed to
evaluate this possibility. Even though the Pelodictyon and
Chloroherpeton MAGs only encoded partial rTCA cycles, they
also encoded homologs of anoxygenic photoreaction centers
(Supplementary Figure 4); anoxygenic photoautotrophy via
rTCA is expected for members of the Chlorobiaceae (Hügler and
Sievert, 2011). The 3HP cycle was proposed for and characterized

in C. aurantiacus (Strauss and Fuchs, 1993; Zarzycki et al., 2009).
Genes involved in this autotrophic pathway have since been
identified in related Chloroflexi, i.e., Roseiflexus spp. (van der
Meer et al., 2010), and stable isotope probing experiments
have indicated the potential for CO2 fixation via 3HP (Klatt
et al., 2007). The putative 3HP bicycle in the Roseiflexus MAG
is only partially complete, however given the aforementioned
information; it is not unexpected for this organism.

Evidence for a Coupled Fe Redox Cycling
Microbial Community at CP
Although this study took a bioinformatics approach to
probing the in situ microbial community for evidence for
Fe redox cycling, it is important to recall that previous
enrichment culturing (Fortney et al., 2016) and incubation
studies (Fortney et al., 2018) have experimentally demonstrated
the Fe(III) reducing capability of the CP microbial community.
These observations, combined with the genomic evidence for
the metabolic potential for EET and Fe(III) reduction as
presented here (Figure 5, Supplementary Figure 3), allows us to
confidently assert that Fe redox cycling is an important process
supporting microbial metabolism in CP.

As for the oxidative side of the Fe cycle, putative FeOB
(i.e., Sideroxydans MAGs) were detected in both the sediment
and planktonic components of the CP microbial community,
and genomic evidence indicates their potential contribution to
lithoautotrophic Fe(II) oxidation (Supplementary Figures 3, 4).
The relatively low metagenomic coverage of these MAGs (at
least in the CP vent pool water column) is reasonable given
the expected lower energy yields of this Fe(II) oxidation (Bird
et al., 2011). The in situ activity of putative FeOB warrants
further direct investigation (e.g., transcriptomics), and despite
the relatively low abundance these MAGs, it is possible that
they have a nontrivial contribution to Fe(II) oxidation and
CO2 fixation in situ. Sideroxydans spp. are microaerophiles
(Neubauer et al., 2002; Emerson andWeiss, 2004) and the low O2

concentrations measured at the CP vent, ca. 0–5% air saturation
(Roden, unpublished data; Wu et al., 2013), are amenable to
growth of these organisms. Dissolved oxygen never reaches
supersaturation in the spring water in the CP flow path nor
within the microbial mats (Pierson et al., 1999; Parenteau et al.,
2014), however higher concentrations of O2 have been measured
in the vent pool, ca. 25% air saturation (Pierson et al., 1999),
which could be toxic to these cells and may have an impact
on their overall abundance. This information, combined with
that from previous studies of the potential for lithoautotrophic
Fe(II) oxidation activity at CP (Trouwborst et al., 2007) as well
as unsuccessful attempts at culturing these organisms (Emerson
and Weiss, 2004), suggests that the majority of Fe(II) oxidation
at CP is due to abiotic oxidation by biogenic O2 produced by
Cyanobacteria. We thus conclude that the vast majority of Fe(II)
oxidation occurs as an indirect result of the production of O2 by
Cyanobacteria in the community, a conclusion that is consistent
with those made previously (Pierson et al., 1999; Pierson and
Parenteau, 2000; Emerson and Weiss, 2004; Trouwborst et al.,
2007; Parenteau and Cady, 2010).
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In addition to indirect Fe(II) oxidation, Cyanobacteria
undoubtedly have the greatest impact on fixed carbon within the
water column, mat, and sediment environments at CP. There
is still some uncertainty as to the ability of Roseiflexus to fix
CO2 (Klatt et al., 2007; van der Meer et al., 2010; Tang et al.,
2011; Tank et al., 2017), and while the abundant MAGs of
other anoxygenic phototrophs, Pelodictyon and Chloroherpeton,
encoded only partial putative CO2 fixation pathways, the rTCA
cycle is known to be operative in the Chlorobi (Frigaard and
Bryant, 2008). Members of these photoautotrophic phyla have
previously been identified at CP (Klatt et al., 2013; Fortney et al.,
2018) and are all likely contributing substantially to the fixed
carbon budget that is in turn supplying the heterotrophic FeRB
community at CP.

It is entirely possible that Sideroxydans, as well as the
rest of the CP community fluctuates temporally or spatially,
however without more data we can merely speculate at this
time. A protracted sampling campaign to assess diurnal and
even seasonal cycles could illuminate whether the abundant
organisms found in this study consistently dominate the
microbial community, or if they are subject to significant
temporal variations. Due to the unsuccessful attempts to study
the FeOB community at CP using culturing (Emerson and
Weiss, 2004) or stable isotope probing techniques (Fortney et al.,
unpublished results), future investigations will almost certainly
require culture-independent techniques (e.g., transcriptomics)
to measure levels of abundance and activity of the Fe cycling
microbial community at CP.

Comparison of CP to Other Circumneutral
Fe-Rich Seep/Spring Environments
In many ways CP resembles other circumneutral-pH Fe seep
(Haaijer et al., 2008; Blöthe and Roden, 2009; Roden et al.,
2012) and Fe-rich spring-like environments (Hegler et al.,
2012; Ward et al., 2017), where Fe(II)-rich subsurface fluids
contact atmospheric oxygen, resulting in the accumulation of
Fe(III) oxide deposits. The results of our incubation studies and
metagenomic investigations are consistent with other studies
that have demonstrated the potential for such oxide deposits to
serve as electron acceptors for FeRB (Emerson and Revsbech,
1994; Haaijer et al., 2008; Blöthe and Roden, 2009; Hegler et al.,
2012; Roden et al., 2012). However, a notable characteristic that
sets CP apart from these other ecosystems is the absence of
abundant putative FeOB in the spring water near the vent source.
One might attribute this difference to the mildly thermophilic
conditions at the CP vent (ca. 50◦C), which is significantly

warmer than canonical neutrophilic FeOB (e.g., Sideroxydans)
habitats (Emerson et al., 2013). However, Sideroxydans-related
sequences have been identified in a Japanese thermal spring (ca.
45◦C) similar to CP (Ward et al., 2017). The extent to which
these ecosystems are exposed to direct sunlight, and therefore
the presence or absence of phototrophs (e.g., Cyanobacteria),
may have a pronounced effect on the Fe-oxidizing microbial
community. Cyanobacteria are absent from the Jackson Creek
Fe seep environment in Indiana where tree canopy cover
prevents abundant growth of phototrophic microorganisms, and
the main O2 input is from the atmosphere (Roden et al.,
2012). In contrast, CP is fully exposed and hosts an abundant
phototrophic community comprised of Cyanobacteria, Chlorobi
and Chloroflexi in both microbial mats and planktonic phases
(Parenteau and Cady, 2010; Supplementary Figure 4). In this
way CP is analogous to other Fe-rich spring systems in that the
Cyanobacteria mat communities are spatially segregated to the
margins of the vent pool (Hegler et al., 2012) and flow path
further downstream (Ward et al., 2017).

Ultimately, it is a combination of factors (e.g., flow
rate, insolation, temperature, oxygen saturation) in these
circumneutral-pH Fe-rich ecosystems that control microbial
community composition, and therefore the Fe redox cycling
metabolic pathways that are present and active in each of these
environments. The reason for the diminished role of FeOB in
the CP vent pool water column is not clear at this time. Further
analysis of this hot spring and other Fe-rich seep/spring-like
environments is needed to resolve these differences.
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