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We aimed to better understand resistome and virulome patterns on animal and process-
area surfaces through a pig slaughterhouse to track possible contamination within the
food production chain. Culture-dependent methods revealed high levels of microbial
contamination, corresponding to mesophilic and pathogenic bacteria on both the animal
and process-area surfaces mainly in the anesthesia (AA and AS) zone followed by
“scorching and whip” (FA and FS) zone and also in the end products. To evaluate the
potential risk of antibiotic resistance and virulence determinants, shotgun metagenomic
DNA-sequencing of isolates from selected areas/products uncovered a high diversity
and richness of antibiotic resistance genes (ARGs): 55–62 genes in the anesthesia
area (AA and AS) and 35–40 in “animal-arrival zone” (MA and MS). The “scorching
and whip” (FA and FS) area, however, exhibited lowered abundance of ARGs (1–6),
indicating that the scalding and depilating process (an intermediate zone between
“anesthesia” and “scorching and whip”) significantly decreased bacterial load by 1–3
log10 but also diminished the resistome. The high prevalence of antibiotic-inactivating
enzyme genes in the “animal-arrival zone” (60–65%) and “anesthesia” area (56%) were
mainly represented by those for aminoglycoside (46–51%) and lincosamide (14–19%)
resistance, which did not reflect selective pressures by antibiotics most commonly used
in pig therapy—tetracyclines and beta-lactams. Contrary to ARGs, greater number of
virulence resistance genes were detected after evisceration in some products such as
kidney, which reflected the poor hygienic practices. More than 19 general virulence
features—mainly adherence, secretion system, chemotaxis and motility, invasion and
motility were detected in some products. However, immune evasion determinants were
detected in almost all samples analyzed from the beginning of the process, with highest
amounts found from the anesthesia area. We conclude that there are two main sources
of contamination in a pig slaughterhouse: the microorganisms carried on the animals’
hide, and those from the evisceration step. As such, focussing control measures, e.g.,
enhanced disinfection procedures, on these contamination-source areas may reduce
risks to food safety and consumer health, since the antibiotic and virulence determinants
may spread to end products and the environment; further, ARG and virulence traits can
exacerbate pathogen treatments.
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INTRODUCTION

Antibiotic resistance is a natural phenomenon, ancient, highly
diverse and globally distributed (Hecker et al., 2003; Davies
and Davies, 2010; Pawlowski et al., 2016), which has become
elevated during the antibiotic era. Consequently, the selective
pressure exerted by antibiotics has dramatically increased drug-
resistant bacteria (pathogens and commensals) (Fair and Tor,
2014). The use, misuse and abuse of antibiotics in veterinary,
agriculture and clinical therapy for decades have increased
the prevalence of resistance genes (ARGs), especially the
acquired resistance elements by horizontal gene transfer into
the human and animal microbiomes (Laxminarayan, 2014).
Additionally, these resistance determinants present on mobile
genetic elements have increased the risk of their transfer
between different ecosystems. Despite the increasing concerns
over inappropriate use of antibiotics in veterinary medicine
and food production, slaughterhouse and meat products remain
potential reservoirs of antimicrobial resistant bacteria (ARB)
and antimicrobial resistance genes (Lavilla Lerma et al., 2013,
2014a,b; Zhu et al., 2013). Consequently, ARB and ARGs
can spread to humans throughout the food-supply chain (e.g.,
Antibiotic Resistance from the Farm to the Table, 2014)
by exposure via contaminated animals, meat products, or
natural environment (i.e., air, water, and soil) (Founou et al.,
2016).

As such, the slaughterhouse environment poses as a
potential source and dissemination route for ARGs and
ARB contamination. Several steps in the slaughterhouse
production system could play crucial roles in the transmission
of antimicrobial resistance (AMR) to humans via environmental
interfaces and meat products. Preslaughter conditions (e.g.,
feeding and stabling) can become contaminated via skin and
feces, and adherence features in bacteria such as attachment
and their biofilm formation capacity can enhance the cross-
contamination potential (Koo et al., 2013). Thus, contamination
with antibiotic resistant bacteria may occur, increasing the risk of
antibiotic resistance gene spread during subsequent slaughtering
processes and end products. Within the slaughterhouse, bleeding,
evisceration and other related processes can contaminate
carcasses and equipment, leading to the spread of gut bacteria
(Lavilla Lerma et al., 2013). The gut microbiome often becomes
particularly problematic since they represent a complex
ecosystem and a epicenter of horizontally transferrable resistance
traits between commensals and pathogens (Carlet, 2012), and
as such, they cross-transmit resistant strains between animals
and humans (Leverstein-van Hall et al., 2011; Overdevest
et al., 2011; Economou and Gousia, 2015). On the other hand,
the transfer of antibiotic resistance from human to animals
may also occur due to the some interconnection process
between ecosystems. Further, many commonly used biocides for
disinfection procedures (Chuanchuen et al., 2001; Gilbert et al.,
2002) promote cross-resistance with antibiotics due to their
action on common targets (Lavilla Lerma et al., 2014a,b); thereby
shifting bacteria from having a single resistance trait leading
to the selection of multidrug- or pan-drug resistant bacteria
(Magiorakos et al., 2012).

Advanced molecular technologies, such as metagenomic
sequencing to detect and quantify resistome-virulome of an
entire microbial population (Baquero et al., 2013), allow us to
predict, prevent and manage antibiotic resistance and virulence
determinants in several environments (Noyes et al., 2017). This
remains an excellent methodological approach for determining
types and abundances of ARGs and virulence elements, which can
further provide information about the cumulative proliferation
of antibiotic resistance within a system (Luby et al., 2016).
In this study, shotgun metagenomic sequencing of cultured
isolates from different process-area and animal surfaces, and
the resulting meat products, was conducted to determine the
microbial and the resistome-virulome diversity thorughout a pig
slaugtherhouse in Jaén (Spain). It remains crucial to understand
and localize the focus of resistant and virulent bacteria in
a slaughterhouse to reduced their spread and impact on the
environment.

MATERIALS AND METHODS

Sample Collection and Processing
This study involved sample isolates collected from a local pig
slaughterhouse (Jaén, Spain), which is representative of those
in the region and receives animals from multiple suppliers
and geographic locations. Different samples were collected with
sterile swabs from the animals’ backs (A; or equivalent surfaces)
and also environmental surfaces (S) from the following zones
(Figure 1): “animal arrival” (MA, MS), stabling and corral
showers (CA, CS), anesthesia (AA, AS), “scalding and depilating”
(PA, PS), “scorching and whip” (FA, FS), evisceration (several
samples) and extraction of lard (MNT1, MNT2), “weight and
classification” (BA, BS) and sale (EA, ES). For animal products,
only the surface was swabbed. The samples were immediately
stored and transported to the laboratory under refrigerated
conditions.

Microbiological Analyses of Culturable
Microbiota
The presence of various groups of bacteria throughout
meat production chain were determined from animal and
slaughterhouse surfaces: total aerobic mesophilic bacteria,
Staphylococcus aureus, Listeria monocytogenes, Escherichia coli,
Salmonella sp., pseudomonads and lactic acid bacteria (LAB)
(Lavilla Lerma et al., 2013). Sterile swabs were used to collect
samples (100 cm2) from the selected sites (described above)
being this operation repeated eight times; they were then
immersed each one in 1 ml of sterile saline solution (0.85%;
Scharlab, Barcelona, Spain) and stored at 4◦C for 24 h to
release bacteria from swabs while minimizing growth. Then,
samples (eight replicates) were pooled to provide a representative
microbiota community from each zone, and they were then
serially diluted in sterile saline solution and plated in triplicate
on the following media: Tryptone Soya Agar “TSA” (Scharlab,
Barcelona, Spain) for estimation of total aerobic mesophilic
bacteria, Baid Parker Agar “BPA” (Scharlab, Barcelona, Spain)
for staphylococci, Palcam Agar “PA” (Scharlab, Barcelona, Spain)
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FIGURE 1 | Flowchart of meat chain production in a pig slaughterhouse of Jaeìn. Samples were taken from animal (A) and also environmental (S) surfaces. CL1 and
CL2, multiple transport box samples; CRZ1 and CRZ2, heart surface samples; CRZ-CS, heart box sample; ES1 and ES2, stomach surface samples; ES-CS,
stomach box sample; H1 and H2, liver surface samples; H-CS, liver box sample; R1 and R2, kidney surface samples; R-CS, kidney box sample; MGR1 and MGR2,
lean surface samples; MGR-CS, lean box sample.

for L. monocytogenes, TBX (Sigma-Aldrich, Madrid, Spain) for
E. coli, XLD (Scharlab, Barcelona, Spain) for Salmonella sp.,
King Agar “KA” (Scharlab, Barcelona, Spain) for pseudomonads
(King et al., 1954), “MRSA” (Scharlab) supplemented with 0.4 g/l
sodium azide (Scharlab, Barcelona, Spain) for LAB (Ahn et al.,
2002). Counts from the different inoculated media were obtained
after 48 h of incubation at 37◦C (TSA, BPA, PA, TBX, XLD) and
after 72 h of incubation at 30◦C (MRSA) and 22◦C (KA). Results
were calculated as the mean of three determinations.

Resistome Determination in Pig
Slaughterhouse Throughout Meat
Production Chain
Total DNA Extraction
The pooled saline samples, as previously mentioned,
were used for DNA community analysis. The following
animal/environmental sampls were selected for their microbial
contamination and because they represented slaughterhouse
sufficient processes to gain an image of antibiotic resistance
spread: “animal arrival” (MA and MS), anesthesia (AA from and
AS), “scorching and whip” (chamuscado y flagelado, FA and FS),
evisceration process (kidney R1 and R2; lean MGR1 and MGR2),
and sale (EA and ES) zones. Bacterial samples, following 24 h
incubation at 4◦C, were centrifuged (14000 rpm for 10 min), and
the DNA were extracted using ZymoBIOMICS DNA Miniprep

Kit (Zymo Research, California, United States) according to
the manufacturer’s instructions. Total DNA quantification and
quality were assessed by a NanoDrop 2000 spectrophotometer
(Thermo Scientific). DNA samples were frozen at −80◦C until
required.

Construction of Metagenomic Libraries
Construction of the metagenomic libraries was done using the
Illumina Nextera XT DNA Library Prep Kit (Illumina, Inc.,
San Diego, CA, United States) according to the manufacturer’s
instructions. The resulting DNA was pooled by equivalent
weight. Library sequencing was done in NextSeq 500 platform
(2 × 150 bp read lengths) at Lifesequencing S.L. (Valencia,
Spain). The resulting reads were assembled using SPAdes
program version 3.10. Assembly and annotation were done at
Lifesequencing S.L. (Valencia, Spain). The mean coverage for the
kmer 99 ranged between 1.68 and 6.35.

Antibiotic Resistance Gene Detection
The predicted CDSs (coding DNA sequences) were annotated
using BLAST (Basic Local Alignment Search Tool) against
the CARD’s (Comprehensive Antibiotic Resistance Database)
curated AMR (antimicrobial resistance) database with the aim to
detect antibiotic resistance genes (ARG) using Resistance Gene
Identifier RGI v3.2.1 (as part of CARD tools). Furthermore, the
RGI software (RGI 3.2.1) used for prediction of resistome from
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protein or nucleotide data has been based on homology and SNP
(Single Nucleotide Polymorphism) models. Resistome sequences
have been deposited at the EMBL Nucleotide Sequence Database
under accession numbers ERX2604238 to ERX2604249.

Virulence Determinant Detection
The predicted CDSs were annotated by using reciprocal
BLAST and VFDB (Virulence Factors of Bacterial Pathogens)
database. Obtained hits were considered positive when the
results of reciprocal BLAST were similar, with a 80% sequence
similarity cut-off. Virulome sequences has been deposited at the
EMBL Nucleotide Sequence Database under accession numbers
ERX2604238 to ERX2604249.

Statistical Analyses
All analyses were performed in triplicate. Statistical analyses were
conducted using Excel 2007 (Microsoft Corporation, Redmond,
WA, United States) program to determine averages and standard
deviations. Statistical treatment of data was conducted by
analysis of variances (ANOVA) in Statgraphics Centurion XVI
software using Shapiro–Wilk test and the Levene test to check
data normality and the 2-sided Tukey’s test to determine the
significance of differences between strains, where P < 0.05 was
considered statistically significant.

RESULTS

Microbial Diversity in a Pig
Slaughterhouse Throughout Meat Chain
Production
Culture dependent-methods revealed many populations
from several bacterial groups recovered from animal and
environmental surfaces of a pig slaughterhouse and meat
processing plant in Jaén (Figure 1 and Table 1). The largest
number of mesophilic bacteria was recovered from the first steps
of slaughtering like stabling and showers (CA, CS), anesthesia
(AA, AS), and “scorching and whip” (FA, FS) and approached
7.71 log10 CFU/ml (Table 1). No differences were detected
between animal and environmental/processing surfaces (counts
ranging from 4.41–7.71 log10 CFU/ml); however, no bacteria
were recovered from the final step of meat production before
shipment, i.e., the surface within the sale zone (ES). The counts
of pseudomonads recovered from animal and process-area
surfaces were similar, ranging from 3.84 to 7.48 log10 CFU/ml
with the lowest counts in “weights and classification” (BA, BS)
and sale (EA, ES) zones (Table 1). Staphylococci were also
detected in all samples (animal and environment) ranging from
3.21 to 7.15 log10 CFU/ml and, in a similar manner, the lowest
counts were registered in “weight and classification” (BA, BS)
and sale (EA, ES) zones (Table 1). Regarding L. monocytogenes,
this pathogen was highly recovered from animal surface in
anesthesia (AA) zone and process surfaces in “scorching and
whip” (FS) reaching 5.77 and 6.30 log10 CFU/ml, respectively
(Table 1). However, the lowest counts were registered in animal
surface from “animal-arrival zone” (MA) (0 log10 CFU/ml),
surfaces and animal products in the sale zone (ES and EA: 0 log10

CFU/ml and 1 log10 CFU/ml, respectively) (Table 1). On the
other hand, E. coli was detected in all animal and process-area
surfaces except on animal surfaces following “scalding and
depilating” (PA) and on the surfaces in the sale zone (ES: 0
log10 CFU/ml) (Table 1). Indeed, lower E. coli populations were
detected on surfaces of animal products in the sale zone (EA) and
environmental surfaces in “weight and classification” (BS) of 1
and 1.15 log10 CFU/ml, respectively (Table 1). However, highest
counts were obtained on animal and process-area surfaces in
the anesthesia zone (AA and AS) at 5.79–5.91 log10 CFU/ml
(Table 1). Concerning Salmonella sp., animal and environmental
surfaces in anesthesia zone (AA and AS) showed the most
contaminated surfaces in slaughterhouse being 4.20–5.30 log10
CFU/ml (Table 1). However, Salmonella sp. was absent in animal
surface of Arrival of Animals zone (MA), animal surface of
“scalding and depilating” zone (PA), animal and environmental
surfaces of “scorching and whip” (FA and FS) and sale (EA
and ES) zones (Table 1). Lactic acid bacteria were destected in
all zones especially on animals in anesthesia and process-area
surfaces (AA and AS) and animal surfaces in “stabling and corral
showers” (CA) ranging from 6.64 to 6.8 log10 CFU/ml (Table 1).
However, the other zones showed intermediate counts ranging
from 3.4 to 5.01 log10 CFU/ml (Table 1).

Animal products (stomach, kidney, heart, lean, and lard)
obtained after evisceration and also their corresponding
transport boxes (H-CS, R-CS, CRZ-CS, ES-CS, MGR-CS, CL1,
and CL2) were examined for bacterial diversity in a similar
manner as for animal and processing surfaces (Table 2). In
general, samples from all transporting boxes exhibited greater
counts of total mesophilic bacteria (ranging from 6.29 to 7.56
log10 CFU/ml) than their corresponding products (ranging
from 4.41 to 6.81 log10 CFU/ml) (Table 2). Similar results were
obtained for pseudomonads (ranging from 4.56 to 7.55 log10
CFU/ml) (Table 2) and staphylococci (ranging from 3.25 to 6.42
log10 CFU/ml) (Table 2). However, L. monocytogenes were only
detected in sample R1 from kidney (3.3 log10 CFU/ml), sample
MGR1 from lean meat (3.02 log10 CFU/ml) and sample MNT1
from lard (2.38 log10 CFU/ml) (Table 2). On the other hand,
E. coli were detected in all product samples and also transport
boxes (ranging from 2.69 to 4.83 log10 CFU/ml) except MNT1
(lard sample) and CL1 (transport box for kidney and liver)
(Table 2). Salmonella sp. were recovered from liver surface (H2)
and its transport box (H-CS), the transport box of kidney (R-CS),
the stomach (ES1), the transport box of lean (MGR-CS) and
the transport box (CL2) for several organs (heart, stomach, and
lean) being the counts ranging from 2.23 to 3.65 log10 CFU/ml
(Table 2). Regarding LAB, they were present in all animal
products and transport boxes (ranging from 3.41 to 6.17 log10
CFU/ml) except the transport box CL1 used for kidney and liver
(Table 2).

Determination of Resistome Throughout
Meat Chain Production
To assess the resistome throughout the meat production chain
in a pig slaughterhouse, we collected pooled samples from
animal (or product) surfaces and process surfaces from five

Frontiers in Microbiology | www.frontiersin.org 4 September 2018 | Volume 9 | Article 2099

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02099 September 12, 2018 Time: 14:54 # 5

Campos Calero et al. Resistome and Virulome Diversity in Porcine Slaughterhouse

TABLE 1 | Microbial counts in animal and environmental surfaces throughout meat chain production in a porcine slaughterhouse.

Culture media Microbial counts in animal and environmental surfaces (CFU/ml)∗

MA MS CA CS AA AS PA

TSA 5,26 ± 0.07d 5.46 ± 0.17d 7.05 ± 0.08f 5.88 ± 0.01e 7.72 ± 0.24g 7.55 ± 0.38g 5.87 ± 0.06e

KA 5.06 ± 0.64b 6.54 ± 0.13ef 6.96 ± 0.01fg 7.02 ± 0.36fg 7.11 ± 0.52h 7.49 ± 0.21h 6.25 ± 0.10de

BPA 5.24 ± 0.10cd 6.16 ± 0.06e 7.12 ± 0.06f 6.93 ± 0.06f 7.16 ± 0.58f 7.02 ± 0.69f 5.19 ± 0.07cd

PA 0a 2.74 ± 0.06bc 3.54 ± 0.09bcd 3.30 ± 0.43bcd 5.78 ± 0.43de 3.06 ± 0.43bc 2.75 ± 0.21bc

TBX 4.38 ± 0.08cd 4.98 ± 0.26de 4.85 ± 0.00cde 4.74 ± 0.06cde 5.79 ± 0.05e 5.92 ± 0.44e 0a

XLD 0a 1.50 ± 0.21ab 3.50 ± 0.28cde 2.48 ± 0.00bcd 5.30 ± 0.00f 4.21 ± 0.13de 0a

MRSA 4.71 ± 0.00fg 4.78 ± 0.34g 6.39 ± 0.04h 5.01 ± 0.00g 6.64 ± 0.21hi 6.81 ± 0.14i 3.55 ± 0.05ab

Culture media Microbial counts in animal and environmental surfaces (CFU/ml)∗

FA FS BA BS EA ES PS

TSA 7.61 ± 0.05g 7.08 ± 0.18f 4.87 ± 0.03c 4.45 ± 0.18b 4.42 ± 0.16b 0a 5.90 ± 0.05e

KA 5.71 ± 0.07cd 7.32 ± 0.09h 5.19 ± 0.06bc 4.90 ± 0.01b 4.72 ± 0.01b 3.85 ± 0.01a 6.16 ± 0.29de

BPA 5.07 ± 0.10bc 5.74 ± 0.07de 4.53 ± 0.05b 3.50 ± 0.03a 3.72 ± 0.03a 3.21 ± 0.24a 5.43 ± 0.28cd

PA 4.00 ± 0.06cde 6.30 ± 0.00e 2.35 ± 0.49abc 2.50 ± 0.28abc 1.00 ± 0.14ab 0a 3.66 ± 0.04cde

TBX 4.64 ± 0.12cde 3.68 ± 0.14bc 3.06 ± 0.03b 1.15 ± 0.16a 1.00 ± 0.14a 0a 3.98 ± 0.39bcd

XLD 0a 0a 1.35 ± 0.19ab 2.24 ± 0.34bc 0a 0a 1.00 ± 0.14ab

MRSA 4.28 ± 0.11de 4.45 ± 0.15ef 3.89 ± 0.02c 3.86 ± 0.17bc 3.37 ± 0.16a 3.41 ± 0.12a 4.04 ± 0.11cd

±SD, standard deviations of three independent experiments. ∗Each different lower-case letter represents significant differences according to 2-sided Tukey’s HSD between
strains (p < 0.05). AA, animal surfaces in Anesthesia zone; AS, process-area surfaces in Anesthesia zone; BA, animal surfaces in weight and classification; BS, process-
area surfaces in weight and classification; CA, animal surfaces in stabling and corral showers; CS, process-area surfaces in stabling and corral showers; EA, animal
surfaces in Sale zone; ES, process-area surfaces in Sale zone; FA, animal surfaces in Scorching and Whip zone; FS, process-area surfaces in Scorching and Whip zone;
MA, animal surfaces in Animal Arrival zone; MS, process-area surfaces in Animal Arrival zone; PA, animal surfaces in Scalding and Depilating zone; PS, process-area
surfaces in Scalding and Depilating zone.

selected zones: “animal-arrival” (MA, MS), anesthesia (AA, AS),
“scorching and whip” (FA, FS), evisceration (R1 and R2 kidney
samples, MGR1 and MGR2 lean samples), and sale (EA, ES)
(Figure 1). Heatmap (Figure 2A) demonstrates ARG abundances
found in the surfaces of animals and the environment from
the first steps of slaughtering, being almost absent in product
surfaces (kidney and lean meat) and also sale zone (Figure 2A).
Cluster analysis of ARG data showed two main clusters: cluster
I, represented by “animal arrival” (MA, MS) and anesthesia (AA,
AS) zones, which exhibited high diversity and richness of ARGs
up to 62 ARGs (AS), 55 ARGs (AA), 40 ARGs (MS), and 35 ARGs
(MA) (Figure 2B and Supplementary Material S1); however,
cluster II was represented by the other zones and animal products
[“scorching and whip” (FA, FS), evisceration (R1 and R2) kidney-
surface samples, MGR1 and MGR2 lean-surface samples, and sale
(EA, ES)] with low abundance of ARGs (Figure 2B). The lowest
levels of microbiota resistome was observed in kidney surface
(R1) and “scorching and whip” process surface (FS) with one
ARG and six ARGs, respectively (Supplementary Material S1).
Furthermore, no ARGs were detected in the rest of zone/product
surfaces (EA, ES, FA, MGR1, and MGR2).

Among antibiotic resistance genes, we found 16 different
mechanisms of resistance; most abundant were genes encoding
for antibiotic-inactivating enzymes with up to 35 genes in AS,
and 31 genes in AA, 26 genes in MS, 21 genes in MA and 5
genes in FS (Figure 2 and Supplementary Material S1). Specific
genes such as aminoglycoside resistance up to 17 were detected
in AS, 16 genes in AA, 12 genes in MS, 11 genes in MA and two

genes in FS (Figure 2A); and lincosamide resistance, macrolide
resistance, efflux-pump complex and streptogramin resistance
genes were also notably detected in AS and AA (9–14 genes), MS
and MA (4–9 genes). On the other hand, FS only had the presence
of one gene coding for macrolide resistance and for efflux-
pump complex; however, R1 only showed the presence of one
efflux-pump complex coding gene (Figure 2 and Supplementary
Material S1).

Cluster analysis of ARGs further revealed that the most
abundant determinant type (antibiotic-inactivating enzymes)
clustered separately; however, other determinants present in
slaughterhouse showed two main clusters: cluster A and cluster
B (Figure 2B). Cluster A was presented by genes coding for
resistance to beta-lactams, phenicols, tetracyclines, nucleoside
antibiotics, sulfonamides, diaminopyrimidines and linezolids
along with non-specific genes coding for antibiotic-target
replacement protein and antibiotic-target protection protein
(Figure 2B). Cluster B, which was the second most important
in resistome cluster following those for antibiotic-inactivating
enzymes, was comprised of genes encoding resistance to
streptogramin, macrolides, aminoglycosides and lincosamides
along with non-specific genes coding for antibiotic-modifying
enzymes and efflux-pump complexes (Figure 2B).

On the other hand, the most prevalent antibiotic resistance
genes were aminoglycoside (46–51%) and lincosamide (14–19%)
resistance genes mainly in animal-arrival zone (MA and MS)
and anesthesia area (AA and AS) (Figure 3 and Supplementary
Material S1). However, tetracyclines, sulphonamides and
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FIGURE 2 | Heatmap showing the distribution of antibiotic resistance genes (ARGs) detected within metagenomic samples of different slaughterhouse zone/product
surfaces (MA, animal surfaces in “animal arrival” zone; MS, environmental surfaces in “animal arrival” zone; AA, animal surfaces in anesthesia zone; AS, process-area
surfaces in anesthesia zone; FA, animal surfaces in “scorching and whip” zone; FS, process-area surfaces in “scorching and whip” zone; EA, animal surfaces in sale
zone; ES, area surfaces in sale zone; R1 and R2, kidney samples; MGR1 and MGR2, lean samples). (A) distribution of ARGs throughout meat chain production.
(B) ARGs clustered by UPGMA (Unweighted Pair Group Method with Arithmetic Mean) method using Euclidean distances showing two mains clusters: cluster I and
cluster II. Colors shown in the legend (right) indicated the abundance of ARGs scaled from blue (undetected ARGs) to red (maximum; i.e., 35 ARG).
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FIGURE 3 | Distributions of antibiotic resistance gene (ARG) types and their abundances in metagenomic results from different slaughterhouse zone/product
surfaces (visualized via Circos). The length of the bars on the outer-ring represents the percentage of ARGs in each metagenome sample. Each ARG was
represented by a specific ribbon color, and the width of each ribbon demonstrates the abundance of each ARG.

nucleosides resistance genes were less abundant (Figure 3 and
Supplementary Material S1).

Determination of Virulome Throughout
Meat Chain Production
The incidence of virulence was assessed by metagenomic
sequencing and compared with VFDB database. In regards to
general classes of virulence determinants, R1 (kidney-surface
sample) and AS (surfaces in the Anesthesia zone) exhibited

more virulence traits than other zones/products, with up to 379
determinants in R1 and 174 determinants in AS (surfaces in
anesthesia zone), followed by AA (animals in anesthesia) with 56
determinants, 52 determinants in FS (surface in “scorching and
whip” zone), 46 determinants in MS (surfaces in “animal arrival”)
and 35 in MA (“animal arrival”) (Figure 4A and Supplementary
Material S2). However, MGR1 and MGR2 surface products and
FA (animal surfaces in “scorching and whip”) had only 2, 5,
and 13 virulence determinants, respectively; while R2 sample and
those from sale zone (EA and ES) were free of virulence factors
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FIGURE 4 | Heatmap showing the distribution of virulence genes detected within metagenomic samples of different slaughterhouse zone/product surfaces (MA,
animal surface in Animal Arrival zone; MS, environmental surfaces in “animal arrival” zone; AA, animal surfaces in anesthesia zone; AS, process-area surfaces in
anesthesia zone; FA, animal surfaces in “scorching and whip”; FS, process-area surfaces in “scorching and whip”; EA, animal surfaces in sale zone; ES, area
surfaces in sale zone; R1 and R2, kidney; MGR1 and MGR2, lean). (A) Distribution of general VRGs throughout meat chain production; (B) distribution of specific
VRGs throughout meat chain production. Colors shown in the legend (right) indicated the abundance of VRGs scaled from blue (undetected VRGs) to red
(maximum; i.e., 80 VRG).
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(Figure 4A and Supplementary Material S2). Among general
virulence features: adherence, secretion system, chemotaxis and
motility, invasion, motility and immune evasion were the most
abundant (ranging from 32 to 81 determinants), especially in
R1 sample followed by AS (Figure 4A and Supplementary
Material S2); however, an immunity-evasion determinant was
detected in almost every simple and most prevalent in AS. Other
virulence factors detected included motility and export apparatus,
motility and enhanced binding to erythrocytes, antiphagocytosis,
iron and heme acquisition and Type IV secretion system
(Figure 4A and Supplementary Material S2).

Further examination of specific virulence features revealed
that flagella, polar flagella, flagella (cluster I), Type IV
pili, capsule, Type IV pili, Type IV pili biosynthesis, Hcp
secretion island-1 encoded type VI secretion system (H-T6SS),
alginate biosynthesis and capsule were the most abundant
(15–50 determinants) especially in R1 sample followed by AS
(Figure 4B and Supplementary Material S2); however, the
capsule virulence determinant was detected in almost every
sample and most prevalent in AS. Other virulence features
ranging from 5–10 determinant detections included alginate
regulation, pyoverdine, lateral flagella, Type IV pili twitching
motility related proteins, LPS and Imp operon (Figure 4B and
Supplementary Material S2).

DISCUSSION

Animals are common reservoirs of several bacteria harbored
by their skin, hair/wool, noses, urogenital and oral cavities,
and also intestinal tract that could spread from the animals
to the environment, and also from slaughterhouse to the food
chain (Sobsey et al., 2006). The metaphylactic and prophylactic
use (including use for growth promotion, which now has been
banned in Europe since 2006) in agriculture and aquaculture
has enhanced zoonotic bacteria as a major reservoir of antibiotic
resistance (Food and Agriculture Organization of the United
Nations [FAO], 2015, 2016). During slaughtering, animal hide,
equipment, water, utensils and staff have been recognized as
major sources of contamination (Bolton et al., 2002). Thus,
contamination from the slaughtering and the processing of the
carcasses could occur, spreading from one carcass to another,
and could constitute a risk food-borne pathogen risk in humans.
This is facilitated by the bacteria’s adaptability to multiple
hosts, virulence mechanisms and high-rate of genetic exchange
of antimicrobial resistance (Price et al., 2012; Lavilla Lerma
et al., 2014b; Food and Agriculture Organization of the United
Nations [FAO], 2015; Liu et al., 2016). These resistant bacteria,
considered as superbugs, have become a global challenge and
could result in pandemic situations with health and socio-
economics repercussions (Padungtod et al., 2008; Fair and Tor,
2014; Founou et al., 2016), with food trade being a contributing
factor.

In this study, we evaluated bacterial contamination levels
in a porcine slaughterhouse throughout its production chain
using culture-dependent and metagenomic methods. In terms
of cultures, high loads of mesophilic bacteria (including

pseudomonads, staphylococci, E. coli and LAB) were detected
in all unit processes on both animal (and products) and process
surfaces, especially in zones of: “animal arrivals” (MA and MS),
stabling and corral showers (CA and CS), anesthesia (AA and
AS), “scalding and depilation” (PA and PS), and “scorching and
whip” (FA and FS) with viable counts ranging from 3.5–7.71
log10 CFU/ml. Similarly, Di Ciccio et al. (2016) found an
average up to 6 log10 CFU/cm2 total viable counts in two pig-
slaughterhouse plants in Northern Italy, which was equivalent
to the counts obtained in some areas in this study (almost 6
log10 CFU/cm2). Furthermore, anesthesia zone (AA and AS)
exhibited the highest counts followed by “scorching and whip”
zone (FA and FS). However, the “scalding and depilation” process
(intermediate zone between “anesthesia” and “scorching and
whip”) significantly improved microbial safety by decreasing
microbial counts by 1–3 orders of magnitude (log10), in a similar
manner described by Gill and Bryant (1993) for E. coli following
singeing. These results indicate that the major contamination
sources involved handling of livestock hide, carcass, and viscera
and process contamination as described elsewhere (Avery et al.,
2002; Alegre and Buncic, 2004; Nastasijevic et al., 2008). As for
animal products following evisceration, such as kidney, heart,
stomach, liver, lean and lard (and also their transporting boxes),
they exhibited either similar bacterial counts as their previous
slaughterhouse zone (Scorching and whip, FA and FS), or even
slightly higher counts in the case of pseudomonads, which
suggest accumulated contamination from two main sources:
the slaughterhouse environment (e.g., animals, equipment, and
staff) and the gastro-intestinal tract of the animals. Thus, these
microorganisms can cross-contaminate other products by using
the same transport boxes.

The pathogens commonly associated with pork include
Staphylococcus aureus, Listeria monocytogenes, Campylobacter
spp., Salmonella spp., and Yersinia enterocolitica (Korsak et al.,
1998; Koutsoumanis and Sofos, 2004; Malakauskas et al., 2006;
Mataragas et al., 2008). The results in this study demonstrated
that St. aureus, L. monocytogenes, and Salmonella spp. were
highly recoverable from animal surfaces, surfaces within the
slaughterhouse, viscera and meat products. L. monocytogenes and
Salmonella spp. were present on almost all surfaces; however,
some products also exhibited the presence of both pathogens such
as kidney, lean and lard (Listeria sp.); liver, stomach, lean and
their transport boxes (e.g., Salmonella sp.). Similarly, Sasaki et al.
(2013) also detected several pathogens in swine livers collected
at an abattoir, such as Campylobacter spp., Salmonella spp., and
L. monocytogenes.

The presence of high microbial loads, especially pathogens in
animal products destined to human consumption, constitute a
challenge and reinforce the importance of controlling zoonotic
pathogens in meat and other animal products through a complete
and continuous farm-to-fork examination. In this sense, the
high viable counts of all microbial groups found in the areas
for anesthesia (AA and AS) and “scorching and whip” (FA and
FS) indicate the importance of hygienic controls before further
processing (evisceration and cutting) to prevent the spread of
microorganisms downstream into the end products. Among
these hygienic controls, cleaning and disinfection of anesthesia
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surface and scorching and whip band used for several animals
(almost 200 animals) should be carried out after a determined
number of animals (maximum of 10–20 animals) to reduce the
cross-contamination and the increase of bacterial load in these
surfaces. Cleaning procedures should be done with hot water
under pressure, and disinfection protocols should be based on
a rotatory use of several biocides not containing quaternary
ammonium compounds and thus avoiding the emergence of
resistance to the same biocide, for example the use of HLE
disinfectant could be a good strategy (Abriouel et al., 2018).

Taking into consideration the results from the culture-
dependent methods, further examination of antibiotic resistance
genes and virulence determinants were conducted in selected
slaughterhouse zones and products. Metagenomic analyses
revealed a high diversity and richness of ARGs, up to 55–62
determinants in anesthesia area (AA and AS) and 35–40
in “animal-arrival zone” (MA and MS). However, “scorching
and whip’ (FA and FS) area exhibited lowered abundance of
ARGs (1–6), indicating that the scalding and depilating process
(intermediate zone between “anesthesia” and “scorching and
whip”), aimed to remove dirt and hair, had a significant effect
in decreasing the resistome, as well as the microbiota (1–3
orders of magnitude). Although, an increase in microbial counts
occurred in the subsequent “scorching and whip” zone (FA and
FS). Thus, resistant bacteria gradually declined after scalding,
leading to disappearance of these ARGs within the pan-microbial
community, and thus we observed a decrease in ARG richness
and diversity in meat and viscera products, and also in the
slaughterhouse environment.

The high prevalence of antibiotic-inactivating enzyme
genes (involved in the resistance to several antibiotics:
mainly aminoglycosides, beta-lactams, lincosamides,
macrolides, phenicols, tetracyclines, nucleoside antibiotics
and streptogramin) in “animal-arrival zone” (60% in MA and
65% in MS) and anesthesia area (56% in AA and 56% in AS)
were represented by the predominance of aminoglycoside
(46–51%) and lincosamide (14–19%) resistance genes, which do
not reflect the selective pressures exerted by tetracyclines
and beta-lactams commonly used in porcine industry.
The presence of mobile genes coding for aminoglycoside
inactivation enzymes responsible for aminoglycoside resistance
[N-acetyltransferases (AACs), O-nucleotidyltransferases (ANTs),
and O-phosphotransferases (APHs)] in these zones represent
a great challenge because of the spread of these genes to
humans via meat products. In this sense, aminoglycosides are
‘critically important antibiotics’ such as amikacin, neomycin and
kanamycin used for the treatment of severe systemic infections
and also as a second-line antibiotic in combating multidrug-
resistant tuberculosis (WHO, 2012); these antibiotics become
inactivated by several enzymes encoded by resistomes in this
study such as APH(3′)-IIIa and the broad-spectrum bifunctional
enzyme AAC(6′)-Ie-APH(2′′)-Ia, which are considered the
most abundant aminoglycoside phosphotransferases in clinical
settings and slaughterhouses (Tremblay et al., 2012; Woegerbauer
et al., 2014). Furthermore, AAC(6′)-I is also the most prevalent
and clinically relevant antibiotic inactivating enzyme present in
most human Gram-negative pathogens (Ramirez et al., 2013)

and also detected in several slaughterhouse zones in the present
study. On the other hand, the kanamycin nucleotidyltransferase
Ant(4′)-Ib, which confers resistance to kanamycin, neomycin
and other aminoglycoside, was highly detected in slaughterhouse
zones; it was also reported in meticillin-resistant S. aureus
of human and animal origin (Otarigho and Falade, 2018).
Regarding lincosamide resistance, lnuA, lnuB, and lnuC (coding
for lincomycin resistance), detected in all studied slaughterhouse
zones, were also detected in fecal microbiome of swine, farm
workers and the surrounding villagers in China (Sun et al., 2017),
and also in S. aureus isolates from healthy animals and sick
populations in China (Liu et al., 2018).

Thus, pleuromutilins, polymyxins, aminoglycosides and
lincosamides, used to a lesser extent, may have exerted sufficient
selective pressures to maintain ARGs. Conversely, tetracyclines
and beta-lactams most commonly administered to pigs appeared
to have had minimal impact of selecting and maintaining their
related resistance genes; only 1–4 tetracycline resistance genes
were observed among 35-62 ARGs, such as tet44, tetB, tetQ, and
tetX found in “animal-arrival zone” (MA and MS) and anesthesia
area (AA and AS). Similar results were obtained by Looft et al.
(2012) in swine intestinal microbiome of the antibiotic-fed pigs.
This apparent paradox may be explained by the fact that several
antibiotics were used in animal therapy (7–9 antibiotics per
trimester), resulting in a diversification of resistance genes rather
than a selective pressure by a single antibiotic. Or, alternatively,
resistance to antibiotic pressures is being driven by generic efflux-
pump mechanisms, rather than specific resistance genes.

Concerning virulence determinants, shotgun microbiome
sequencing of VRGs evaluated their potential risk throughout
meat production chain. In this sense, R1 sample obtained
after evisceration constituted the main source of virulence
determinants, being a conduit of more than 33 specific factors,
represented by 19 classes of virulence features mainly adherence,
secretion system, chemotaxis and motility, invasion and motility.
However, an immunity-evasion (capsule and lipopolysaccharide)
determinant was detected in almost every sample analyzed since
the beginning of the slaughter process, with highest abundance
in AS. Overall, virulence determinants detected in the pig
slaughterhouse were related with pathogenic bacteria such as
Acinetobacter baumannii, Streptococcus sp., Pseudomonas sp.,
E. coli, and L. monocytogenes.

In this sense, genes coding for flagella (flagella, polar
flagella and lateral flagella; cluster I), capsule, Hcp secretion
(island 1, T6SS), Type IV pili (island 2), lipopolysaccharide
(O-antigen), pyoverdine and streptococcal enzymes (enolase,
plasmin receptor/GAPDH) were harbored in slaughterhouse
resistomes (environmental and animal surfaces, and also in
end products). Type IV pili are the components of the PAPI-1
(pathogenicity island) conjugation machinery of P. aeruginosa,
which is essential for the horizontal transmission of PAPI-
1 (Carter et al., 2010). Furthermore, other island such as
Hcp secretion (island 1), which encodes Type VI secretion
system T6SS, was also found in slaughterhouse zones and is
widely distributed in the human-pathogen P. aeruginosa and
Campylobacter jejuni from poultry slaughterhouse (Ugarte-Ruiz
et al., 2013). Specific virulence determinants of human pathogens

Frontiers in Microbiology | www.frontiersin.org 11 September 2018 | Volume 9 | Article 2099

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02099 September 12, 2018 Time: 14:54 # 12

Campos Calero et al. Resistome and Virulome Diversity in Porcine Slaughterhouse

(e.g., P. aeruginosa and Streptococcus, which can also affect
animals), such as pyoverdine and streptococcal enzymes (enolase,
plasmin receptor/GAPDH) were distributed in slaughterhouse
zones.

We, as such, conclude that there are two main sources of
contamination in the pig slaughterhouse: the first one is related
with microorganisms of the animal hide, and the second one
is related with evisceration step. Conversely to ARGs, VRGs
were highly detected after evisceration in some products such
as kidney, which reflect poor hygienic practices. Thus, this may
be considered a threat to food safety and consumer health since
bacteria with virulence determinants could cross-contaminate
other products by via transporting boxes and processing surfaces.
Slaughterhouses and meat processing represent a nexus of
the “One Health” (or “One Medicine”) initiative that links
human, animal and environmental health; as such control of
ARG and VRG spread by adequate disinfection procedures in
slaughterhouse becomes necessary to protect the health of human
and animals.

CONCLUSION

With high microbial loadings, and the high diversity and richness
of ARGs and VRGs, control measures are required to reduce
the risk of spread of pathogenic bacteria and their associated
ARGs/VRGs in the slaughterhouse and meat products. In the pig
slaughterhouse, there were two main sources of contamination:

bacterial communities on the surface of the animals, and other
related to evisceration. Thus, controlling these areas by adequate
disinfection procedures may reduce risks to food safety and
consumer health.
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