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Bovine mastitis continues to be a complex disease associated with significant economic
loss in dairy industries worldwide. The incidence rate of subclinical mastitis (IRSCM) can
show substantial variation among different farms; however, the milk microbiota, which
have a direct influence on bovine mammary gland health, have never been associated
with the IRSCM. Here, we aimed to use high-throughput DNA sequencing to describe
the milk microbiota from two dairy farms with different IRSCMs and to identify the
predominant mastitis pathogens along with commensal or potential beneficial bacteria.
Our study showed that Klebsiella, Escherichia-Shigella, and Streptococcus were the
mastitis-causing pathogens in farm A (with a lower IRSCM), while Streptococcus and
Corynebacterium were the mastitis-causing pathogens in farm B (with a higher IRSCM).
The relative abundance of all pathogens in farm B (22.12%) was higher than that in farm
A (9.82%). However, the genus Bacillus was more prevalent in farm A. These results
may be helpful for explaining the lower IRSCM in farm A. Additionally, the gut-associated
genera Prevotella, Ruminococcus, Bacteroides, Rikenella, and Alistipes were prevalent
in all milk samples, suggesting gut bacteria can be one of the predominant microbial
contamination in milk. Moreover, Listeria monocytogenes (a foodborne pathogen) was
found to be prevalent in farm A, even though it had a lower IRSCM. Overall, our study
showed complex diversity between the milk microbiota in dairy farms with different
IRSCMs. This suggests that variation in IRSCMs may not only be determined by the
heterogeneity and prevalence of mastitis-causing pathogens but also be associated with
potential beneficial bacteria. In the future, milk microbiota should be considered in bovine
mammary gland health management. This would be helpful for both the establishment
of a targeted mastitis control system and the control of the safety and quality of dairy
products.
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INTRODUCTION

Mastitis, defined as inflammation of the mammary gland, is
commonly associated with bacterial infection (McDougall et al.,
2009). Bovine mastitis continues to be one of the major veterinary
and economic issues that affects dairy industries worldwide
(Ruegg, 2017). It is well known that the incidence rate of
subclinical mastitis (IRSCM) can show substantial variation
among different dairy farms, and the predominant mastitis-
causing pathogens can also differ considerably (Olde Riekerink
etal., 2008). To develop successful control programs for mastitis,
it is very important to identify the predominant mastitis-causing
pathogens (Ruegg, 2017). However, there were no bacteria
detected by conventional approaches in 20-40% of milk samples
from mastitis cases due to the low concentration of bacteria or
to the fastidious nutritional and growth requirements (Taponen
et al., 2009). In addition, recent studies suggested that mastitis
may be associated not only with the mastitis pathogens but
also with an imbalance of the milk microbiota (Oikonomou
et al., 2012; Kuehn et al., 2013). From another perspective,
milk microbiota can directly affect subsequent development of
dairy products. Therefore, to establish a targeted mastitis control
system and to improve the safety and quality of dairy products,
it is of great importance to understand the bacterial community
present in milk.

Over the last two decades, methods such as real-time PCR
(Katholm et al., 2012; Holmoy et al, 2018), multiplex PCR
(mPCR) (Shome et al, 2011), and denaturing gradient gel
electrophoresis (DGGE) PCR (Kuang et al., 2009) have been
used to identify bacterial DNA in milk samples. In recent years,
increasing evidence has shown that sequencing of the 16S rRNA
gene can identify almost the entire bacterial community, both
commensal and pathogenic, since it can overcome the limitations
of the culture-based bacterial detection method (Kennedy et al,,
2016). Few studies have been carried out to understand the
diversity of microbiota in healthy and mastitic milk samples
(Kuehn et al., 2013; Oikonomou et al., 2014; Oultram et al.,
2017). Previous studies reported significant differences between
the microbiota of milk from healthy and mastitic quarters (Kuehn
etal,, 2013). Furthermore, samples derived from healthy quarters
could be easily discriminated from samples derived from clinical
mastitis and culture negative quarters based on their microbiota
profiles (Oikonomou et al., 2014). Oultram et al. (2017) reported
that 16S rRNA gene sequencing can be used to diagnose
clinical mastitis, and Streptococcus uberis and Staphylococcus are
identified in most cattle. In addition, sequence-based microbiota
analyses were also used to understand the microbial diversity of
feces (Oikonomou et al., 2013) and teats (Falentin et al., 2016),
to assess the impact of transfer to a milk processing facility
(Kable et al., 2016), and to identify possible sources of raw
milk contamination (Doyle et al., 2017b). However, no study
has been conducted to compare the microbiota in milk samples
from different dairy farms, especially from farms with different
IRSCMs.

Many studies have been conducted to determine the
association between risk factors and the IRSCM; many risk
factors, including age of the bovine, body condition score,

stage of lactation, mammary regression, management practices,
herd housing, milking machine, nutrition, weather and climate
have been reported to be associated with the IRSCM (Olde
Riekerink et al., 2008; Santman-Berends et al., 2016). However,
the milk microbiota, which can have a direct impact on bovine
mammary gland health, has never been associated with the
IRSCM. Therefore, the specific objectives of this study were to
use high-throughput DNA sequencing to investigate the milk
microbiota from two dairy farms with different IRSCMs and to
identify the predominant mastitis pathogens and the commensal
or potential beneficial bacteria.

MATERIALS AND METHODS

Sample Collection

Milk samples were collected from commercial dairy farms A (66
samples) and B (72 samples), which both located in Nanjing,
Jiangsu province, China. The cows were all Holstein dairy cattle
and were on twice-daily milking. The IRSCMs of farm A and
farm B determined by herd veterinarians were 16.9% (306/1860)
and 56.2% (930/1656), respectively. Two milk collections were
obtained from 4-year-old cows at 25 and 26 May 2016, separately.
Each milk sample was collected from one teat per cow. To exclude
the effect of antibiotics on milk microbiota, the milk samples were
collected from cows that had not been treated with antibiotics for
at least 1 month. The sampling procedure was performed during
the afternoon milking according to a previous study (Schukken
et al., 2009). Briefly, the bovine teats were thoroughly washed
with osmosis water and 70% ethanol and dried using individual
paper towels. Then, the first three streams of milk were discarded,
and the milk samples (about 30 mL) were collected using 50 mL
sterile plastic tubes. In this study, the subclinical mastitis status
was evaluated using milk somatic cell counts (SCC) calculated
by Fossomatic 5000TM automatic equipment (Foss Electric,
Hillerod, Denmark). Subclinical mastitis was suspected when
the SCC were greater than 500,000 cells/mL, but with no
inflammation of the udder (Shittu et al., 2012; Kulkarni and
Kaliwal, 2013). Cows were considered healthy when the SCC were
lower than 100,000 cells/mL with no inflammation of the udder
(Shittu et al., 2012; Kulkarni and Kaliwal, 2013). The samples
were transferred to the laboratory using a mobile refrigerator and
stored at —70°C for later analysis. For comparison purposes, 32
milk samples collected from farm A (16 samples from healthy
cows and 16 samples from cows with subclinical mastitis) and
32 milk samples collected from farm B (16 samples from healthy
cows and 16 samples from cows with subclinical mastitis) were
further analyzed.

DNA Extraction and High-Throughput

Sequencing

To extract microbial DNA, 1.8 mL of each milk sample was
centrifuged at 10000 g for 10 min to generate a pellet from
which DNA was extracted using the Powerfood Microbial
DNA Isolation kit (Mo Bio Laboratories Inc., Carlsbad, CA,
United States) according to the manufacturer’s instructions.
The DNA was then used as a template for polymerase chain
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reaction. The V1-V2 region of the bacterial 16S rRNA genes
from each sample was amplified using the universal primer set
27F and 338R (Oikonomou et al., 2014), which contained an
8-base unique barcode that was used to tag the PCR products
from each sample. After the quantification, qualification and
purification of the PCR products, a sequencing library was
generated using NEB Next® Ultra'™ DNA Library Prep Kit for
Mlumina (NEB, Ipswich, MA, United States). Finally, the library
was sequenced using an Illumina HiSeq 2000 system (Illumina,
Inc., San Diego, CA, United States), and 300 bp paired-end reads
were generated. The reads were deposited in the National Center
for Biotechnology Information (NCBI) Sequence Read Archive
(SRA) with accession number SRP149195.

Bioinformatic Analysis

Paired-end reads were merged using FLASH (Magoc and
Salzberg, 2011) and the effective reads were obtained after
removing the chimeric sequences (Edgar et al., 2011). Sequences
were analyzed by the UPARSE software package using the
UPARSE-OTU and UPARSE-OUT ref algorithms (Edgar, 2013)
and were assigned to the same operational taxonomic units
(OTUs) with >97% similarity. The representative sequence for
each OTU was selected and annotated for taxonomic information
using QIIME (Caporaso et al., 2010) and the Ribosomal Database
Project classifier (Cole et al., 2009). To facilitate comparison,
the milk samples were classified into eight groups according
to their origin: group AM (16 samples from mastitic cows in
farm A), group AH (16 samples from healthy cows in farm A),
group BM (16 samples from mastitic cows in farm B), group
BH (16 samples from healthy cows in farm B), group A (which
consisted of groups AM and AH), group B (which consisted of
groups AH and BH). The number of obtained reads and the
percent of the sequence that could be annotated for different
taxonomic levels was calculated for each group. Subsequently,
the ten most abundant microbial phyla and the predominant
genera whose abundance was higher than 0.5% in at least
one group were identified. A two-way hierarchically clustered
heatmap of the bacterial distribution in different milk samples
was conducted using ClustVis based on average linkage clustering
and Euclidean distance (Metsalu and Vilo, 2015). To calculate the
genus diversity within individual groups, Perl scripts packaged in
QIIME (Caporaso et al., 2010) were used to analyze the alpha
diversity (Shannon index). To compare similarities within the
whole community, principal component analysis (PCA) based on
weighted UniFrac distances was also conducted using Perl scripts
packaged in QIIME (Caporaso et al., 2010). Linear discriminant
analysis (LDA) effect size (LEfSe) (Segata et al., 2011) was used
to assess the microbial compositional differences between the
two groups of samples at the genus or higher taxonomic level.
The Spearman’s correlation coefficient values of each pair of
predominant genera were calculated using SPSS Statics (version
22.0, SPSS Inc.). To reduce false-positives caused by excessive
mutual exclusions, the genera that existed in less than half of the
milk samples were removed (Li et al., 2015). The co-occurrence
network analysis and visualization were conducted by the Gephi
open source graph visualization software tool (version 0.9.2),

using the force-directed algorithm ForceAtlas2 (Bastian et al.,
2009).

Statistical Analysis

Data were collected and analyzed using SPSS Statics (version
22.0, SPSS Inc., Chicago, IL, United States). The diversity among
different groups was analyzed by analysis of variance (ANOVA),
followed by Tukey’s and Dunnett’s T3 multiple comparison tests.
In these analyses, P < 0.05 was considered to be statistically
significant, while P < 0.01 was considered to be an extremely
significant difference.

RESULTS

Sequencing Results

The pyrosequencing of milk samples generated a total of
2,585,190 reads, of which 2,396,471 (92.7%) effective reads were
ultimately analyzed by the RDP classifier after exclusion due to
trimming and quality control. The number of effective reads
per sample ranged from 30,693 to 44,837 (median 38,358; mean
38,089). The milk samples were classified into groups A, B, M,
H, AM, AH, BM, and BH according to their origin. As shown
in Figure 1A, the violin plots showed the distribution of the
number of effective reads in each group. The medians of the
number of effective reads in group A, B, M, H, AM, AH, BM,
and BH were 37767, 39553, 38577, 37585, 38227, 36982, 39577,
and 39274, respectively. No significant differences were observed
among the number of effective reads of different groups. These
data demonstrate that the relative abundance could be used in
the following study. As shown in Figure 1B, more than 97.5%
of the sequences in each group could be assigned to the level
of phyla, class, order and family. Additionally, more than 85.4%
of the sequences in each group could be assigned to the level of
genus, and the percentage of sequences assigned to the level of
species ranged from 31.6 to 36.8%.

Microbiota of Milk Samples

The 10 most abundant microbial phyla (average
abundance > 0.1%) are shown in Figure 2A. For each group,
Proteobacteria was the major phylum with a prevalence that
ranged from 39.96 to 48.30%, followed by Firmicutes (30.25-
40.28%), Bacteroidetes (8.38-12.21%), and Actinobacteria
(5.17-11.29%). All four phyla above were observed in all
milk samples. At the genus level, a genus with a relative
abundance higher than 0.5% in at least one group was
defined as the predominant genus. We observed a total of
32 predominant genera as shown in Figure 2B. It was found that
the prevalent genera were diverse in different groups. The six
most prevalent microbial genera of group A were Halomonas,
Ruminococcus, Listeria, Klebsiella, Escherichia-Shigella, and
Acinetobacter, while the six most prevalent microbial genera
of group B were Streptococcus, Halomonas, Atopostipes,
Corynebacterium, Ruminococcus, and Comamonas. Some genera,
such as Halomonas and Ruminococcus were prevalent in both
groups A and B. When the samples were classified into groups M
and H, our analysis demonstrated that Streptococcus, Halomonas,
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distribution of the number of effective reads in each group, and the black points represent the medians of the number of effective reads (A). The colors represent the
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and Corynebacterium were the most abundant genera in group
M, while Halomonas, Acinetobacter, and Atopostipes were the
most abundant genera in group H. It was also noted that
Halomonas, Acinetobacter, and Atopostipes were the most
prevalent genera in group AM, while Streptococcus, Halomonas,
and Corynebacterium were the most prevalent genera in group
BM.

The hierarchically clustered heatmap of microbial profiles of
each milk sample was generated (Figure 3). The prevalence of
microbial genera in different samples was diverse. Some mastitic
milk samples such as AM7, AM14, and BM13 were dominated
by one genus, while others, especially the healthy milk samples
including AH14, AH16, and BH15, showed a more balanced
profile. Our results showed that 17 milk samples from group A
and 23 milk samples from group B formed two distinct cluster
(clades I and II), while the milk samples from groups M and H
could not be completely separated. The milk samples of groups
AM and AH and of groups BM and BH were also largely
indistinguishable. This result suggested the microbial profiles

were more similar in the milk samples collected from the same
dairy farm.

Alpha and Beta Diversities of Milk

Microbiota

Alpha diversity can be used to determine the microbial diversity
of a given sample (Bailey et al., 2013). To analyze the microbial
diversity of each milk sample, the Shannon index, which reflects
the species richness and evenness, was analyzed. The violin
plots showed the distribution of the Shannon indices of milk
samples in each group (Figure 4A). We detected no significant
difference between the Shannon indices of groups A and B.
However, the Shannon index of group M was significantly lower
than that of group H. Additionally, similar trends were found
between groups AM and AH and between groups BM and BH.
These results indicated that the microbial diversity of healthy
groups was higher than that of the mastitis groups. Beta diversity
can determine the microbial diversity between different samples
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(Bailey et al., 2013). To compare whole microbial composition
similarities, PCA was conducted using genus-level taxonomic
profiles. As shown in Figure 4B, the clustering of the milk
samples based on their microbiota made it possible to separate
samples from groups A and B. However, there was no clear
separation of milk samples from groups M and H within the
PCA plots. The distribution of the milk samples from group AM
revealed an overlap with group AH, and a similar result was
found between groups BM and BH.

Compositional Differences Between

Different Groups

To identify differences in microbial composition of milk samples
between different groups, LEfSe was used to provide biomarkers
at the genus-level with a linear discriminant analyses (LDA)
score > 3 (P < 0.05). As shown in Figure 5A, 15 genera
were statistically significantly different between group A and
group B. Six genera (Listeria, Klebsiella, Escherichia-Shigella,
Methylobacterium, Bacillus, and Weeksella) were significantly
enriched in group A, while nine genera (Streptococcus,
Atopostipes, Corynebacterium, Arcobacter, Flavobacterium,

Enhydrobacter, Aeromonas, Marinospirillum, and Acholeplasma)
were significantly enriched in group B. This result indicates that
nearly half of the predominant bacterial genera were different
between the two dairy farms. The comparison between groups
M and H showed that Acinetobacter were more prevalent in
group H, while Streptococcus were more prevalent in group M
(Figure 5B).

To identify the biomarkers between the bacterial composition
of the healthy and mastitic milk samples obtained from the
same dairy farm, the comparisons were also performed between
groups AM and AH (Figure 5C) and between groups BM and BH
(Figure 5D). Our results showed that three genera (Escherichia-
Shigella, Klebsiella, and Streptococcus) were identified as
biomarkers in group AM, while six genera (Acinetobacter,
Bacillus, Aquabacterium, Pseudomonas, Propionibacterium, and
Sphingomonas) were identified as biomarkers in group AH.
The comparison between groups BM and BH showed that
Acinetobacter, Atopostipes, and Aerococcus were more enriched
in group BH, while Streptococcus and Corynebacterium were
more enriched in group BM. Additionally, the comparisons
between groups AM and BM and between groups AH and BH
were also performed. As shown in Figures 5E,F, the different
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genera identified between groups AM and BM and between
groups AH and BH were similar to the different genera identified
between groups A and B.

Co-occurrence Network Analysis

The co-occurrence network analysis was applied in order to
obtain a view of the potential relationships among predominant
bacterial genera in milk samples. As shown in Figure 6, the
co-occurrence network consisted of 20 nodes and 32 edges,
with 27 positive and 5 negative correlation. Interestingly, five
gut-associated genera (Prevotella, Ruminococcus, Bacteroides,
Rikenella, and Alistipes) displayed positive correlation coeflicients
with each other, and each individual pairing between two
genera showed a strong correlation (Spearman’s correlation
coefficient value > 0.8), suggesting that these genera are likely
to share a symbiotic or syntrophic relationship. It was also
observed that the occurrence of Bacillus was negatively correlated
with the occurrence of Staphylococcus and Comamonas, while

the presence of Weeksella was negatively correlated with the
presence of Aeromonas, Comamonas, and Atopostipes. Notably,
although the co-occurrence network shed light on the complex
relationships of bovine milk microbiota, empirical evidences are
needed to support their natural presence.

DISCUSSION

Bovine mastitis is a highly prevalent disease in dairy herds
and it is arguably the most important disease that affects the
dairy industry worldwide (Ruegg, 2017). Here, we used high-
throughput 16S rRNA gene sequencing to analyze the bacterial
community of milk samples collected from two dairy farms with
different IRSCMs. Over the past decade, different hypervariable
(V) regions of 16S rRNA including V1-V2, V1-V3, V3, V3-V4,
V3-V5, V4, V4-V5, V5, V5-V6, V5-V9, V6, and V6-V8 have
been sequenced to describe the microbial community (Zhang
et al., 2018). For bovine milk, V1-V2 region was used frequently
to describe the bacterial diversity (Oikonomou et al., 2012, 2014;
Kuehn et al., 2013; Rodrigues et al., 2017). It is recognized that the
selection of V regions can affect estimates on OTU richness and
diversity, and the use of different V regions means that results are
often not directly comparable, diminishing the value of inferences
that can be drawn (Sperling et al., 2017). Therefore, to compare
with the bovine milk microbiota described in previous study
(Oikonomou et al., 2012, 2014; Kuehn et al., 2013; Rodrigues
et al,, 2017), the V1-V2 region was selected to sequence in this
study. However, as has been suggested by Sperling et al. (2017),
more than one marker region is needed to provide more reliable
inferences in the future study.

Contrary to previous studies that only focus on the
comparison between microbial composition of healthy and
mastitis milk samples (Oikonomou et al., 2012, 2014; Kuehn
et al., 2013), we also focused on the microbial diversity between
different farms. Our study revealed strong variation between
the microbiota of milk samples, with some samples clearly
dominated by one genus, whereas others displayed a more
balanced profile. It was also noted that the milk samples collected
from two farms (A and B) could be clearly separated, while there
was no clear separation of healthy and mastitis samples collected
from the same farm. However, the discriminant analysis made it
possible to identify the genus markers between different groups.

In this study, one of our aims was to compare the microbial
community of milk samples collected from farms A and B. There
were six genera more prevalent in group A and nine genera
more prevalent in group B. Among the six genera more prevalent
in group A, Klebsiella and Escherichia-Shigella were more
enriched in group AM compared to group AH, while Bacillus
was more enriched in group AH. The relative abundance of
Listeria, Methylobacterium, and Weeksella showed no significant
difference between groups AH and AM. Both Klebsiella and
Escherichia-Shigella (particularly Escherichia coli), have been
recognized as the pathogens that cause environmental bovine
mastitis, which is caused by pathogens present in the digestive
tract of cows or their surroundings (Schukken et al., 2012).
Contrarily, Bacillus was found to be more prevalent in group
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FIGURE 5 | LEfSe analysis of microbiota. The microbial genera with significant differences in relative abundance compared between two groups are coded in blue
and yellow as indicated in (A=F). Only the genera with an LDA score > 3 (P < 0.05) are depicted.
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AH than group AM. In addition, our co-occurrence analysis
showed there was a negative correlation between Bacillus and
Staphylococcus, although this correlation had a weak coefficient
value (0.51). These results suggest that Bacillus may contribute to
the overall health of cows, however, which Bacillus species would
be beneficial and its role warrants further investigation.
Although the 16S rRNA sequencing in our study was not
insufficient for accurate taxonomic assignment at the species
level, the percentage of sequences assigned to the level of species
could range from 31.6 to 36.8% in different group. Our result
showed that the sequences, which were assigned to Listeria at
the genus level, were all assigned to Listeria monocytogenes at the
species level. To determine which kind of Listeria species were
present in farm A, we tried to isolate Listeria from 156 milk
samples newly collected from farm A according to the previous
study (Osman et al.,, 2016). Finally, 16 L. monocytogenes strains
(positive rate 10.26%), but no L. innocua and L. ivanovii, were
isolated from farm A. Thus, the Listeria sequences obtained from
farm A in this study should be classified as L. monocytogenes at the
species level. Bovine mastitis caused by L. monocytogenes is rare

(Osman et al., 2016), in addition, the cases of short-live excretion
of L. monocytogenes bacteria in milk samples do not show any
symptoms, and cases of prolonged mastitis due to Listeria are
not reported (Winter et al., 2004). However, L. monocytogenes
has been involved in several outbreaks of listeriosis, occurring
after consumption of contaminated milk and milk products
worldwide (EI Marnissi et al., 2016). Our study indicated that
cows can be healthy reservoirs of L. monocytogenes, thus, there
is a need for continued surveillance for the presence of Listeria
in bovine milk. The Methylobacterium genus includes a group
of strictly aerobic, Gram-negative bacteria which are ubiquitous
and detected in soil, freshwater, and lake sediments (Bracke et al.,
2014). These bacteria have been reported to cause opportunistic
infections in immunocompromised hosts (Sanders et al., 2000).
Recently, Methylobacterium was also observed as a contaminant
in milk samples (Bracke et al., 2014), but no reports have shown a
link to bovine mastitis. The genus Weeksella includes only one
species, Weeksella virosa, that has been isolated from human
clinical specimens (Sankar et al., 2015). Slenker et al. (2012) also
described a fatal case of W. virosa sepsis in a young female with

Frontiers in Microbiology | www.frontiersin.org

October 2018 | Volume 9 | Article 2379


https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Pang et al.

Milk Microbiota With Different IRSCMs

Sphing@monas

Acinet@bacter

Lachi®spira

Enhyd@bacter

Prevotella

Alisgipes

Rumin@goccus

absolute value of Spearman’s correlation coefficient.

PropioniBacterium

Rikénella

FIGURE 6 | Co-occurrence network of the predominant bacterial genera in the milk samples. Each node represents one genus, and each pair of genera connected
by the line has a calculated Spearman’s correlation coefficient value > 0.5 or <-0.5 (P-value < 0.05). Red connecting lines represent the positive significant
correlations and green lines represent the negative significant correlations. The thickness of each connecting line between two nodes (edge) is proportional to the

Aquabagterium

Flavob@&gterium

Corynelgacterium

Comdponas

FacKlamia

Bactépoides

end-stage renal disease. However, similar to Methylobacterium,
no research studies have reported a link between Weeksella and
bovine mastitis.

Among the nine predominant genera more prevalent in group
B, the relative abundances of Streptococcus and Corynebacterium
were significantly higher in group BM, while Atopostipes was
significantly higher in group BH. The relative abundances of
six other genera (Arcobacter, Flavobacterium, Enhydrobacter,
Aeromonas, Marinospirillum, and Acholeplasma) were similar
between groups BH and BM. The Streptococcus genera, including
Streptococcus agalactiae, Streptococcus uberis, and Streptococcus
dysgalactiae, are well-known mastitis-causing pathogens (Klaas
and Zadoks, 2017; Pang et al., 2017). Corynebacterium has also
been identified as the pathogen associated with mastitis in dairy
cows, often being described as contagious (Oultram et al., 2017).
Previous studies reported that Corynebacterium could be detected
in bulk tank milk samples collected from 894 China dairy herds
at a frequency of 17.0% (Bi et al., 2016) and from 1242 dairy
cows in Brazil at a frequency of 22.9% (Goncalves et al., 2016).
In addition, in the microbiome of bulk tank milk, Streptococcus
and Corynebacterium were encountered in significantly higher
relative abundances in the HSCC (high somatic cell count)
group when compared with the LSCC (low somatic cell count)
(Rodrigues et al., 2017). Thus, we speculated that Streptococcus
and Corynebacterium may have been responsible for the higher
IRSCM in farm B.

In previous studies, Aftopostipes isolated from pig manure
was proposed as a new genus in 2004 (Samanta et al.,, 2015)
and has recently been identified as a pig-specific fecal indicator
(Jeong et al., 2011). Atopostipes is also found in the microbial
community of the outer udder skin of calves (Yeoman et al.,
2018). In addition, Atopostipes was exclusively present in
feces and intestinal tissue of EAE (experimental autoimmune
encephalomyelitis)-resistant rats (Stanisavljevic et al, 2016).
However, Atopostipes has never been linked to bovine health or
the safety of milk. During recent years, Arcobacter has emerged
as an important foodborne and waterborne zoonotic pathogen
worldwide and has been classified as a serious hazard to human
health (Ramees et al, 2017). The presence of Arcobacter has
been observed in cow milk (Yesilmen et al., 2014), cow feces
(Van Driessche et al., 2005), and in milk filters in a water
buffalo dairy farm in Italy (Serraino et al., 2013). In addition,
Arcobacter has been isolated from a dairy herd that underwent
an outbreak of mastitis (Logan et al., 1982). However, although
Arcobacter has been associated with reproduction disorders and
mastitis in livestock, it has also been isolated from healthy
animals frequently (De Smet et al.,, 2011). Similarly, our results
showed that Arcobacter was prevalent in farm B, but there was no
significant difference between groups BM and BH.

Except for the genera discussed above, our study found
no significant difference in the prevalence of 17 predominant
genera between the two farms. Interestingly, five predominant
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genera (Prevotella, Ruminococcus, Bacteroides, Rikenella, and
Alistipes), which were prevalent in all milk samples, were all
typically gut-associated genera (Huws et al., 2011). Previous
studies have also shown that Prevotella (Oikonomou et al., 2012,
2014), Ruminococcus (Oikonomou et al., 2012, 2014; Kable et al.,
2016; Oultram et al., 2017), Bacteroides (Oikonomou et al.,
2012, 2014; Oultram et al., 2017), and Alistipes (Gschwendtner
et al., 2016) could be detected in cow milk. In addition, our
study showed these five genera had strong positive correlation
coefficients with each other. These findings suggest that gut
bacteria can be one of the predominant microbial contamination
in milk. The gut bacteria in milk can be contaminated from
the herd feces (Doyle et al., 2017b). Alternatively, as described
by several authors (Addis et al., 2016), the gut bacteria would
also reach the mammary gland through an endogenous entero-
mammary pathway. However, these gut-associated genera may
not contribute to the appearance of bovine mastitis since
there were no significant differences between their relative
abundances in each group. Halomonas was identified as the
most prevalent genus in both farms A and B. Halomonas, as
a negative bacterium, has been detected in Danish raw milk
cheeses (Masoud et al., 2011) and is found to be the most
frequent OTU in short-ripened cheeses (Schornsteiner et al,
2014). As speculated by Ishikawa et al., Halomonas in dairy
products originated in marine environments and was introduced
via the sea salt added to cheese surfaces during washing and dry
salting (Ishikawa et al., 2007). However, our study indicated that
Halomonas is a frequent contaminant of milk microbiota, thus,
the Halomonas in dairy products may come directly from raw
milk.

In this study, we also focused on the bacterial genera which
were more prevalent in group M and group H to identify
the mastitis-associated pathogens and the potential beneficial
bacteria present in both dairy farms. Streptococcus was identified
as the core mastitis-associated pathogen in both farms A
and B, while Acinetobacter was more prevalent in group H.
In the assessment of the human milk microbial community,
healthy controls possessed relatively more Acinetobacter in
comparison to the mastitic group (Patel et al., 2017). It was
also reported that Acinetobacter is a member of the core
milk microbiota (Kable et al., 2016) and is frequently detected
in raw milk (Quigley et al, 2013). Although the role of
Acinetobacter in milk is still unknown, it is well documented that
Acinetobacter is frequently associated with antibiotic resistance
and human clinical infections (Dadar et al., 2012). Recently,
it has been shown that Acinetobacter strains isolated from
raw milk also exhibited antibiotic resistance (Gurung et al,
2013). Thus, although Acinetobacter may be important for
the healthy status of cows, it is needed to examine the
antibiotic resistance and genetic characteristics of Acinetobacter
strains in milk samples since they could be a public health
concern.

Additionally, the microbial diversity was also compared
between groups AH and AM, and between groups BH and
BM. Our study indicated that Klebsiella, Escherichia-Shigella,
and Streptococcus were the pathogens that caused mastitis in
farm A, while Streptococcus and Corynebacterium were the

mastitis-causing pathogens in farm B. These genera are all
well-recognized mastitis pathogens. It was also observed that
Propionibacterium was identified as a biomarker in group
AH. Previous studies have shown that Propionibacterium was
present in all milk samples obtained from healthy quarters
of bovine (Oikonomou et al., 2014), and the abundance of
Propionibacterium is negatively correlated with the total bacterial
count in cow milk (Li et al., 2018). In addition, Propionibacterium
was only identified in the teats of non-infected quarters of dairy
cows by denaturing gradient gel electrophoresis (DGGE) (Braem
et al., 2012). These studies indicate that Propionibacterium may
be potential beneficial bacteria for cows and warrant further
investigation into its role in milk.

In our study, it became apparent that the 16S rRNA gene
sequencing approach can be very helpful for elucidating
the microbiota of milk. In conclusion, our study found
that the relative abundances of the pathogens Streptococcus
and Corynebacterium in farm B were 1574 and 6.38%,
respectively, while the relative abundances of pathogens
Klebsiella, Escherichia-Shigella, and Streptococcus in farm A were
4.41, 3.95, and 1.46%, respectively. The relative abundance of
all pathogens in farm B (22.12%) was higher than that of all
pathogens in farm A (9.82%). Of note, although Streptococcus
was present in both farms A and B, the relative abundance of
Streptococcus in farm B (15.74%) was significantly higher than
that in farm A (1.46%). In contrast, the genera Bacillus were
more enriched in both groups A and AH. These results may
helpful for explaining the lower IRSCMs in farm A compared
to farm B. Additionally, the genera including Halomonas
and the gut-associated genera Prevotella, Ruminococcus,
Bacteroides, Rikenella, and Alistipes were identified as the
commensal bacteria prevalent in all milk samples. Moreover,
we also found that L. monocytogenes was enriched in group
A, suggesting there is a need for surveillance of the milk
microbiota.

Admittedly, while 16S rRNA gene sequencing is a powerful
approach to describe bacterial community and leads to the
discovery of many unexpected evolutionary lineages, certain
limitations do have to be considered (Salter et al., 2014;
Oultram et al, 2017). These limitations, including choices
relating to sample collection, sample storage and preservation,
DNA extraction method, contaminating microbial, amplifying
primers, sequencing technology, read length and depth and
bioinformatics analysis techniques, can affect the OTU richness
and diversity (Salter et al., 2014). However, to overcome these
limitations, many efforts have been made to evaluate the influence
of sampling technique (Metzger et al, 2018), sample storage
condition (Doyle et al., 2017a) and DNA extraction methods
(Lima et al, 2018), design new amplifying primers (Bahram
et al.,, 2018), remove bacterial DNA contamination (Karstens
et al., 2018), develop sequencing technology (Tedersoo et al.,
2018) and bioinformatic analysis techniques (Gasc and Peyret,
2018). Recently, the full-length 16S rRNA sequencing technology
(Pootakham et al., 2017) and method (Fuks et al., 2018) have
been demonstrated to be useful for the accurate classification
of the bacterial community composition at the species level.
As 16S rRNA sequencing becomes cheaper and faster to
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perform, and with new technology developing, it is likely to
become a cost-effective and more reliable approach to determine
microbial community.

Overall, our study revealed complex diversity between
the microbial communities of dairy farms with different
IRSCMs. This suggests that varying IRSCMs may not only be
determined by the heterogeneity and prevalence of mastitis-
causing pathogens but also related to the potential beneficial
bacteria. Further studies could therefore aim to sequence more
samples collected from more dairy farms with different IRSCMs
to determine the relationship between milk microbiota and
IRSCMs. Here, we encourage that the milk microbiota be
examined for bovine mammary gland health management, which
can provide complementary information such as the raw milk
microbial ecology, and the detection of fastidious bacteria and
polymicrobial infections. The metataxonomic approach, which
could be combined with the bacterial culture or targeted specific
real-time PCR, would not only be helpful for establishment
of a targeted mastitis control system but also for the control
of the safety and quality of dairy products. This would not
only be helpful for establishment of a targeted mastitis control
system but also for the control of the safety and quality of dairy
products.
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