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Current agricultural practices depend heavily on chemical inputs (such as fertilizers,
pesticides, herbicides, etc.) which, all things being equal cause a deleterious
effect on the nutritional value of farm product and health of farm workers and
consumers. Excessive and indiscriminate use of these chemicals have resulted in food
contamination, weed and disease resistance and negative environmental outcomes
which together have a significant impact on human health. Application of these
chemical inputs promotes the accumulation of toxic compounds in soils. Chemical
compounds are absorbed by most crops from soil. Several synthetic fertilizers contain
acid radicals, such as hydrochloride and sulfuric radicals, and hence increase the soil
acidity and adversely affect soil and plant health. Highly recalcitrant compounds can
also be absorbed by some plants. Continuous consumption of such crops can lead
to systematic disorders in humans. Quite a number of pesticides and herbicides have
carcinogenicity potential. The increasing awareness of health challenges as a result of
consumption of poor quality crops has led to a quest for new and improved technologies
of improving both the quantity and quality of crop without jeopardizing human health.
A reliable alternative to the use of chemical inputs is microbial inoculants that can act
as biofertilizers, bioherbicide, biopesticides, and biocontrol agents. Microorganisms are
able to carry out the plant growth promotion, pest and disease and weed control.
Microbial inoculants are beneficiary microorganisms applied to either the soil or the plant
in order to improve productivity and crop health. Microbial inoculants are natural-based
products being widely used to control pests and improve the quality of the soil and crop,
and hence human health. Microbial inoculants involve a blend of microorganisms that
work with the soil and the soil life to improve soil fertility and health and by extension
improve human health. Microbial inoculants have the ability to minimize the negative
impact of chemical input and consequently increase the quantity and quality of farm
produce. Microbial inoculants are environmental-friendly and deliver plant nutrients to
plants in a more sustainable manner. Microbial inoculants can help reduce chemical
fertilizer application. Microbial inoculants could include bacteria, fungi and algae. This
research summarizes the impact of agricultural chemical inputs on human health. The
contribution of microbial inoculants in sustainable maintenance of human health will be
expatiated. Advances in microbial inoculants and technology and strategies to explore
this natural, user friendly biological resource for sustainable maintenance of plant health
will be discussed.

Keywords: microbial inoculants, human health, biofertilizers, biocontrol agents, plant growth promoting
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INTRODUCTION

The advent of industrial system of agriculture involving the use
of chemicals, preservatives, hormones, and antibiotics resulted
in increased food growth and production (Alori and Fawole,
2017b). This new technique produces crop and livestock in larger
quantities than the sustainable agriculture practiced in the past
(Gilchrist et al., 2007). Industrial agriculture is characterized with
mono cropping, in which the same crop is grown season after
season. Mono cropping reduces the soil’s ability to naturally
eliminate pests and replenish nutrients (Alori and Fawole, 2017a).
To combat this menace industrial agriculture uses heavy doses of
chemical fertilizers and pesticides (Alori et al., 2017a). Similarly,
massive quantities of livestock such as cows, chickens, pigs,
and turkeys are raised in confined, overcrowded and unsanitary
conditions (Schmidt, 2002; Sayre, 2009).

Agrochemicals are commonly used in agricultural production
to control or prevent diseases, pests and weeds in order to
maintain high quality of agricultural products and eliminate
or reduce yield losses. With this industrialized system, food
is produced at reduced costs and farmers therefore get higher
profits from their farm but serious concerns were being raised
about health risks resulting from residues in drinking water
and food and from occupational exposure (Alori and Fawole,
2017b). Suyal et al. (2016), reiterated that heavy doses of
chemical fertilizer, although leading to self-reliance in food
production, causes harmful impacts on living organisms and also
depreciate the environment. The chemical contaminates the food
produced and goes further to alter the normal body functions
of the consumer (Sayre, 2009). Baker et al. (2002), reported
75% of pesticide residues in conventionally grown produce.
Water supplies are polluted by toxic insecticides, herbicides, and
chemical fertilizers used (Alori et al., 2017b).

One of the factors that increase susceptibility of farm workers
to the injurious effects of agro-chemicals include language
barrier. Most local farmers are illiterates; this hinders their
understanding and adoption of safety precautions on labels
and training in proper work practices. Lack of background in
agriculture by most hired farm workers who use employment in
the agricultural sector as an entry-level job may increase health
and safety hazards in the agricultural workplace. It is therefore
imperative to seek an alternative technology that will boost food
production to meet the food requirements of the ever growing
world population while minimizing the health hazards they pose
to the environment, humans, and farm animals.

Microbial inoculants refer to formulations composed of
beneficial microorganisms that play an important role in soil
ecosystems for sustainable agriculture. Microbial inoculants are
environmentally friendly and are a potential alternative to
chemical fertilizers and pesticides (Babalola and Glick, 2012).
They are composed of active strains of microorganisms which
directly or indirectly stimulate microbial activity and hence
improve mobility of nutrients from soil (Suyal et al., 2016).
They could be phyto-stimulants, bio-fertilizers or microbial bio-
control agents (Alori et al., 2017b). They provide protection
against a range of different pathogens and they are effective
bio-herbicides (Babalola, 2010b).

In view of these, this paper aims to summarize the impact
of the conventional agricultural inputs (fertilizers, pesticides,
and herbicides) on human health and the ameliorating effect of
microbial inoculants on these hazards. Advances in microbial
inoculants and technology and strategies to explore this natural,
user friendly biological resource for sustainable maintenance of
plant health will be discussed.

IMPACT OF AGRICULTURAL INPUTS
(FERTILIZERS, PESTICIDES AND
HERBICIDES) ON HUMAN HEALTH

Due to increasing numbers of people in farming, in the vicinity
of farming areas and consumers of contaminated farm products,
agricultural chemical inputs have currently become major public
health problems (Alori et al., 2017a,b). Agro-chemical runoff is
a major contributor to surface-water contamination (Wohlfahrt
et al., 2010). Excess and wrong usage of chemical fertilizers result
in soil washing, contamination of ground water, streams, and
sea (Önder et al., 2011). Agricultural chemical inputs gain access
into human body systems through three major means: (1) oral
ingestion, (ii) infiltration through the skin, and (iii) breathing
(Roychowdhury et al., 2014). Pesticides have shown long-term
resistance in food including vegetables, meat, and fruits, and
in the human body (Battu et al., 2005). Quite a number of
people are negatively affected by long-term exposure to agro-
chemicals, even at low levels (Kirkhorn and Schenker, 2001). The
illnesses range from respiratory disorders and musculoskeletal
illnesses to dermal and cardiac related diseases. These illnesses
are encountered by farm owners, operators, family members, and
employees (Magauzi et al., 2011).

Factors that were responsible for the susceptibility of
farm owners and workers to agrochemical poisoning include
inadequate protective clothing and safety systems, lack of
knowledge of the caution code for hazardous agrochemicals
(Magauzi et al., 2011). The study in Nepal, India by (Bhandari,
2014), also confirmed that only 2.33% of the farm owners
and workers had received training on the hazardous effect of
agrochemicals and preventive measures to protect themselves.
More also, in developing countries where less than 20% of the
world agrochemical production are consumed, agrochemicals
have been reported to account for 70% of acute poisoning among
working population (United States Environmental Protection
Agency [USEPA], 2016). In Nigeria, Ojo (2016), identified the
following as factors that aggravate health hazards from pesticide
use; the use of the cheaper but deadliest types of pesticides
(in terms of persistence and toxicity); poor pesticide education
leading to extensive misuse; pesticides residues on locally
consumed products, poor legislation and lack of enforcement
of available legislation; inadequate information, awareness and
knowledge of the inherent dangers of pesticides and inadequacies
in medical recognition and responses to pesticide poisoning and
failure of regulatory systems.

Breast and prostate cancer have been linked to consumption
of beef raised under industrial dairy systems where artificial
growth hormones such as recombinant bovine growth hormone
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(rBGH) are administered to animals (Food and Water Watch,
2008). In intensive agriculture, antibiotics are administered to
farm animals at unnatural levels and this has been reported to
be responsible for some food related infections in human (Sayre,
2009).

Table 1 provides a list of some health implication of some
chemicals use in agriculture.

LEGISLATURE AND PESTICIDES USE IN
NIGERIA

Nigerian farmers depend largely on agrochemicals such as
fertilizers and pesticides for the control of many insect pests,
weeds, and diseases. It was reported that about 125,000–
130,000 metric tons of pesticides are applied annually in
Nigeria (Asogwa and Dongo, 2009). Although organizations
such as; National Agency for Foods and Drugs Control
(NAFDAC), National Environmental Standards and Regulations
Enforcement Agency (NESREA), Cocoa Research Institute of
Nigeria (CRIN), and Nigeria Stored Products Research Institute
(NSPRI) was established to ensure safe use of pesticides in
Nigeria, implementation and enforcement of available policies
and legislature are inadequate (Isaa, 2016).

Furthermore the Knowledge of Nigerian farmers on the risk
associated with the use of pesticide is very low (Ojo, 2016),
as a result, farmers would rather continue to use their time
tested product that is deadly than complying with the law that
places a ban on the use of such pesticide (Adegbola et al.,
2011). Farmers do not take necessary precautions required
to prevent dangers associated with the use of agrochemicals
(Tijani, 2006). More also in Nigeria, pesticide residues in
locally consumed products are not being monitored (Ojo,
2016).

The commonly used pesticide by Cocoa farmers in Ondo
State of Nigeria as stated by Tijani (2006) include, Aldrex 20,
Basudin, Peronox, Gammalin 20, Unden, Sandoz, Cacaobre
Copper sulphate, and Thionex. Most of these chemicals were

classified by World Health Organization (WHO) as highly or
moderately hazardous Tijani, 2006).

CONTRIBUTION OF MICROBIAL
INOCULANT IN SUSTAINABLE
MAINTENANCE OF HUMAN HEALTH VIZ
A VIS

Microbial Inoculants as Biofertilizers for
Plant Growth, Yields and Nutritional
Quality Enhancement
The need to increase agricultural production to meet the
food requirement of the ever increasing world population
makes consistent maintenance of soil fertility essential.
Biofertilizers which are made up of active microbes are a
viable alternative technology to increase food production
without jeopardizing human and environmental health (Alori
et al., 2017a). Biofertilizers include all organisms which supply
or make different nutrients available to plants. Examples are
nitrogen fixers, phosphorus solubilizers, potassium solubilizers,
sulfur solubilizers, and mycorrhiza, etc. (Pathak and Kumar,
2016).

Substantial contribution of Biofertilizer in sustainable
maintenance of human health has been reported. Biofertilizers
improve the nutritious properties of fresh vegetables by
increasing; the antioxidant activity, the total phenolic compounds
and chlorophyll (Khalid et al., 2017). Spinach inoculated with
different biofertilizers was found to have 58.72 and 51.43%
higher total phenolic content than the un-inoculated control
(Khalid et al., 2017). These secondary metabolites play preventive
roles in cancer, neurodegenerative, and cardiovascular disorders
(Rodríguez-Morató et al., 2015).

Inoculation of lettuce with Azotobacter chroococcum
and Glomus fasciculatum also increased the total phenolic
compounds, anthocyanins and carotenoids content of the
vegetable (Baslam et al., 2011). Higher (48.02 and 40.46%)

TABLE 1 | Health implication of some chemicals use in agriculture.

S/N Ailment Type of agrochemical Author

1 Cancer or carcinogenicity, birth defects, reproductive effects, liver or kidney damage,
neurotoxicity, disruption of the endocrine system

Pesticides Sharma and Singhvi, 2017

2 Heart attack, Cancer, Strokes, Bowel cancer Fertilizers, pesticides, herbicides, etc. Thippeswamy, 2013

3 Farmers Hypersensitivity Pneumonitis FHP/Farmer’s Lung Disease Pesticides Schenker, 1998

4 Nervous and reproductive system disorder Pesticides Benbrook, 2009

5 Asthma Pesticides Salam et al., 2004

6 Neurological deficits Pesticides Meggs and Langely, 1997

7 Headache, skin irritation, fatigue and eye irritation Pesticides Alvanaja et al., 1996

8 Oral-facial clefts Pesticides Nurminen, 1995

9 Congenital birth defects Pesticides/fungicides Garry et al., 1995

10 Limb reduction defects associated with organ system anomalies Pesticides Lin et al., 1994

11 Vomiting, Skin burn, itching, nausea, tiredness, and headaches Pesticides Tijani, 2006

12 Abdominal pain, cancer, restlessness, reproductive disorder, headaches excessive
salivation, developmental disorder, and convulsions irritation of eyes

Pesticides Adekunle et al., 2017
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flavonoid content (antioxidant) was observed in lettuce co-
inoculated with G. fasciculatum and Glomus mosseae (Baslam
et al., 2011). Antioxidant biosynthesis by Arbuscular Mycorrhizal
Fungi (AMF) has been reported (Carlsen et al., 2008; Nisha and
RajeshKumar, 2010; Eftekhari et al., 2012). Taie et al. (2008),
documented a 75% increase of phenolic acid biosynthesis in
soybean seedlings inoculated with Rhizobacteria. Karthikeyan
et al. (2010), found that inoculating Pseudomonas fluorescens
and Bacillus megaterium into Catharanthus roseus significantly
increased the alkaloid content of the crop.

Some researchers such as (Lakshmipathy et al., 2002;
Selvaraj et al., 2008) also reported production of secondary
metabolites like phenols, tannins, ortho-dihydroxy, flavonoids,
phenols and alkaloids after inoculation of G. mosseae, Bacillus
coagulans and Trichoderma viride to Begonia malabarica and
Calamus thwaitesii. Health promoting compounds produced by
biofertilizers according to other researchers include ferulic acid,
flavonols (quercetin, kaempferol), caffeic acid, flavones (luteolin),
coumaric acid isorhamnetin-3-gentiobioside-7-glucoside, and
chlorogenic acid (Alarcón-Flores et al., 2014).

Mechanisms of Actions by Biofertilizers (PGPR)
Rhizosphere consists of bacteria named rhizobacteria which
either directly or indirectly exert positive effects on plants
(Kundan et al., 2015). These soil bacteria colonize plant root
and benefit the plants by stimulating its growth and are
therefore called plant growth promoting rhizobacteria (PGPR)
(Beneduzi et al., 2012). PGPR stimulate plant growth and increase
crop yields. PGPR are potential biofertilizers. They are less
harmful to the environment and they also reduce the cost of
chemical fertilizers. PGPR can also be referred to as plant health
promoting rhizobacteria (PHPR) (Kundan et al., 2015). PGPR
stimulate plant growth in two ways, directly and indirectly.
The direct mechanism of plant growth by PGPR involves either
providing the plant with a compound that is produced by the
bacterium, such as phytohormones, or facilitating the uptake of
certain nutrients from the environment (Glick, 1995b). Indirect
mechanisms refer to the ability of PGPR to inhibit the deleterious
effects of plant pathogenic organism through production of
antagonistic substances or by inducing resistance to pathogens
(Glick, 1995a).

Direct Mechanism
Direct mechanism includes phytohormones production,
nitrogen fixation, increasing iron availability, phosphate
solubilisation, siderophore, ammonia production, etc. PGPR
carried out some of these functions via specific enzymes, which
provoke morphological and physiological changes in plants thus
enhance plant nutrient and water uptake.

Phytohormones production
Phytohormones are the chemical messengers that affect gene
expression and transcription levels, cellular division and
hence plant growth. Phytohormones affect seed germination,
emergence of flowering, sex of flowers, senescence of leaves,
and fruits (Kundan et al., 2015). Examples of phytohormones
produced by PGPR include auxin. It is dominantly produced at
the shoot apex, and are transported to the root apical meristem

through the shoot vascular cambium and accrued in the quiescent
center (QC), which is the columella initials and lateral root cap
(Brunoud et al., 2012).

Indole-3-acetic acid (indole acetic acid, IAA) is one of the
commonly studied auxins (Spaepen et al., 2007). Most times,
IAA is produced in bud and young leaves of plant by several
independent biosynthetic pathways (Kundan et al., 2015). It
plays ultimate role in growth stimulation by being involved
in DNA synthesis. The main function of IAA is cell division,
differentiation, cell elongation, and extension. IAA causes a
rapid increase in cell wall extensibility in young stems (Kundan
et al., 2015). IAA promotes growth of auxiliary bud and
bud formation. It also helps in the apical dominance, and
also stimulates adventitious and lateral root development and
growth (Grobelak et al., 2015). IAA plays important role in
leaf and flower abscission (Kundan et al., 2015). Some other
compounds like indole-3-acetamide, indole-3-pyruvate, indole-
3-acetaldehyde, and 4-chloroindole-3-acetic acid have been
reported to have auxin activity (Grobelak et al., 2015; Olanrewaju
et al., 2017).

The effect of auxin produce by PGPR is determined by the
concentration of plant-synthesized auxin. Hence auxin produced
by a PGPR will stimulate root development in cases where the
concentration of auxin produced by plant is suboptimal, but
will inhibit root development in cases where the concentration
of the plant produced auxin is already optimal (Spaepen
et al., 2007). IAA is synthesized by at least three biosynthetic
pathways and each is named for a key intermediate within
the pathway. These pathways include: the indole acetamide
(IAM) pathway, the indole pyruvic acid (IPyA) pathway, and the
indole acetaldoxime (IAOx)/indoleacetonitrile (IAN) pathway
(Duca et al., 2015). Many PGPR can have one, two, or even
three functional IAA biosynthesis pathway (Olanrewaju et al.,
2017).

Gibberellin (GA) is another phytohormone that has been
observed in rhizobacteria. GAs are tetracyclic diterpenoid
carboxylic acids with either C20 or C19 carbon skeletons
(Hedden and Thomas, 2012). Even though 136 globberelline
structures have been identified, only four have been identified
in bacteria (Hedden and Thomas, 2012). GAs activate important
growth processes such seed germination, stem elongation,
flowering, and fruit setting (Zaidi et al., 2015). They improve
photosynthesis rate, and chlorophyll content (Khan et al., 2015).
GAs stimulate shoot growth and inhibit root growth via the
actions of the GA signaling system, and the DELLA repressor
which trigger GA-inducing genes (Martínez et al., 2016).

1-Aminocyclopropane-1-carboxylate (ACC) deaminase
1-Aminocyclopropane-1-carboxylate deaminase is another
enzyme produced by some PGPR which facilitate plant growth
and development by decreasing ethylene levels. Ethylene
is a plant growth hormone produced by approximately all
plants and also by different biotic and abiotic processes in
soils. Ethylene induces multifarious physiological changes
in plants (Ahemad and Kibret, 2014). Ethylene is a growth
hormone that has also been established as a stress hormone
(Gamalero and Glick, 2015). Biotic and abiotic stress such as
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insect and nematode damage, drought or flood, presence of
metals, chemicals (both organic and inorganic), ultraviolet
light, extreme temperatures, mechanical wounding as well as
fungal and bacterial pathogens triggers increased production
of ethylene in plants (Ali et al., 2014). However, its production
beyond the threshold levels in plant tissue affects the shoot
and root development in plant negatively, but ACC deaminase
produced by PGPR will reduce ethylene levels by converting
ACC (ethylene precursor) to α-Ketobutyrate and ammonia
and thereby restoring normal plant development (Olanrewaju
et al., 2017). Prior application of ACC deaminase-containing
PGPR (microbial inoculant) to plants typically reduce the
concentration of ethylene produced by the plants as a result of
stress and thereby decreases the damage that the plant incurs
from the stress (Glick, 2012).

Siderophores production
Siderophores are small peptidic molecules which contain side
chains and functional groups that provide a high-affinity set
of ligands to which ferric ions can bind (Goswami et al.,
2016). Microorganisms evolved these highly specific pathways
to satisfy nutritional requirements of iron (Beneduzi et al.,
2012). Siderophores producing microbes can therefore be
classified into four main classes (based on their iron-coordinating
functional groups, structural features and type of ligands)
namely; carboxylate, hydroxamates, phenol catecholates, and
pyoverdines (Crowley, 2006). Bacteria siderophore can prevent
or lessen proliferation of pathogen by reducing the amount of
iron that is available to a pathogen (Shen et al., 2013).

Siderophore producing PGPR therefore has competitive
advantages over other microorganisms in the rhizosphere (Haas
and Défago, 2005). Siderophores produced by Chryseobacterium
spp. C138 when delivered to the root were effective in the
supply of iron in tomato plant (Radzki et al., 2013). Likewise,
Siderophore producing Pseudomonas strain showed significant
increase in germination and plant growth (Sharma and Johri,
2003).

Nitrogen fixation
Nitrogen is the most important plant nutrient required for
growth and productivity. This is because nitrogen is the basic
building block of plant, animal and microorganisms. Nitrogen
fixation is the conversion of molecular or atmospheric nitrogen
into form utilizable to plant by nitrogen fixing microorganisms
using an enzyme system called nitrogenase (Kim and Rees,
1994). This is also known as Biological nitrogen fixation (BNF).
BNF mostly occurs at mild temperatures (Raymond et al.,
2004). This process consumes significant amount of energy
in the form of ATP. The nitrogenase gene (nif) required
for BNF is sensitive to oxygen; to therefore prevent oxygen
from inhibiting nitrogen fixation while at the same time
providing sufficient oxygen for the bacteroides within the
nodule to respire, it is essential that bacterial hemoglobin
which can bind free oxygen is introduced (Kundan et al.,
2015). It has also been reported that the nif genes consist
of structural genes which activate Fe protein, molybdenum,
and other regulatory genes which are directly involved in

the synthesis and functions of enzyme and they are present
in both symbiotic and free living systems (Kundan et al.,
2015).

Biological nitrogen fixation include both symbiotic nitrogen
fixation and the free living nitrogen fixing system. Symbiotic
nitrogen fixers include the following genera, Rhizobium,
Achromobacter, Sinorhizobium, Azoarcus, Mesorhizobium,
Frankia, Allorhizobium, Bradyrhizobium, Burkholderia,
Azorhizobium, and Herbaspirillum (Babalola, 2010a; Pérez-
Montaño et al., 2014; Turan et al., 2016). Some of the important
non-symbiotic nitrogen-fixing bacteria include: Azoarcus sp.,
Herbaspirillum sp., Gluconacetobacter diazotrophicus, and
Azotobacter sp. (Vessey, 2003).

Ammonia production
The soil consists of plant, microbial, and animal residues. The
quantitatively most important N containing molecules in the
residue are proteins; chitin and peptidoglycan with the proteins
alone comprise 60% or more of the N in plant and microbial cells
(Sinha, 2014). Organic nitrogen residues in soil organic matter
is converted by some PGPR such as the ammonia nitrifyers like
Pseudomonas sp. and Bacillus sp. to amino acid and the amino
acid is then digested to produce ammonia through the process
called ammonification (Geisselera et al., 2010). This is a very
important biochemical process in soil because some soil bacteria
use the ammonia produced to build their own body protein while
some other soil bacteria convert the ammonia to nitrite, e.g.,
Nitrobacter sp. and then to nitrate, e.g., Nitrosomonas sp. Still
other bacteria can reduce ammonia to Nitrogen gas (Alacamo,
2001).

Phosphorus solubilisation
Phosphorus (P) is an essential element that is necessary for
plant growth and development and it is second only to nitrogen
(Azziz et al., 2012). P occurs in soil in both organic and inorganic
forms which are not available to plant. However, a number
of PGPR have been reported to mobilize poorly available
phosphorus via solubilisation and mineralization. Examples
include Pseudomonas spp., Agrobacterium spp., Bacillus
circulans, Azotobacter spp., Bacillus spp., Burkholderia spp.,
Enterobacter spp., Erwinia spp., Kushneria spp., Paenibacillus
spp., Ralstonia spp., Rhizobium spp., Rhodococcus spp., Serratia
spp., Bradyrhizobium spp., Salmonella spp., Sinomonas spp.,
and Thiobacillus spp. (Alori et al., 2017b). The mechanism
employed by Phosphorus solubilizing bacteria in promoting
plant growth include production of plant growth hormones,
promoting the efficiency of BNF and enhancing the availability
of some nutrient elements such as iron, zinc, etc. (Wani et al.,
2007).

The most important mechanism of inorganic phosphorus
solubilisation by PGPR is the production of mineral dissolving
compounds such as organic acids, hydroxyl ions, protons, and
CO2 (Sharma et al., 2013). Some other mechanisms of mineral
phosphate solubilization by PGPR include the production of
inorganic acids (such as sulphuric, nitric, and carbonic acids), the
production of chelating substances and enzymolysis or liberation
of enzymes (Zhu et al., 2011; Alori et al., 2017b).
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Indirect Mechanisms
Indirect mechanism refers to the ability of PGPR to reduce the
deleterious effects of plant pathogens on the growth of crop. This
involves synthesizing antibiotics, induced systemic resistance
(ISR), synthesizing hydrogen cyanide (HCN), competition
and producing lytic enzymes including chitinases, proteases,
cellulases, lipases, and 1,3-glucanases that can lyse a portion of
the cell walls of many pathogenic fungi. These mechanisms are
difficult to study in the system and they are therefore considered
critical (Kundan et al., 2015).

Production of antibiotics
The major mechanism employed by PGPR to combat deleterious
effects of plant pathogens is the production of one or more
antibiotics (Raaijmakers and Mazzola, 2012). Antibiotics are low
molecular weight compounds that are produced by PGPR which
are deleterious and critical to important enzymes and metabolism
of other microorganisms and thus retard the growth (Kundan
et al., 2015). Some plant pathogens can develop resistance against
specific antibiotics hence the ability of PGPR to produce one
or more antibiotics, enhance their ability to act as effective
antagonistic agents against plant pathogens (Glick et al., 2007).
Antibiotics produced by antagonistic microbes have biostatic and
biocidal effects on soil-borne plant pathogens (Bhattacharyya
et al., 2016).

However, Olanrewaju et al. (2017), noted that an antibiotic
that is observed to control a pathogen might not be as much
effective against another pathogen on the same plant. Likewise,
the antibiotic-producing PGPR may exhibit varying differences
in its actions at different field conditions. Also, the activity of a
biocontrol bacterium can be altered by the method of cultivation
and formulation of the biocontrol PGPR in the laboratory and by
its mode of application (Glick, 2015).

Bacillus and Pseudomonas spp. have been recognized to
produce a variety of antibiotics such as tas A, subtilin,
bacilysin, sublancin, iturin, chlorotetain, fengycin, subtilosin,
and bacillaene (from Bacillus spp.). Phenazine-1-carboxylic acid
(PCA), Zwittermycin A, Cepaciamide A, Karalicin, Pseudomonic
acid, Kanosamine, Rhamnolipids, Cepafungins, Azomycin,
Butyrolactones, 2,4-Diacetyl Phloroglucinol (DAPG), Aerugine,
Pyrrolnitrin and Oomycin A (from Pseudomonas spp.) (Goswami
et al., 2016).

Induced systemic resistance
Induced systemic resistance is a mechanism in which non-
pathogenic microbes, such as PGPR, reduce the deleterious
effects of plant pathogens by stimulating a resistance mechanism
in the plants (Van Loon et al., 1998). This mechanism increases
resistance at the particular sites of plants at which induction
had occurred, i.e., the defense mechanism of ISR is activated
only when there is an attack of pathogenic agent (Kundan
et al., 2015). ISR is not pathogen specific but rather top
the plant against a range of different pathogens. Jasmonate
and ethylene are plant hormones that stimulate plants defense
response to pathogens, hence ISR employ these hormones
to stimulate resistance mechanism in the plants (Verhagen
et al., 2004). It activates the “dormant” defense mechanisms

which become expressed in response to external contacts from
pathogens or insect. PGPR contribute to sustaining the intrinsic
resistance of plant to pathogenic organisms (Enebe and Babalola,
2018).

Plant protection by ISR is controlled by a network of
coordinated signaling pathways and these are dominated and
regulated by plant hormones sharing signaling components
(Pieterse et al., 2014). ISR is regulated by the redox-regulated
protein non-expressor of PR genes1 (NPR1) which is produced in
the cytoplasm as an oligomer via intermolecular disulfide bonds
(Olanrewaju et al., 2017). Many PGPR has been documented to
activate ethylene dependent ISR (Weller et al., 2012; Lucas et al.,
2014).

HCN production
Hydrogen cyanide are secondary metabolite that acts as an
effective agent for the biocontrol of weeds. HCN produced by
PGPR has the ability to inhibit electron transport chain and
energy supply to cell, resulting to death of cells. HCN producing
rhizobacteria are therefore effective agent of biological weed
control (Kundan et al., 2015). Biocontrol PGPR that produces
HCN can also synthesize some cell wall degrading enzymes
or antibiotics (Ramette et al., 2006). HCN can also act as
an anti-fungi agent. HCN synthesized by PGPR is usually in
small quantity, this ensures that the fungi do not develop
resistance to the synthesized antifungal thereby enhancing the
effectiveness of antifungal (Olanrewaju et al., 2017). HCN ability
to inhibit important metalloenzymes including cytochrome c
oxidase affects its toxicity effectiveness (Nandi et al., 2017).

Competition
Plant growth promoting rhizobacteria can limit the proliferation
of pathogenic organisms by competing with them for the
sparsely available nutrients. Barahona et al. (2011), reported
that some biocontrol PGPR outcompete plant pathogens, either
for binding sites on the plant root or for nutrient. As a
result, limit the binding of the pathogen to the plant and
thereby making it difficult for it to proliferate. However, it has
been documented that PGPR competitiveness works in synergy
with other biocontrol mechanisms to inhibit the functioning
of phytopathogens (Olanrewaju et al., 2017). Figure 1 shows
the schematic representation of some of the importance of
microbial inoculants in agriculture and their mechanism of
actions.

Microbial Inoculants as Biocontrol
Agents (Biopesticides, Bioherbicides,
Biofungicides)
Many microorganisms demonstrate antifungal and antibacterial
activity and are therefore used as biopesticides (Rani et al., 2018).
Microbial inoculants play a critical role in biocontrol technology
employed in agricultural ecosystems. The mechanisms of
biocontrol exercised by most microbial inoculants could
be attributed to release of extracellular hydrolytic enzymes,
competition for nutrients and secondary metabolites toxic
to plant pathogens at very low concentrations (Rani et al.,
2018), while some induce defense responses such as Systemic
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FIGURE 1 | Schematic representation of some importance of Microbial Inoculant in Agriculture and the Mechanism of Actions.

Acquired Resistance in the host plants (Mathivanan et al.,
2008). These organisms help in reducing damage to the
plants from pathogenic agents and can also modulate the
levels of some plant hormones like ethylene and auxin
(Glick, 1995a). Beneficial effects of microbial inoculants on
plants include control of fungal infections (Babalola and
Glick, 2012). Biological control activity exhibited by some
microbial inoculants includes herbicidal activity; examples of
which include Colletotrichum coccodes a mycoherbicide of
velvet leaf, biofungicide of Fusarium spp. (Babalola, 2007) and
mycoherbicides of Striga (Zahran et al., 2008). Trichoderma
harzianum by producing volatile antibiotics inhibit wood rots
and other fungal plant pathogens by up to 60% (Harman et al.,
2004).

Aspergillus fumigatus, Aspergillus niger, Penicillium
funiculosum, Penicillium aurantiogriseum, Penicillium citrinum,
and Trichoderma koningii have been reported to be effective
against plant pathogenic fungi Phytophthora infestans (Rani
et al., 2007). More also, Cavaglieri et al. (2005), Pereira et al.
(2007), Etcheverry et al. (2009), and (Nesci et al., 2005) have
also reported Bacillus amyloliquefaciens, Amphibacillus xylanus,
Microbacterium oleovorans, and Sporolactobacillus inulinus
to show growth inhibition against fungi pathogens. Bacillus
subtilis was reported to control Aspergillus flavus and aflatoxin
production both in the field and in the store (Kimura and Hirano,
1988; Nesci et al., 2005). Mitsuaria sp. provide a biocontrol effect
on bacterial leaf spot (Cepeda, 2012). Pseudomonads were also
reported to exhibit biocontrol effect on Fusarium wilts (Cepeda,

2012). Bacillus spp. has the capacity to produce inhibitory volatile
substances and have therefore been reported to be effective in
the biological control of microbial diseases in a wide range of
plants (Cepeda, 2012). Rhizobia group showed positive effects as
biocontrol agents against Pythium disease (Antoun and Prévost,
2005).

Microbial Inoculants in Food Processing
Microbial inoculants are employed in food processing to improve
the nutritional value and food properties such as aroma,
taste, texture, safety, and shelf-life (Vitorino and Bessa, 2017).
Microbial inoculants are also used for food fermentation and
preservation (Borneman et al., 2013). Quite a number of value
adding products like vitamins, flavor compounds, enzymes,
dyes, and food ingredients are produced by the application
of microbial inoculants (Lipkie et al., 2016; Vitorino and
Bessa, 2017). Some important pharmacological molecules are
also produced using microbial inoculants (Vitorino and Bessa,
2017).

The use of microbial inoculants in food processes improves
process efficiency by promoting process control, safety, product
quality, yield, and consistency. Many microorganisms have
been reported for use in the food and drug processing
industries, examples include; Aspergillus spp. which is utilized
in alcoholic beverage production. Citric acid produced by A.
niger is used in food preservation (Mojsov, 2016). Many other
microbes are capable of producing polyunsaturated fatty acids,
flavoring agents used in food formulations, certain complex
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carbohydrates and amino acids like lysine and glutamic acid
(FAO, 2010). More advantages such as lower production
costs, the possibility of large-scale production in industrial
fermenters, the possibility of genetic manipulation, and rapid
culture development are obtained from enzymes sourced from
microbes than those from vegetables and animals (Lipkie et al.,
2016).

FORMS AND METHODS OF
APPLICATION OF MICROBIAL
INOCULANTS IN FOOD PRODUCTION

Microbial inoculants could exist in various forms such as solid
or liquid. It could be made up of bacteria or fungi. It could
also consist of a pure culture or a mixed culture (Reddy and
Saravanan, 2013). There can be various carriers such as peat,
clay, and fly ash, coal, saw dust, wheat bran, peat supplemented
with chitin-containing materials, inorganic materials such as
vermiculite, perlite, silicates, kaolin, and betonies. Carriers for
preparing inocula should be designed to provide a favorable
microenvironment for the PGPM to ensure their viability and
adequate shelf life of the inoculant formulation (preferably
2 months or more at room temperature). A desirable carrier
should be easily available, stable, economical, eco-friendly, easy
to apply, and have good moisture-holding capacity and pH-
buffering capacity (Malusá et al., 2012).

Carrier-type also determines the form of the inoculant
(solid or liquid). In the case of solid inocula, the size of
the granules or beads used for immobilization of the microbe
may vary from 75 to 250 µm (Malusá et al., 2012). Liquid
inoculants can be broth cultures, suspensions in solutions of
humic acid, or suspensions in mineral or organic oils or oil-
in-water suspensions. Liquid or powder-type inoculants can
be used to coat the seeds, for root dipping at the time of
transplantation of seedlings, or can be applied directly into the
furrow (or seed beds) or as a foliar spray (Reddy and Saravanan,
2013).

CHALLENGES TO THE CONVENTIONAL
APPLICATION OF MICROBIAL
INOCULANTS IN AGRICULTURE

Despite the several advantages of microbial inoculant technology
over the use of agro-chemicals, it’s wide spread utilization is
limited by the following challenges. Microbial inoculants have
been applied (mainly in research) in the forms of liquids
(as sprays, root dips, drenches) or as dry formulations with
huge successes recorded, but most of these techniques are not
practicable on a large scale. This is because large amount are
required for optimum functionality of the inoculants (Callaghan,
2016). PGPR are highly selective and targeted unlike chemical
inputs that are broad spectrum product. It only impacts
a selected or targeted organism. This therefore results in
inconsistency of quality and efficacy under field conditions

comprising various organisms act simultaneously (Timmusk
et al., 2017).

Another success-limiting factor in the universal utilization
of microbial inoculant in agriculture is the variability in
shelf-life. It is a serious challenge maintaining viability
of microbes present in microbial inoculant formulations
(Callaghan, 2016). The viability of microbes in inoculated
seeds varied significantly with treatment method and storage
temperature. Extended survival of microbial inoculants at
ambient storage conditions is recommended for microbial
inoculant to become part of the mainstream agriculture. More-
also, as reported by (Callaghan, 2016), the cost of maintaining
the viability of both seeds and the microbes during storage is very
high.

Furthermore, the use of some microbial inoculants as
biocontrol agents can be highly risky. This is because some
microbial biocontrol agents have been reported toxic and
pathogenic to non-target organisms (Cuddeford and Kabaluk,
2010).

CONCLUSION

Food production by the use of microbial inoculants is a viable
alternative to destructive health effects caused by consumption
of food produce by the use of agrochemicals such as pesticides,
inorganic fertilizers, herbicides, etc. The knowledge of the
mechanisms of actions employed by microbial inoculants will
play a vital role in their use in sustainable agriculture. Use
of chemicals in agriculture can be avoided and thus they
can be removed from human diets. Pest and weed control
can be achieved by employing microbial inoculants as bio-
control agents and bio-herbicides. Harnessing natural resources
including beneficiary microorganisms is one of the most
effective approaches to improving farm productivity and food
quality in a sustainable way. Microbial inoculant technology
will ensure healthy food security for the future population.
We also suggest that those at the helm of authority should
review pesticide laws to enhance the effective supervision
of pesticide quality and monitoring of existing laws on the
use of agrochemicals. There is need to also educate the
farmers on the danger associated with indiscriminate use of
agrochemicals.
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