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Plant viruses are still one of the main contributors to economic losses in agriculture.
It has been estimated that plant viruses can cause as much as 50 billion euros loss
worldwide, per year. This situation may be worsened by recent climate change events
and the associated changes in disease epidemiology. Reliable and early detection
methods are still one of the main and most effective actions to develop control
strategies for plant viral diseases. During the last years, considerable progress has
been made to develop tools with high specificity and low detection limits for use in
the detection of these plant pathogens. Time and cost reductions have been some
of the main objectives pursued during the last few years as these increase their
feasibility for routine use. Among other strategies, these objectives can be achieved
by the simultaneous detection and (or) identification of several viruses in a single
assay. Nucleic acid-based detection techniques are especially suitable for this purpose.
Polyvalent detection has allowed the detection of multiple plant viruses at the genus
level. Multiplexing RT polymerase chain reaction (PCR) has been optimized for the
simultaneous detection of more than 10 plant viruses/viroids. In this short review, we
provide an update on the progress made during the last decade on techniques such
as multiplex PCR, polyvalent PCR, non-isotopic molecular hybridization techniques,
real-time PCR, and array technologies to allow simultaneous detection of multiple
plant viruses. Also, the potential and benefits of the powerful new technique of deep
sequencing/next-generation sequencing are described.

Keywords: multiplex, polymerase chain reaction, molecular hybridization, microarrays, polyprobes, next-
generation sequencing, plant viruses, viroids

INTRODUCTION

Plant viruses and viroids are still a major concern in modern agriculture. They cause substantial
economic losses in many important crops, especially those for which no virus-resistant varieties
are available. Thus, early detection of these pathogens is still one of the main ways to control
the development of the disease. Serology-based methods for virus detection have contributed
significantly to evaluation of the sanitary status of these crops during the last 30 years and are
still the methods of choice for a large number of laboratories involved in certification schemes
(López et al., 2003; Boonham et al., 2014). The advent of nucleic acid-based technologies has
allowed improving sensitivity to limits below the potential pathogenic thresholds solving some
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of the challenges posed by the need for specific and sensitive
detection of plant viruses and viroids (Lopez et al., 2009).
One of the most important challenges in plant virus/viroid
diagnosis during the last decade has been the implementation
of polyvalent and/or multiplex detection methods as these
contribute to cost reductions, increased efficiency, and routine
use (James et al., 2006). Different approaches, based on different
biochemical principles, can be used to detect simultaneously
multiple plant viruses or viroids including the following: (i)
multiplex or polyvalent polymerase chain reaction (PCR), (ii)
molecular hybridization including array techniques, and (iii)
next-generation sequencing (NGS) technologies. The latter is
revolutionizing the way plant virus diagnosticians are addressing
the identification and characterization of new viruses and viroids
and is having a profound impact on plant pathology in general
(see Barba et al., 2014; Massart et al., 2014; Wu et al., 2015
for comprehensive reviews of NGS). However, PCR-based and
molecular hybridization methods are still used frequently in most
diagnostic laboratories due to years of validation, knowledge
of their specificity and sensitivity, ease of implementation, and
relatively low cost. In this short review, we update the progress
made during the last 12 years on the multiplex or broad-spectrum
detection of plant viruses and viroids.

MOLECULAR HYBRIDIZATION

This technique is based on the complementarity of base pairs
of nucleic acids that results in a stable hybrid formed by part
(or the totality) of the nucleic acid sequence of the pathogen to
be detected (target molecule), and the labeled complementary
sequence (probe). Probes can be synthesized in the form of
RNA (riboprobes) or DNA (DNA probes) molecules. Most plant
viruses and all viroids have RNA as their genetic material. Since
RNA–RNA hybrids are more stable than RNA–DNA or DNA–
DNA hybrids and, consequently, more stringent conditions
can be used with riboprobes detecting pathogenic RNAs, it is
not surprising that riboprobes are the most frequent probes
used in phytodiagnosis. In fact, molecular hybridization as
a diagnostic tool in plant virology was first applied for the
detection of viroids (Owens and Diener, 1981) for which no
serological method could be used due to the lack of any protein
component in their structural constituents. Subsequently, the
technique was used for the detection of plant viruses (Garger
et al., 1983; Maule et al., 1983). The stability of the resultant
hybrid, and therefore the technical reliability, depend on both
electrostatic and hydrophobic forces, which in turn depend on
the reaction conditions such as temperature, salt concentration,
and length of the probe, among other factors. Non-radioactive
probes can detect RNA target molecules to the femtomole level
when properly prepared and quantified. Detailed procedures
for the synthesis of the labeled probe, sample preparation,
hybridization, and detection have been described in previous
reviews (e.g., Hull, 1993; Pallás et al., 1998, 2017; Mühlbach
et al., 2003). Molecular hybridization has an intermediate
sensitivity level between serological and PCR-based methods
but maintains the user friendliness of the former and lacks

the main disadvantages of the latter (higher possibility of false
positives and contamination). It is not surprising that today
more and more companies are increasingly offering molecular
hybridization-based tests among their services to detect plant
pathogens. As yet though there is no industry standard in terms of
the format used. Although molecular hybridization is considered
a very robust and reliable procedure, it is not exempt of some
weaknesses. For instance, in some pathogen/host combinations,
spurious hybridization signals can be observed due to host
RNAs with sequence similarity with the plant virus/viroid to be
detected (e.g., Cañizares et al., 1999). The potential false positives
can be eliminated through incubation of the membranes with
RNase at high ionic strength after hybridization. When molecular
hybridization is applied in a tissue printing format, probes can
bind to host proteins causing false positive signals as observed for
the detection of peach latent mosaic viroid (PLMVd) in peach
samples (WenXing et al., 2009). An extra step for removing
proteins should be included to avoid inaccurate results (WenXing
et al., 2009).

Remarkably, molecular hybridization can be easily adapted to
simultaneously detect different viruses and/or viroids in a single
hybridization assay (James et al., 2006). This can be addressed
by mixing in the same probe solution different DNA or RNA
probes or by synthesizing a unique probe that harbors in tandem
the corresponding partial RNA (riboprobes) or DNA (DNA
probes) complementary sequences to the plant viruses/viroids to
be detected.

Probe Mix
The first molecular hybridization approach used to detect several
viruses at the same time involved the mixture of different
probes, each specific for a different target, in the same assay.
Probe mixtures have been successfully applied to phytosanitary
certification of tomato in Italy (Saldarelli et al., 1996), to
the simultaneous detection of five viruses affecting carnation
(Sánchez-Navarro et al., 1999), three ilarviruses affecting stone
fruit trees (Saade et al., 2000), two viruses affecting geranium
plants (Ivars et al., 2004), and of 10 artichoke viruses (Minutillo
et al., 2012) (Table 1). In all these cases, probes (DNA or RNA)
were mixed in the hybridization solution and reliably detected
all target viruses, with high specificity and identical sensitivity to
that obtained using individual probes. The main disadvantage of
this approach is that mixtures of many riboprobes can result in
undesirable background that can make the results indecipherable.
Treating the membranes with RNase A after the washing steps
can overcome, at least in part, this drawback (Sánchez-Navarro
et al., 1999). In addition, this disadvantage can be totally
overcome by the use of a unique probe, polyprobe, containing
in tandem several partial sequences of different viruses and/or
viroids (see next section). A mixture of two DNA probes has
been recently used that allowed the simultaneous visualization of
two Citrus tristeza virus genotypes in vascular and non-vascular
tissues of citrus trees (Bergua et al., 2016). This approach can be
of great interest to study the basis for the interactions between
different components of virus populations and for getting a
deeper knowledge of the superinfection exclusion phenomenon
at the cellular level.
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Polyprobes
This approach, developed in 2005 by Herranz et al. (2005)
uses a unique polyprobe for the polyvalent detection of
different pathogens in a single assay. A polyprobe results from
the cloning, in tandem, of complementary partial sequences,
usually between 200 and 400 nucleotide residues, of different
viruses/viroids after the promoter region of a RNA polymerase.
After digestion with the appropriate restriction enzyme, a long
transcript is synthesized in the presence of a non-radioactive
precursor. Hybridization and immunological detection steps
have been previously explained in detail (e.g., Pallás et al.,
1998; Mühlbach et al., 2003) and will not be described
here.

Polyprobes have been applied successfully for the detection
of an array of combinations of plant viruses and/or viroids
affecting different crops (Table 1). Polyprobes have been
developed and used to detect four viroids affecting citrus trees
(Cohen et al., 2006), the six main viruses infecting tomato
(Aparicio et al., 2009), six viruses affecting pome and stone
fruits (Lin et al., 2011), four viroids affecting grapevine (Zhang
et al., 2012), eight viroids affecting ornamentals and vegetables
(Torchetti et al., 2012), eight viroids infecting coleus plants
(Jiang et al., 2013), and four viruses of apple and pear trees
(Fajardo and Nickel, 2014). Remarkably, this technology has
great potential for simultaneous multipathogen detection. Using
polyprobes, Peiró et al. (2012) were able to detect eight viruses
and two viroids infecting stone fruit trees. In addition, three
pathogens with very different life cycle styles (bacteria, virus,
and viroid) were simultaneously detected in a single assay
in tomato plants (Zamora-Macorra et al., 2015). In general,
the polyprobes permit the detection of several pathogens with
comparable detection limit to the individual probes, although
with long polyprobes (e.g., 10 probes in tandem or more) a
reduction of the hybridization temperature is required (e.g., Peiró
et al., 2012). In our hands, up to 18-mer polyprobes (detecting
13 viruses plus 5 viroids of grapevine; Sánchez-Navarro et al.,
2018b) gave clear and reliable results without loss of sensitivity.
Recently, a unique polyprobe with the capacity to detect all
members of the Potyvirus genus was developed (Sánchez-Navarro
et al., 2018a). The authors observed that sequences of the
different potyvirus species showing a percentage similarity of
68% or higher, could be detected with the same probe by
hybridizing at 50–55◦C, with a detection limit of picograms of
viral RNA comparable to the specific individual probes. The
developed polyprobe contains seven different 500-nt fragments
of a conserved region of the NIb gene and was able to detect all
32 potyviruses assayed with no signal in the healthy tissue. This
assay is being considered as a genus probe for general potyvirus
detection.

Arrays
Another broad-spectrum approach for parallel detection
of multiple plant viruses relies on the DNA microarray
technology. The technical details as well as the historical
concept and development of DNA microarrays have been
described exhaustively in previous reviews (Hadidi et al.,

2004; Boonham et al., 2007; Zhu et al., 2017). Due to the
high-throughput nature of the array technology, this approach
was expected to have, in principle, a great potential for
broad-spectrum diagnostics of plant viruses and viroids.
However, the application of this technology has been limited
so far. This is mainly due to the relative complexity of the
different steps required to accomplish implementation of the
test. This approach was first applied for the detection and
identification of six potato viruses (Boonham et al., 2003;
Bystricka et al., 2003, 2005) and four species of selected cucurbit-
infecting tobamoviruses (Lee et al., 2003). An oligonucleotide
microarray for the detection of some fruit tree viruses was
designed and its theoretical detection limit was assessed
(Lenz et al., 2008). The authors concluded that the sensitivity
of detection is, among others, influenced by the proximity
of the probe hybridization site to the unlabeled end of the
targets. Wei et al. (2009) developed a 25-mer oligonucleotide
microarray targeting four distinct potyviruses that included
85 probes designed from conserved and variable sequence
regions of the nuclear inclusion b (NIb) gene, RNA-dependent
RNA polymerase (RdRp) gene, coat protein (CP) gene,
and the 3′ untranslated region (UTR), specific to the four
targeted potyviruses at both species and strain levels. Using
“Combimatrix” platform 40-mer oligonucleotide probes,
Tiberini et al. (2010) designed a DNA microarray chip for
screening 10 major economically important tomato viruses and
later on this platform was optimized to include six pospiviroid
species (Tiberini and Barba, 2012). This same platform was
used to develop an oligonucleotide-based microarray for
detection of multiple artichoke viruses (Tiberini and Barba,
2013). This diagnostic array demonstrated its applicability for
routine diagnostic use in artichoke germplasm as it detected
simultaneously 14 viruses in one single hybridization event.
Two oligonucleotide microarrays have been developed for
detecting grapevine viruses. Engel et al. (2010) used a 70-mer
microarray containing 570 unique probes designed against
highly conserved and species-specific regions of 44 grapevine
viral genomes, whereas Abdullahi et al. (2011) used a range
between 27 and 75 nucleotides in length for oligonucleotides
and detected eight nepoviruses, two vitiviruses, and one
each of closterovirus, foveavirus, ampelovirus, maculavirus,
and sadwavirus. Nicolaisen (2011) developed a microarray
with 150 probes potentially capable of detecting 52 viruses
from a broad range of genera. Forty nine of the 52 species
tested were identified correctly to species level. Finally,
Zhang et al. (2013) designed a microarray with a minimal
number of probes that can detect a wide spectrum of all
8 reported viroid genera including 37 known plant viroid
species.

Microarrays can be used not only for diagnostics but
for phylogenetic or taxonomic purposes. An oligonucleotide-
based microarray was developed to detect and differentiate
cucumber mosaic virus (CMV) serogroups and subgroups
(Deyong et al., 2005). A long 70-mer oligonucleotide DNA
microarray was developed that was capable of simultaneously
detecting and genotyping plum pox virus strains (Pasquini et al.,
2008).
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TABLE 1 | Polyvalent molecular hybridization assays for the detection of plant viruses and viroids.

Probe type Crop applied or virus type No. of targets Nature of targets Reference

Mixed riboprobes Tomato 6 Viruses Saldarelli et al., 1996

Mixed riboprobes Carnation 5 Viruses Sánchez-Navarro et al., 1999

Mixed riboprobes Stone fruits 3 Viruses Saade et al., 2000

Mixed riboprobes Geranium 2 Viruses Ivars et al., 2004

Mixed DNA probes Artichoke 10 Viruses Minutillo et al., 2012

Polyprobe Stone fruits 6 Viruses Herranz et al., 2005

Polyprobe Citrus 3 Viroids Cohen et al., 2006

Polyprobe Tomato 6 Viruses Aparicio et al., 2009

Polyprobe Pome and stone fruits 6 Viroids Lin et al., 2011

Polyprobe Stone fruits 10 8 Viruses + 2 viroids Peiró et al., 2012

Polyprobe Grapevine 4 Viroids Zhang et al., 2012

Polyprobe Ornamentals and vegetables 8 Viroids Torchetti et al., 2012

Polyprobe Tomato 3 1 virus + 1 viroid + 1 bacteria Zamora-Macorra et al., 2015

Polyprobe Coleus 8 Viroids Jiang et al., 2013

Polyprobe Apple and pear 4 Viruses Fajardo and Nickel, 2014

Polyprobe Grapevine 18 13 Viruses + 5 viroids Sánchez-Navarro et al., 2018b

Polyprobe Potyvirus genus 32 Viruses Sánchez-Navarro et al., 2018a

Arrays Potato 6 Viruses Boonham et al., 2003; Bystricka et al., 2003

Arrays Cucurbits 4 Viruses Lee et al., 2003

Arrays Fruit trees 7 Viruses Lenz et al., 2008

Arrays Potyviruses 4 Viruses Wei et al., 2009

Arrays Tomato 10 Viruses Tiberini et al., 2010

Arrays Tomato 16 Viruses + viroids Tiberini and Barba, 2012

Arrays Artichoke 14 Viruses Tiberini and Barba, 2013

Arrays Grapevine 44 Viruses Engel et al., 2010

Arrays Grapevine 15 Viruses Abdullahi et al., 2011

Arrays General 52 Viruses Nicolaisen, 2011

Arrays General 37 Viroids Zhang et al., 2013

MULTIPLEX PCR

Multiplex PCR (DNA targets) and multiplex RT-PCR (mRT-
PCR) (RNA targets) are quick, reliable, and cost-effective
methods that have been used successfully for detecting a variety of
pathogens simultaneously in a single assay. Whereas uniplex RT-
PCR is potentially expensive and resource intensive (requiring
time and resources to test for each virus or viroid separately),
mRT-PCR incorporates different sets of specific primers for two
to more targets in one reaction tube and enables simultaneous
amplification of different target nucleic acids in a single test. This
reduces material costs, labor, and time. It is indeed possible also
to amplify simultaneously several regions of a target virus thereby
improving the reliability of detection. The main approach for
this purpose is the mRT-PCR which uses specific or degenerative
primers that amplify and allow identification of the size and
species-specific amplicons by agarose gel analysis. This approach
represents 71.8% of all multiplex detection reports since 2005
(Figure 1), allowing the simultaneous detection of as many as
six (Park et al., 2005; Cating et al., 2015), seven (Roy et al.,
2005; Tao et al., 2012; Kwon et al., 2014; Zhao et al., 2015),
eight (Sánchez-Navarro et al., 2005; Deb and Anderson, 2008;
Kwak et al., 2014), and up to nine (Gambino and Gribaudo,
2006; Gambino, 2015) pathogens. However, the sensitivity of this

technique is influenced by the number of targets to be detected
(Sánchez-Navarro et al., 2005; Tao et al., 2012; Kwon et al.,
2014; Nam et al., 2015), mainly due to the number of different
primer pairs instead of the total amount of primer present in
the cocktail. Sánchez-Navarro et al. (2005) showed that the use
of a cocktail of five primer pairs do not affect the detection
limit of mRT-PCR, while seven pairs does affect the detection
limit. In agreement with this observation, 91.4% of the multiplex
reactions reported since 2005 describe the detection of two to
five pathogens (Figure 1). Some of these limitations have been
overcome by improving the quality of the nucleic acid extraction
procedures, the products obtained and/or different modalities of
the PCR technology. Magnetic nanobeads (Deng et al., 2014),
dual priming oligonucleotide (DPO) primers (Kwon et al., 2014),
or a nested reaction (Foissac et al., 2005; Maliogka et al., 2007;
Papayiannis et al., 2011) have all contributed to increased levels
of specificity and sensitivity.

Other limitations of the mRT-PCR reaction are the use of the
agarose gel-based detection for discriminating the size-specific
amplicons with its putative optical error and the confirmation
that the amplified DNA fragments correspond to the target
sequences. Some alternative approaches have eliminated the use
of agarose gels such as the use of species-specific biotinylated
probes in streptavidin-coated microtiter wells (Charoenvilaisiri
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FIGURE 1 | References of multiplex detection assays in the period
2005–2018. Number of references that use RT-PCR (yellow), real-time
RT-PCR SYBR (green), and real-time RT-PCR TaqMan (light green) are
represented against the number of pathogens detected by these techniques.
Source used was the Web of Science (all database) and the parameters used
for the searching were: (multiplex or simultaneous or polyvalent) and detection
and (plant virus or viroid).

et al., 2014) or, more recently, the use of a platform for
multiplexed nucleic acid detection such as the microsphere-
based flow cytometric system developed by Luminex (Austin,
TX, United States). The Luminex xMAP system incorporates
5.6 µm polystyrene microspheres that are internally dyed with
two spectrally distinct fluorochromes. Using precise amounts of
each of these fluorochromes, an array is created consisting of 100
different microsphere sets with specific spectral addresses. Each
microsphere set can possess a different reactant on its surface
(e.g., a unique anti-MagPlex-TAG oligonucleotide sequence).
Because microsphere sets can be distinguished by their spectral
addresses, they can be combined, allowing up to 100 different
targets to be measured simultaneously in a single reaction vessel.
A third fluorochrome coupled to a reporter molecule quantifies
the biomolecular interaction that has occurred at the microsphere
surface. Microspheres are detected individually in a rapidly
flowing fluid stream as they pass by two separate lasers in
the Luminex R© 100TM analyzer. Thousands of microspheres per
second could be detected, resulting in an analysis system capable
of analyzing and reporting up to 100 different reactions in a single
reaction vessel in just a few seconds per sample. The LUMINEX
bead-based array has been applied for the multiple detection
of begomovirus (van Brunschot et al., 2014a), pospiviroids (van
Brunschot et al., 2014b), and lily viruses (Lim et al., 2016).
This luminex approach implies the amplification of the target
sequences by mRT-PCR reaction, which could be a bottleneck if
many primers should be used, as commented above. Although
this technology has been successfully used to detect related
pathogens by using universal primers in the RT-PCR reaction
(e.g., begomovirus, pospiviroids), it now remains to know if
this technology could be adjusted to detect many unrelated
pathogens.

Another alternative to the analysis of the amplicons by
agarose gel-based detection, is the multiplex real-time PCR in
which, the amplified fragments are detected directly during

the reaction by using non-probe based fluorescent dyes such
as SYBRGreen or EvaGreen (Zipper et al., 2004; Mao et al.,
2007) or specific fluorescent probes such as TaqMan R© probes
(Livak et al., 1995), molecular beacons (Tyagi and Kramer, 1996),
or the minor groove binding (MGB) probes (de Kok et al.,
2002). Real-time PCR allows quantification of the pathogen
and reduced significantly the detection limit to as little as
a few molecules (Torres et al., 2005; Mortimer-Jones et al.,
2009; Tuo et al., 2014; Huo et al., 2015). However, despite
the clear advantages of the real-time procedure, the references
of multiplex detection assays based on this technique, either
using non-probe fluorescent days or fluorescent probes, represent
only 28.1% of such test since 2005 (Figure 1). The tests have
been adapted to allow the simultaneous detection of two to
five pathogens. The problems derived from the necessity of
discriminating between different labeled amplicons by melting
curve analysis or the availability of fluorescent dyes with
overlapping excitation/emission spectra, have hampered the
number of pathogens detected by multiplex real-time PCR.
The few multiplex real-time PCR assays that use melting curve
analysis based on the SYBR Green I, detect three targets at most,
due to the shortcomings of the dye (Guion et al., 2008). This
problem has been overcome by using the EvaGreen or SYTO
dyes (Eischeid, 2011), which are less inhibitory towards PCR and
provide better peak resolution, allowing the detection of up to
five viruses (Bester et al., 2012; Cheng et al., 2013; Aloisio et al.,
2018).

Multiplex detection of three or more targets by fluorescent
probes is influenced by the availability of dyes with compatible
excitation/emission spectra. Simultaneous detection of four
pathogens has been reported for four retroviruses (Vet et al.,
1999) or four potato (Agindotan et al., 2007; Mortimer-Jones
et al., 2009) or cassava (Otti et al., 2016) viruses. In addition,
this technology was adapted for the detection of five grapevine
viruses, although it was necessary to perform a compensation
color assay, which aimed to minimize the emission interference
among the five fluorescent dyes (Lopez-Fabuel et al., 2013).

Multiplex RT-PCR tests have also been developed to detect all
members of a specific genus by designing degenerative or specific
primers that target conserved regions (Table 2). Obviously,
a previous step for using this approach is the identification
of conserved genomic regions that can be targeted by the
amplification primers. Thus, this procedure has allowed the
detection of virus species in the genera Allexvirus (Kumar
et al., 2010; Majumder and Baranwal, 2014), Ilarvirus (Maliogka
et al., 2007), Bromovirus and Cucumovirus (Seo et al., 2014),
Begomovirus (van Brunschot et al., 2014a), Potyvirus (Zheng et al.,
2010), and members of the viroid genus Pospiviroids (Botermans
et al., 2013; Luigi et al., 2014; Olivier et al., 2014; van Brunschot
et al., 2014b) or Trichovirus, Capillovirus and Foveavirus (Foissac
et al., 2005), or viroids and phytoplasmas (Malandraki et al.,
2015). In the majority of cases, the species-specific identification
was performed by restriction fragment length polymorphism
(RFLP) analysis or by sequencing the corresponding amplicons.
However, the introduction of the Luminex technology opens an
interesting tool to allow the direct identification of the pathogen
without any further analysis (van Brunschot et al., 2014a,b).

Frontiers in Microbiology | www.frontiersin.org 5 September 2018 | Volume 9 | Article 2087

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02087 September 6, 2018 Time: 19:33 # 6

Pallás et al. Polyvalent Detection of Viruses/Viroids

TABLE 2 | Polyvalent PCR assays for the detection of plant viruses and/or viroids at the genus level.

Genus Primers Region Amplicon (bp) Species identification Reference

Ilarvirus Degenerated RNA2/RdRp gene 381 Amplicon sequencing/RFLP Maliogka et al., 2007

Pospiviroid Degenerated 270 Luminex van Brunschot et al., 2014b

Pospiviroid Specific/several
primers

Terminal conserved region (TCR)
and terminal right domain (TR)

170–180 TaqMan probe only for genus Botermans et al., 2013

Bromovirus/
cucumovirus

Degenerated with
adaptor sequences

RNA1 337 Amplicon sequencing Seo et al., 2014

Pospiviroid Degenerated 200 Amplicon sequencing Olivier et al., 2014

Pospiviroid Degenerated The terminal left and the
pathogenesis domains

300 Amplicon sequencing/RFLP Luigi et al., 2014

Begomovirus Degenerated C3 ORF 290 Luminex van Brunschot et al., 2014a

Potyvirus Degenerated NIb 350 Amplicon sequencing Zheng et al., 2010

Trichoviruses,
capilloviruses,
foveaviruses

Degenerated RdRp 362 Amplicon sequencing Foissac et al., 2005

Phytoplasmas Specific 16S rDNA 200 TaqMan only for phytoplasmas Christensen et al., 2013;
Malandraki et al., 2015

Allexivirus Degenerated 3′-end of ORF6 183–192 Amplicon sequencing Kumar et al., 2010; Majumder
and Baranwal, 2014

MULTIPLEXING POTENTIAL OF
NEXT-GENERATION SEQUENCING

Next-generation sequencing, known also as massively parallel
sequencing or deep sequencing, is a powerful technology that
allows the generation of massive amounts of sequence data.
There are various approaches or NGS platforms, each with
different characteristics and with the potential in some cases
to generate as many as three billion reads per run with read
lengths that vary from approximately 35 to 800 nucleotides
depending on the platform (Barzon et al., 2011; Buermans and
den Dunnen, 2014; Wu et al., 2015; Jones et al., 2017; Rott
et al., 2017). The technology has been proposed as a valuable
tool for diagnostic virology (Adams et al., 2009; Barzon et al.,
2011). NGS is highly sensitive and has the potential to detect the
full spectrum of viruses infecting a given host, including known
and even unknown viruses (Barzon et al., 2011; Villamor et al.,
2016; Rott et al., 2017; Jo et al., 2018). The broad-spectrum and
unbiased nature of the technology makes it a valuable tool for
plant-based metagenomics, allowing the simultaneous screening
and detection of populations of graft transmissible agents that
include viruses (RNA and DNA), viroids, and phytoplasma in
a sample (Adams et al., 2009; Kreuze et al., 2009). Jones et al.
(2017) indicated that the multiplexing potential of NGS (RNA-
seq) might allow a researcher to answer the question of how
many different viruses are present in a crop plant. NGS even
has the power to detect plant viruses that were not detected
using current and standard tools that were based on biological,
serological, and molecular tests (Villamor et al., 2016). See Jones
et al. (2017) for an excellent review describing the use of RNA-
seq for the detection of multiple viruses in each of various host
plants.

Kreuze et al. (2009) used NGS to simultaneously
detect/identify the viruses sweet potato feathery mottle virus
(SPFMV, family Potyviridae), and sweet potato chlorotic stunt

virus (family Closteroviridae). They targeted small RNAs (sRNA,
20–24 nt) in total RNA extracts from co-infected plants. Using
this approach, they were able to assemble the complete genome
of SPFMV and detected unexpectedly also two new and distinct
badnaviruses (family Caulimoviridae) and a new mastrevirus
(family Geminiviridae). This approach allowed the simultaneous
detection of viruses with RNA and DNA genomes and viruses
from distinctly different families. Verdin et al. (2017) used also a
similar strategy targeting small RNAs from a range of ornamental
plants, with pooling of samples, to detect (+) and (–) ssRNA
viruses, dsRNA viruses, dsDNA viruses, an ssDNA virus, and
a viroid. NGS allows simultaneous detection and identification
of viruses belonging to different families and genera, but also
multiple isolates or variants of the same virus co-infecting a
single host. James et al. (2017) detected, by NGS analysis of
total RNA extracted from a single apple plant, an infection
complex that included apple chlorotic leaf spot virus (ACLSV,
genus Trichovirus) and apple stem pitting virus (ASPV, genus
Foveavirus). Five isolates/variants of ACLSV as well as 14 definite
(but perhaps as many as 29) isolates/variants of ASPV were
identified, all in a single sample. Rott et al. (2017) described the
detection of 12 distinct genotypes of ASPV in sample #103 of
their analyses. This shows the incredible ability of NGS to allow
simultaneous detection and differentiation even of similar and
closely related genomic sequences, which is not easily achieved
with other diagnostic tools. Multiplex detection that allows
accurate identification of variants or isolates of a single virus
present in a sample may be desirable in some circumstances
as this may have biological significance, influencing disease
symptoms (James et al., 2017).

The nucleic acid template used for NGS analysis influences
the reliability of simultaneous and broad-spectrum detection
of plant viruses. Total RNA and small RNAs are effective
targets for broad spectrum and even simultaneous detection
of DNA viruses, RNA viruses and viroids (Kreuze et al., 2009;
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Wylie et al., 2012; Massart et al., 2014; Zhang et al., 2014;
Wu et al., 2015; Verdin et al., 2017). Wu et al. (2015) suggest that
only NGS analysis of total small RNAs is suitable for simultaneous
detection of DNA viruses, RNA viruses, and viroids. For broad-
spectrum virus detection Wylie et al. (2012) used a strategy of
pooling total RNA from several plants, targeting polyadenylated
RNA by using oligo-d(T) primers and was able to simultaneously
detect by NGS 16 virus species belonging to various genera.
Double-stranded (ds) RNA, the replicative form of RNA viruses
(Dodds et al., 1984), as a template for NGS may be limited
in that it may allow only reliable detection of RNA viruses
and viroids (Massart et al., 2014). However, in comparing
total nucleic acid extracts (TNA) to dsRNA for the analysis of
infected grapevine, Al Rwahnih et al. (2009) obtained 54,605
viral hits from the dsRNA template versus 1,275 viral hits for
the TNA template. If the targets for detection are known RNA
viruses, perhaps the use of dsRNA for analysis will improve
sensitivity. Jo et al. (2018) indicated that mRNA targets enriched
by oligo dT were suitable for the detection and identification
of different types of viral genomes including DNA viruses, ds
RNA viruses, and viroids. The authors suggested that (U)-rich
regions in viruses without a poly-A tail can be amplified by
oligo dT.

As with any technology, there are concerns and/or limitations
associated with the use of NGS as a diagnostic tool for plant
viruses. There is a need for suitable bioinformatics tools and
expertise to extract the required information from the enormous
amounts of data generated (Wu et al., 2015; Visser et al., 2016;
Roossinck, 2017). Small or low-resourced research groups may
not always have access to bioinformaticians or access to a
bioinformatics facility and this may influence their ability to
utilize effectively the technology (Jones et al., 2017). The high
sensitivity of NGS makes it susceptible to cross contamination
including contamination with samples containing mycoviruses
and insect viruses (Rott et al., 2017). To minimize the occurrence
of false positives by NGS analysis, it is proposed that at
least two different approaches be used for virus detection and
identification (Rott et al., 2017; Jo et al., 2018). On the other
end of the sensitivity spectrum, Jo et al. (2018) reported that
NGS did not detect viruses or viroids in low titer that could
be detected by RT-PCR. There is the possibility that virus
sequences detected by NGS may be the remnants of sequences
incorporated into host genomes (Martin et al., 2016); also, the
biological significance of novel viruses or in some cases partial
sequences detected need to be determined. There is a need
for validation data, for more information on the sensitivity
of NGS-based detection, compared to established diagnostic
techniques such as real-time RT-PCR, and the definition of
thresholds for a positive detection are needed (Massart et al.,
2014).

In their review of various publications describing NGS
analysis for plant virus detection, Jones et al. (2017) identified
a number of issues, at least two of which have special
significance for reliable diagnosis. These include the detection
of different viruses or levels of viruses associated with
different parts of the plants and the fact that different
analytical tools can give different results for viruses being

detected. Consistent and appropriate sampling and the choice
of appropriate analytical tools used are crucial therefore for
obtaining consistent and perhaps reliable results by NGS
analysis.

In attempts to simplify the analysis of the enormous amount
of NGS data generated, an e-probe based approach was utilized
by Stobbe et al. (2014) and Visser et al. (2016). E-probes are
pathogen-specific sequences that are rigorously assessed for their
specificity and fitness for purpose (Stobbe et al., 2014). When
used to screen 18 NGS data sets generated from dsRNA extracted
from grapevines, e-probe detection using the program Truffle
for data analysis (with e-probes developed for 55 known viruses)
was as sensitive as a de novo assembly-based NGS data analysis
pipeline. In some cases, e-probe detection seemed to be more
reliable (Visser et al., 2016).

Cost and complexity are major impediments to the
implementation of molecular techniques, but simultaneous
detection of various pathogens contributes to cost reduction
(Martin et al., 2000; James et al., 2006). The potential to pool
samples from different plants, even different plant species,
for NGS analysis (Wylie et al., 2012; Villamor et al., 2016;
Rott et al., 2017; Verdin et al., 2017) can contribute also to
reductions in the time and costs of diagnostics. Also, NGS has
the potential to identify novel plant pathogens that may be the
causal agents of diseases of unknown etiology that otherwise
could not be determined (Kreuze et al., 2009; Barba and Hadidi,
2015; James and Phelan, 2017). Any successful implementation
of a new technology for routine use for reliable pest diagnosis
requires an understanding of the limitations of the technique.
Issues such as the uneven distribution of viruses in plants
(Jones et al., 2017) and the fact that RT-PCR was reported to
be more reliable than NGS in some cases where viruses or
viroids were in low titer (Jo et al., 2018) might indicate the
need for caution in implementation and interpretation of NGS
results.
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