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RNA interference (RNAi), which is mediated by small interfering RNAs (siRNAs) derived

from viral genome or its replicative intermediates, is a natural antiviral defense in plants,

fungi, and invertebrates. Whether RNAi naturally protects humans from viral invasion is

still a matter of debate. Nevertheless, exogenous siRNAs are able to halt viral infection

in mammals. The current review critically evaluates the production of antiviral siRNAs,

delivery techniques to the infection sites, as well as provides an overview of antiviral

siRNAs in clinical trials.
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RNA INTERFERENCE AS ANTIVIRAL DEFENSE

The term RNA interference (RNAi) is used to describe gene silencing at the mRNA level guided by
small complementary non-coding RNA species. There are several classes of RNAi mediators, one of
which, namely small interfering RNAs (siRNAs), facilitates antiviral immunity in plants, fungi, and
invertebrates (Ding et al., 2004). The source of siRNAs during infection is viral double-stranded
RNA (dsRNA), which is cleaved by cytoplasmic RNAse III family enzyme Dicer into 19–27 base
pair (bp) long molecules with a perfectly complementary middle region and 2-nt overhangs on

both 3
′

ends. These siRNAs are incorporated into a multiprotein RNA-induced silencing complex
(RISC). Following the strand separation, the antisense strand guides the RISC to recognize and cut
target RNA transcripts (Fire et al., 1998; Elbashir et al., 2001; Macrae et al., 2006).

Whether RNAi is a functional antiviral pathway in mammals is still contentious (tenOever,
2017), since production of siRNA molecules from long dsRNAs cannot be explicitly demonstrated
in mammalian cells due to the fact that dsRNA longer than 30 bp triggers activation of interferon
(IFN) response (Minks et al., 1979; Elbashir et al., 2001) which shuts down the natural RNAi (Seo
et al., 2013). However, mammalian cells do possess all the components of evolutionary conserved
RNAi machinery (Shabalina and Koonin, 2008) that can be harnessed to inhibit the expression
of cognate mRNA by exogenous siRNA molecules (Elbashir et al., 2001). The antiviral potential
of siRNAs was first demonstrated against respiratory syncytial virus (RSV; Bitko and Barik, 2001)
and thereafter numerous studies describing antiviral activity of siRNAs against viruses with DNA
and RNA genomes in vitro and in vivo have been published (Gitlin et al., 2002; Jacque et al.,
2002; Ge et al., 2003; Kapadia et al., 2003; Randall et al., 2003; Morrissey et al., 2005; Kumar
et al., 2008; Geisbert et al., 2010; Paavilainen et al., 2017; Villegas et al., 2018). RNAi-based drugs
appear to be a viable option to treat severe viral infections, against which effective vaccines or
specific cure is not yet available, such as Ebola virus or emerging viruses. Furthermore, siRNAs
are likely to become a valuable alternative to treat debilitating chronic infections caused by human
immunodeficiency virus (HIV) and hepatitis B virus (HBV). Current care for chronic hepatitis
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B infection is a combination of nucleos(t)ide analogs and
interferon (Su and Liu, 2017), while combination antiretroviral
therapy, which targets viral enzymes as well as cellular entry
receptors is used to treat HIV infection (Cihlar and Fordyce,
2016). However, these treatments are of limited effectiveness,
toxic, impose the risk of developing drug resistance, and life-long
since they only suppress the virus and do not lead to eradication
of infection. Conversely RNAi-based drugs have a potential to
achieve a functional cure and discontinue antiviral therapy.

PRODUCTION OF RNA MOLECULES FOR
RNAi

Selection of Target Sequences for RNAi
The first step in production of antiviral siRNAs is in silico
selection of highly conservative sequences in the targeted
virus genome in order to achieve strong antiviral activity and
avoid off-target effects. Specificity filters are used to exclude
sequences with close similarity to mRNAs of human and model
animal transcriptomes. Additionally, a number of sequence- and
structure-based algorithms are applied to select the functionally
most potent siRNA sequences (Reynolds et al., 2004; Tafer, 2014).
However, this step is not needed when pools of siRNAs covering
large regions of conserved sequences are used (see Enzymatic
generation of siRNAs).

Production of siRNAs
Three approaches have been developed to generate antiviral
siRNAs: (1) chemical synthesis; (2) enzymatic production; and
(3) in vivo expression from siRNA expression cassette or vector.

Chemical Synthesis of RNA Molecules
Molecules of ssRNA are produced by automated solid-phase
synthesis employing 2′-hydroxyl protecting groups that provide
ribonucleoside phosphoramitides (Beaucage, 2008). Following
the synthesis step, cognate ssRNAs are hybridized to form
RNA duplexes. The accuracy of chemical RNA synthesis is
often compromised, resulting in products of varying length
and sequence. Therefore, each ssRNA must be tested by
matrix-assisted laser desorption-ionization mass spectrometry,
and produced siRNAs are analyzed by non-denaturing gel or
capillary electrophoresis to confirm proper annealing of the
strands1. Albeit the cost of synthesis per nucleotide has decreased
dramatically over the past few years, chemical synthesis is still
far from an economically sound approach. However, if the cost
is not a limiting factor, this method is so far indispensable
for applications that require large amounts of ultrapure siRNA
molecules with defined sequence (e.g., clinical trials).

Enzymatic Generation of siRNAs
The main advantages of enzymatic production of siRNAs are
low-cost and short preparation time. Therefore, this method
can be applied for screening of the most potent siRNA
sequences. Traditionally enzymatic production of siRNAs and

1https://www.thermofisher.com/us/en/home/references/ambion-tech-support/

rnai-sirna/tech-notes/five-ways-to-produce-sirnas.html.

longer dsRNAs has been based on in vitro transcription of DNA
templates containing T7 polymerase promoter (Figure 1). T7
DNA-dependent RNA polymerase (DdRp) transcribes target
DNAmolecules in their sense and antisense orientation followed
by the annealing step (Donzé and Picard, 2002; Sohail et al.,
2003). The leader sequence added by T7 DdRp to the 5′ end
of the synthesized ssRNA can be cleaved off by deoxyribozyme,
while random nucleotides, that T7 DdRp might add to the 3′

end of ssRNA, do not have any considerable negative effect on
siRNAs efficacy and safety (Sohail et al., 2003). The bacteriophage
polymerases also incorporate 5′ triphosphates to their transcripts,
which can induce a significant IFN response (Kim et al.,
2004). However, treatment of synthesized ssRNA with alkaline
phosphatase abrogates the IFN induction. Themain disadvantage
of T7 DdRp-based dsRNA production is a rather limited dsRNA
yield because during hybridization step a significant amount of
biologically inactive dsRNA is generated, especially in the case of
long ssRNAs, due to formation of tertiary structures that prevent
annealing of complementary sequences (Figure 1).

To avoid the drawbacks of inefficient annealing step,
our laboratory has developed a single-tube dsRNA synthesis
platform, where ssRNA generated by T7 DdRp is immediately
used by bacteriophage Phi6 RNA-dependent RNA polymerase
(RdRp) to synthesize a complementary RNA strand starting from
the very 3′ end (Aalto et al., 2007; Figure 1). Phi6 RdRp is a highly
processive enzyme lacking template specificity and providing an
opportunity to produce dsRNA molecule of virtually any length
from any heterologous template (Makeyev and Bamford, 2000).
Besides T7 DdRp and Phi6 RdRp, other viral polymerases such as
DdRp from bacteriophages T3, SP6, cyanophage Syn5 (Zhu et al.,
2015), and noroviral RdRp (Rohayem et al., 2006) can be used for
RNA synthesis in vitro. The generated dsRNA molecules can be
subsequently digested with either bacterial RNase III (Yang et al.,
2002), recombinant eukaryotic Dicer (Gimenez-Barcons et al.,
2007; Romanovskaya et al., 2012), or RNase T1 (Hannus et al.,
2014) to get a pool of target-specific siRNA molecules.

Enzymatic approach for siRNAs production allows to generate
siRNA pool against any virus in a relatively short time, which
is essential in case of a sudden virus outbreak. A robust and
fairly fast protocol for the purification of enzymatically-produced
siRNAs has been developed in our laboratory, where siRNAs
obtained by Giardia Dicer digestion are purified by anion-
exchange chromatography on monolithic QA column followed
by desalting on Sephadex G25 column (Romanovskaya et al.,
2013). The siRNAs obtained are of high purity and safe for
animals (Paavilainen et al., 2017).

A diverse siRNA pool derived from a long fragment of viral
genome, which mimics the natural RNAi-based antiviral defense,
is more protective than a single-site siRNA. Even RNA viruses
with high mutation potential can be effectively inhibited with
a mixture of siRNAs and escape mutants are not generated
that easily compared to a single siRNA (Gitlin et al., 2005).
Importantly, each siRNA species in a pool is present at very
low concentration diluting off-target effects below detection
limit. A number of studies demonstrated that siRNA pools
generated enzymatically are highly effective in silencing of the
target genes without causing obvious off-target effects (Aalto
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FIGURE 1 | Enzymatic production of siRNA pools. (A) Target-specific DNA template is generated by PCR with forward and reverse primers containing at their 5′ ends

promoter sequence for T7 DNA-dependent RNA polymerase. T7 polymerase transcribes purified DNA into single-stranded RNA (ssRNA) molecules, which are

subsequently heated at 75◦C for 5min to denature secondary and tertiary ssRNA structures and to allow proper strand annealing. Nevertheless, long ssRNA

molecules are prone to formation of branched structures and hairpins, which are difficult to denature and which prevent proper hybridization, and decrease the

amount of full-length double-stranded RNAs (dsRNAs). (B) DNA template is generated by PCR with forward primer containing a promoter sequence for T7

polymerase and reverse primer comprising a promoter sequence for Phi6 RNA-dependent RNA polymerase. The resulting product is purified and a single-tube

reaction is set up, where T7 polymerase transcribes DNA into ssRNA and Phi6 polymerase replicates the second strand of the RNA molecule. This approach results in

a higher yield of full-length, biologically active dsRNA molecules compared to that where annealing step is used to generate dsRNA. (A,B) The generated dsRNAs are

purified and cleaved by RNase III family enzyme into siRNA pool, which is processed according to the requirement of the downstream application.

et al., 2007; Nygårdas et al., 2009; Romanovskaya et al., 2012;
Hannus et al., 2014; Paavilainen et al., 2016, 2017). Nevertheless,
despite numerous benefits of using siRNA pools, there are no
enzymatically-produced siRNA mixtures in clinical trials.

A possibility to generate dsRNA in mammalian or bacterial
cells, using viral RNA polymerases, has been demonstrated,
which potentially allows to scale-up the production at low cost
(Aalto et al., 2007; Heninger and Buchholz, 2007; Huang and
Lieberman, 2013; Enayati et al., 2016). However, these systems
still need further elaboration and most probably will not have
clinical applications but, for instance, can be used in agriculture
(Tenllado et al., 2003; Niehl et al., 2018).

In vivo Expression From siRNA Expression Vector
Molecules of siRNAs can also be produced by Dicer cleavage
of small hairpin RNA (shRNA) transcribed in a cell from
an expression cassette containing a polymerase III promoter
(U6 or H1), a DNA template of desired shRNA sequence,
and transcription stop signal (Brummelkamp et al., 2002). The
expression cassette can be integrated into a plasmid or viral

vector and thus delivered into cells. The main advantage of
siRNA expression vectors is that they are suitable for long-term
applications.

DELIVERY OF SiRNAS FOR CLINICAL
APPLICATIONS

Depending on the target tissue, siRNA therapeutics can be
administered either locally or systemically via intravenous
injection. However, unprotected siRNAs are prone to rapid
degradation by ubiquitous endo- and exonucleases and they are
undetectable in the blood already 10min after administration
(DeVincenzo et al., 2008). Due to a strong anionic charge
of the phosphate backbone, siRNAs cannot passively diffuse
through negatively charged cellular membranes. Moreover,
siRNA molecules can be sensed by the cellular receptors and
induce IFN response or other off-target effects (Anderson
et al., 2008; Sioud, 2009; Olejniczak et al., 2011). Several
approaches have been developed to enhance siRNA stability and
promote its cellular uptake. The most widely used approach
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involves introduction of chemical modifications to ribose sugar,
phosphate linkage, or base of nucleotide (Kaczmarek et al.,
2017). RNA can be easily modified during chemical synthesis.
Furthermore, bacteriophage polymerases (e.g., DdRps from T7
and Syn5) are also able to utilize modified NTPs for RNA
synthesis (Zhu et al., 2015; Sun and Riggs, 2017). Modifications
of the sugar backbone at the 2′-position of the ribose ring [2′-O-
methyl (2′-OMe), 2′-deoxy, and 2′-fluor] not only have no impact
on gene silencing indicating that 2′-OH group is dispensable
for functional RNAi pathway, but demonstrate increased siRNA
plasma stability and consequently enhanced in vivo efficacy with
reduced off-target effects (Chiu and Rana, 2003). Moreover, these
modification render siRNAs unrecognizable for immune system
(Morrissey et al., 2005).

RNA delivery to the target cells can be achieved by viral
and non-viral vectors. For the delivery to animals and humans,
adeno-associated virus (AAV) vector is the first choice since it has
been proved to be non-toxic, non-pathogenic, easy to produce,
and it does not integrate into human genome (Naso et al., 2017).
Of the non-viral vectors, nanoparticles comprised of cationic
polymers (poly-L-lysine, polyamidoamine, polyethyleneimine,
chitosan) or lipids are the best studied delivery vehicles
(Kaczmarek et al., 2017). In addition to nanoparticles, direct
conjugates of bioactive ligands to siRNA molecules can facilitate
their entry to the cell. Once siRNA is complexed with positively
charged polymer or lipid molecules, it can approach cell
membrane close enough to be internalized via micropinocytosis
or clathrin-dependent pathway (Pozzi et al., 2014). If siRNA is
conjugated with specific ligands (e.g., antibodies) that recognize
receptor molecules on a particular cell type, it can be taken
up by receptor-mediated endocytosis. In this case endosome
escape agents must be applied to facilitate siRNA transport to
cytosol, where it can be used by RNAi machinery (Dominska and
Dykxhoorn, 2010).

Topical delivery of antiviral siRNA seems to be a viable
approach for mucosal surfaces and has been used to inhibit
herpes simplex virus (HSV) and RSV in animal models (Bitko
et al., 2005; Palliser et al., 2006; Alvarez et al., 2009; Paavilainen
et al., 2017). In clinical studies, human respiratory tract can be
easily achieved by inhalation of an aerosol indicating a plausible
administration route for antivirals against respiratory viruses. For
a detailed review on the approaches to siRNA delivery please refer
to (Musacchio and Torchilin, 2013; Kaczmarek et al., 2017).

ANTIVIRAL RNAi-BASED THERAPEUTICS

The first siRNA with documented effect in humans was ALN-
RSV01, a 19 bp RNA duplex with two (2’-deoxy) thymidine
overhangs on both 3′ ends to prevent its nuclease degradation
(Elbashir et al., 2001; Alvarez et al., 2009). ALN-RSV01 targets
a highly conserved region in the mRNA of RSV nucleocapsid
protein. The activity of naked ALN-RSV01 siRNAs has been
tested in adults experimentally infected with wild-type RSV.
The siRNA was applied daily in the form of nasal spray,
2 days before and 3 days after RSV infection. Intranasal
ALN-RSV01 administration was safe and well tolerated and

resulted in a 38% decrease in the number of infected people
(DeVincenzo et al., 2010). Furthermore, ALN-RSV01 has been
shown to reduce the risk of bronchiolitis obliterans syndrome
in RSV-infected lung transplant patients in Phase 2 randomized,
double-blind, placebo-controlled trials (Zamora et al., 2011;
Gottlieb et al., 2016). Alnylam Pharmaceuticals had been
developing a nasally administered formulation of asvasiran
sodium (ALN-RSV01). However, in 2014 clinical trials were
suspended for undisclosed reason. In our opinion, this could
be related to the emergence of drug resistant viruses, which
are easily generated if only a single-site siRNA molecule is
used.

At least eight anti-HBV siRNA formulations have been
in clinical trials (Table 1; Flisiak et al., 2018). Nevertheless
the results from these trials are mostly reported at different
scientific meetings instead of publications in peer-reviewed
journals and, therefore, the detailed information is scarce. In this
paragraph we will focus on siRNAs developed by Arrowhead
Pharmaceuticals due to the abundance of the published data
available for analysis. The first generation anti-HBV siRNA pool,
ARC-520, was comprised of two synthetic siRNAs targeting
the common region at the 3′ end of all HBV transcripts
from episomal HBV DNA. The siRNAs were conjugated to
cholesterol, which facilitates the cellular uptake and protects
from degradation by serum RNAses (Schroeder et al., 2010).
These conjugates were intravenously co-injected with polymer-
based system (Rozema et al., 2007), which was composed of
amphipathic membrane active peptide, required for endosome
escape, and N-acetylgalactoseamine, responsible for hepatocyte-
specific delivery via asialoglycoprotein receptor that is highly
expressed on the surface of hepatocytes (Wooddell et al., 2013;
Nair et al., 2014). ARC-520 tolerability and pharmacokinetics
has been studied in healthy volunteers with no indicated adverse
effects (Schluep et al., 2017). However, the data from a phase
II clinical trials (Wooddell et al., 2017) have shown that a
number of patients had only minimal response to ARC-520
treatment due to the integration of the HBV genome into the
host DNA, which led to the loss of the target sites for ARC-520
(Wooddell et al., 2017). Therefore, the next formulation, ARC-
521, in addition to already validated siRNA sequences included
siRNA targeting viral mRNA expressed from the integrated
HBV genome. Although siRNAs themselves were well tolerated
in humans, endosome escape agent caused some toxicity in
experimental animals. Therefore, Arrowhead Pharmaceuticals
has switched to the development of the second generation siRNA-
based drug ARO-HBV, in which the formulation of excipient has
been changed. The preclinical studies have shown that APO-HBV
has significant antiviral activity, and its doses up to 300 mg/kg
given weekly are well tolerated in laboratory animals (Wooddell
et al., 2018)2.

In spite of tremendous efforts put into the development of
treatment of infection with HIV, currently only one patient has
attained functional recovery, and no HIV can be detected in his

2http://ir.arrowheadpharma.com/static-files/9de6c80f-459a-419a-87a0-

f82125d0196b.
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blood or other tissues tested (Hütter et al., 2009). This HIV-
infected person developed an acute myeloid leukemia and was
subjected to hematopoietic stem cell transplantation in 2007.
Notably, a donor had a 32 bp deletion in both alleles coding for
chemokine receptor CCR5 (Hütter et al., 2009), and the majority
of HIV-1 viruses utilize CCR5 as a co-receptor to enter CD4+
cells (Alkhatib, 2009). A number of phase I/II clinical studies
(Table 1) try to mimic the conditions under which the functional
recovery was achieved and transduce autologous hematopoietic
CD34+ stem cells with lentiviral vectors carrying multiplexed
shRNA which target not only conserved regions in HIV genome,
but also the host CCR5 gene. For a detailed review of RNAi-based
therapies against HIV refer to (Bobbin et al., 2015; Scarborough
and Gatignol, 2017).

A pool of three chemically modified siRNAs preventing
synthesis of Zaire ebolavirus (ZEBOV) polymerase, viral
proteins 24, and 35 completely protected rhesus macaques
from lethal infection (Geisbert et al., 2010). This siRNA
formulation with some modifications (Table 1), lately referred
to as TKM-Ebola, was subsequently applied to treat humans
during the ZEBOV outbreak in West Africa in 2013–2016.
However, TKM-Ebola did not improve survival, which might
be connected to a poor design of the clinical trials and
inclusion of only terminally sick patients with high viral loads
(Cross et al., 2018).

Two clinical trials have been initiated to assess the efficacy and
safety of shRNA-based TT-034 therapeutics, which was created
for chronic hepatitis C treatment and delivered to hepatocytes
by AAV vector. TT-034 was shown to be safe and well-
tolerated. However, in February 2016 Benitec Biopharma decided

to discontinue hepatitis C program due to low commercial
opportunities3.

In conclusion, the development of RNAi-based therapeutics
is still in its early stage and has experienced numerous pitfalls.
Nonetheless, it has already been demonstrated that siRNAs
can effectively inhibit the replication of various viruses despite
different mechanisms they evolved to resist the pressure imposed
by immune system and antiviral drugs. However, the possibility
of generation of escape mutants, recently discovered inhibitors
of RNAi in human viruses (Fabozzi et al., 2011; Qiu et al., 2017),
and complex interactions between RNAi and interferon pathways
(Kok et al., 2011; Seo et al., 2013; Maillard et al., 2016) must
be taken into consideration when designing new antiviral siRNA
molecules. Furthermore, there are still unresolved issues with safe
and efficient delivery of siRNAs to the target tissues and cells,
which can be unraveled by fundamental research in the area.
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