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Palm oil production in Indonesia increased constantly over the last decades, which
led to massive deforestation, especially on Sumatra island. The ongoing conversion
of rainforest to agricultural systems results in high biodiversity loss. Here, we present
the first RNA-based study on the effects of rainforest transformation to rubber and
oil palm plantations in Indonesia for the active soil bacterial communities. For this
purpose, bacterial communities of three different converted systems (jungle rubber,
rubber plantation, and oil palm plantation) were studied in two landscapes with rainforest
as reference by RT-PCR amplicon-based analysis of 16S rRNA gene transcripts. Active
soil bacterial communities were dominated by Frankiales (Actinobacteria), subgroup 2
of the Acidobacteria and Alphaproteobacteria (mainly Rhizobiales and Rhodospirillales).
Community composition differed significantly between the converted land use systems
and rainforest reference sites. Alphaproteobacteria decreased significantly in oil palm
samples compared to rainforest samples. In contrast, relative abundances of taxa
within the Acidobacteria increased. Most important abiotic drivers for shaping soil
bacterial communities were pH, calcium concentration, base saturation and C:N ratio.
Indicator species analysis showed distinct association patterns for the analyzed land
use systems. Nitrogen-fixing taxa including members of Rhizobiales and Rhodospirillales
were associated with rainforest soils while nitrifiers and heat-resistant taxa including
members of Actinobacteria were associated with oil palm soils. Predicted metabolic
profiles revealed that the relative abundances of genes associated with fixation
of nitrogen significantly decreased in plantation soils. Furthermore, predicted gene
abundances regarding motility, competition or gene transfer ability indicated rainforest
conversion-induced changes as well.

Keywords: 16S rRNA gene transcripts, soil bacterial communities, rainforest conversion, active bacterial
communities, oil palm plantation, Sumatra

INTRODUCTION

Palm oil and rubber production play a crucial role for the economy in several countries. Especially
in Indonesia, as one of the top producers of palm oil and rubber, conversion of natural systems
to agricultural systems almost doubled from 2000 to 2009 (Angelsen, 1995; McCarthy, 2010;
Oosterveer, 2015; Ivancic et al., 2016). In most cases, primary and secondary rainforests were
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converted to managed cash crop systems. Since the major
part of the global biodiversity is inherited by tropical
forests, the enormous biodiversity harbored by Indonesians
rainforests was reduced drastically during this the process.
Consequently, deforestation and conversion to agricultural
systems in tropical regions is considered the biggest threat
to global biodiversity. This affects not only animal and plant
communities, but also microbial communities and tropical
ecosystem functions as well (Donald, 2004; Sodhi et al.,
2004; Koh et al., 2011; Wilcove et al., 2013; Barnes et al.,
2014).

Microbial and, in particular, bacterial communities drive
almost all biogeochemical cycles and are involved in nutrient
cycling in soils (Fierer and Jackson, 2006; Delmont et al.,
2011, 2012). Therefore, soil bacteria are closely connected to
the lifestyles of other organisms and nutrient availability itself.
Additionally, it was suggested that the community response
of soil bacteria toward changes in nutrient availability and
plant diversity follows predictable patterns (Waldrop et al.,
2000; Leff et al., 2015). In soil, the involvement of microbes
in nutrient cycling is crucial for soil fertility and therefore for
plant growth and growing cash crops (Bhardwaj et al., 2014;
Lynch, 2015). In the last years, several studies investigated the
effects of logging and land transformation on soil bacterial
communities and confirmed that rainforest conversion to oil
palm or rubber plantations has severe impacts on soil prokaryotic
diversity and composition (Lee-Cruz et al., 2013; Schneider
et al., 2015; Kerfahi et al., 2016). Soil bacterial and archaeal
diversity increased with increasing land use intensity and biomass
decreased with pH and C:N ratio, which were identified as
main abiotic drivers of bacterial community formation (Allen
et al., 2015; Schneider et al., 2015). It was also shown that
some procedures of rainforest exploitation, like logging, appear
reversible, which makes further research on the topic even more
crucial (Tripathi et al., 2012; Lee-Cruz et al., 2013; Kerfahi et al.,
2016).

The results of most previous studies were obtained
by DNA-based 16S rRNA gene analyses representing the
entire community whereas effects on activity and functional
distribution of prokaryotic groups have rarely been addressed.
Since microorganisms can be abundant while remaining
inactive or dormant and even can have different numbers
of ribosomal operons, the actual impact and importance
for the corresponding communities or ecosystem can be
biased (Urich et al., 2008; Větrovský and Baldrian, 2013;
Wemheuer et al., 2014). To avoid this issue, analyses based
on RNA are required as well. Studies that aim to analyze
bacterial activity by using 16S rRNA transcripts are well
established for marine environments (Wemheuer et al., 2012,
2014; Rodríguez-Blanco et al., 2013; Zhang et al., 2014;
Stibal et al., 2015). In soil and other terrestrial environments,
however, only a limited number of RNA-based studies are
available, which address the effects on land use conversion
and showed that entire community analysis alone can lead to
false conclusions regarding community activity (Foesel et al.,
2014; Herzog et al., 2015; Mueller et al., 2016; Ragot et al.,
2016).

As part of the “Ecological and Socioeconomic Functions
of Tropical Lowland Rainforest Transformation Systems
(Sumatra, Indonesia)” (EFForTS) collaborative research center,
we investigated the impact of rainforest conversion on the
active soil bacterial community and deduced their functional
responses. This study is one of the first that investigates the effect
of rainforest transformation to rubber and oil palm plantations
on active bacterial soil communities in Indonesia.

Three different agricultural systems comprising intensively
managed oil palm plantations, rubber plantations and jungle
rubber were studied and compared to secondary rainforest
in two different landscapes in Southwest Sumatra, Indonesia.
Based on large-scale amplicon-based analysis of 16S rRNA
transcripts, changes in the active bacterial communities were
analyzed and correlated with biotic and abiotic factors.
Besides investigating the active bacterial community composition
and diversity, we also investigated effects on functional
traits and compared our results to previous DNA-based
studies.

As a guideline we followed three hypotheses: (a) Rainforest
transformation leads to no significant changes of soil bacterial
diversity, whereas (b) active bacterial community structure
and composition is significantly affected. Furthermore, we
hypothesized that (c) for rainforest and transformed land use
systems specific indicator species can be detected and predicted
metabolic profiles show significant functional shifts of the active
bacterial community.

MATERIALS AND METHODS

Sampling and Sample Treatment
Two landscapes in southwest Sumatra (Indonesia), the Harapan
Rainforest Concession (H) and Bukit Duabelas (B), were selected
for sampling (Figure 1). Sampling was conducted on the plots
as described by Schneider et al. (2015). Soil texture differed
with primarily loam Acrisol soils in Harapan and clay Acrisol
soils in Bukit Duabelas. Both landscapes harbored secondary
rainforest (named “BF” and “HF”) and three different land use
systems representing different land use intensities, which derived
from rainforest conversion. The agricultural systems comprise oil
palm plantations (monocultures of Elaeis guineensis; designated
“BO” and “HO”), rubber plantations (monocultures of Hevea
brasiliensis; designated “BR” and “HR”) and rubber agroforest
(designated “BJ” an “HJ”). The latter represents a traditional
agroforestry system known as “jungle rubber” in which rubber
trees are planted in secondary rainforest without fertilizer or
liming input. Each land use system consisted of four core plots
in each landscape, with three subplots (five by five meters) per
core plot, resulting in 96 subplot samples out of the 32 core plots
in total. A soil corer was used to take three cores at each subplot
of the upper seven cm of top soil and a diameter of five cm.
The three soil samples per subplot were homogenized and coarse
roots and stones (>5 mm) were removed. To prevent RNAs from
degradation, RNAprotect Bacteria Reagent was applied to the
samples as recommended by the manufacturer (Qiagen, Hilden,
Germany). Samples were stored at−80◦C until further use.
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FIGURE 1 | Sampling sites on Sumatra, Indonesia. Two landscapes within the province of Jambi were studied. Four core plots per land use system were analyzed,
with three subplots per core plot in each landscape. The landscapes Bukit Duabelas and Harapan are indicated by “B” and “H” in the Plot ID. The conservation areas
“Bukit Duabelas National Park” and “Harapan Rainforest Concession” are displayed as cross-hatched brown areas.

Age of rubber trees ranged from 15 to 40 and 6 to 16 years
in jungle rubber and rubber plantations, respectively. In oil palm
plantations, the age of the tress varied between 8 to 15 years
(Kotowska et al., 2015). Management for the two plantation types
included application of herbicides every 6 months and addition
of inorganic NPK fertilizer [100–300 kg ha−1 yr−1 in rubber
plantations and 300–600 kg ha−1 yr−1 in oil palm plantations
(Kotowska et al., 2015)]. All soil parameters [pH, P, N, C, C:N
ratio, Al, Ca, Fe, K, Mg, Mn, Na, effective cation exchange
capacity (ECEC) and base saturation] were retrieved from Allen
et al. (2015).

RNA Isolation, cDNA Synthesis, and 16S
rRNA Amplification
To analyze the active part of the bacterial communities, RNA was
isolated from all 96 samples by using the MoBio PowerSoil RNA
Isolation Kit (MO BIO Laboratories, Hilden, Germany). Isolation
was initiated by using 0.5 g sample material. Residual DNA was
removed by treatment with Turbo DNase as suggested by the
manufacturer (Applied Biosystems, Darmstadt, Germany). The
reaction mixture was subsequently purified and concentrated by
using the RNeasy MinElute Cleanup Kit as recommended by the
manufacturer (Qiagen). To verify the complete removal of DNA,
a PCR reaction targeting the 16S rRNA gene was performed
as described by Schneider et al. (2015). RNA yields were
estimated by employing a Qubit R© Fluorometer as recommended
by the manufacturer (Thermo Fisher Scientific, Waltham, MA,
United States).

RNA was converted to cDNA by using the SuperScript R©

III Reverse Transcriptase (Thermo Fisher Scientific,
Waltham, MA, United States). As described by Wemheuer
et al. (2015), a specific primer for the conserved region
downstream to the targeted bacterial 16S rRNA gene region (5′-
CCGTCAATTCMTTTGAGT-′) was used for cDNA synthesis.
The reaction mixture (20 µl final volume) contained 4 µl
of fivefold reaction buffer, 500 µM of each deoxynucleoside
triphosphate, 5 mM DTT, 1 µM reverse primer, 1 U RiboLockTM

RNase Inhibitor (Thermo Fisher Scientific, Schwerte, Germany)
and 200 U of reverse transcriptase. The solution was incubated
at 55◦C for 1 h and subsequently inactivated by incubation at
70◦C for 15 min. To remove residual RNA in the RNA/DNA
hybrids, 2.5 U RNase H (Thermo Fisher Scientific, Schwerte,
Germany) was added and incubated at 37◦ for 15 min followed
by an additional inactivation at 65◦C for 10 min. Obtained cDNA
was subsequently used for amplification of the hypervariable
V3 to V5 regions of the 16S rRNA transcript [Forward primer:
V3for_B 5′-CGTATCGCCTCCCTCGCGCCATCAG-MID-
TACGGRAGGCAGCAG-3′ (Liu et al., 2007) reverse primer:
V5rev_B 5′-CTATGCGCCTTGCCAGCCCGCTCAG-MID-
CCGTCAATTCMTTTGAGT-3′ (Wang and Qian, 2009)]. The
following thermal cycling scheme was used for amplification
of partial bacterial 16S rRNA: initial denaturation at 98◦C for
5 min, 25 cycles of denaturation at 98◦C for 45 s, annealing for
45 s at 65◦C, and extension at 72◦C for 30 s, followed by a final
extension period at 72◦C for 5 min. All amplicon PCR reactions
were performed in triplicate and pooled in equimolar amounts
for sequencing. The Göttingen Genomics Laboratory determined
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the sequences of the 16S rRNA amplicons by using a 454 GS-FLX
sequencer and Titanium chemistry following the instructions of
the manufacturer (Roche, Mannheim, Germany) for amplicon
sequencing.

Analysis of 16S rRNA Transcripts
Raw sequences were processed and analyzed using QIIME 1.9.1
(Caporaso et al., 2010). Sequences with lengths below 300
and over, 1000 bp, quality scores below 25 and homopolymer
stretches of more than 8 bp were removed by employing
split_libraries.py. Denoising was performed with Acacia (default
settings), chimera removal with UCHIME and reverse primer
removal with cutadapt (Edgar et al., 2011; Bragg et al., 2012).

Determination of operational taxonomic units (OTUs)
was performed at genetic divergence of 3% by employing
the pick_open_reference_otus.py script with the SILVA NR
SSU 128 database as reference. Taxonomic classification
was performed with the same reference database and
parallel_assign_taxonomy_blast.py script. OTU tables were
created by employing make_otu_table.py. Further polishing
including removal of singletons, chloroplast sequences,
unclassified OTUs and extrinsic domain OTUs) was carried
by employing filter_otu_table.py. Comparison of samples was
performed by creating subsamples with identical sequence
numbers (6,650 per subsample). Rarefaction estimates were
done by alpha_rarefaction.py. Diversity indices, Shannon
index and PD (phylogenetic diversity) index were calculated
by alpha_diversity.py. Statistical tests were performed in R
by employing standard functions and the “vegan” package
(R Development Core Team, 2017). Data distribution and
homogeneity of variance were determined by the Shapiro test,
implemented in R (R Development Core Team, 2017). For
determination of significant differences between treatments and
samples, PERMANOVA analysis was performed with the “vegan”
and “RVAideMemoire” packages in R. The “vegan” package was
also used for calculation of distance matrices, clustering analysis
and non-metric multidimensional scaling (NMDS) based on a
weighted UniFrac distance matrix (Lozupone et al., 2011). For
NMDS analysis, sample sequences were merged at core plot level
with a resulting subsample size of 19,950.

For statistical analysis of abundance differences of single
taxonomic groups between land use systems, normal distribution
of values was tested first with Shapiro test in R. Depending
on the result, normally distributed samples were analyzed with
an ANOVA and Tukey test as post hoc tests. Non-normally
distributed samples were tested by Kruskal–Wallis test and
Pairwise Wilcoxon test as post hoc tests. Results were interpreted
as significant with p < 0.05.

Identification of bacterial genera associated to the analyzed
land use systems was performed by using the “Indicspecies”
package in R. We calculated an abundance-based version of
the phi coefficient of association, the point biserial correlation
coefficient via the multipatt command based on abundance based
OTU data (Supplementary Table S2). Prior to analysis, all OTUs
belonging to the same genus were summarized. We visualized
the associated taxa in a network that used the analyzed land
uses as source nodes and the associated bacterial taxa as nodes,

while the correlation coefficients were used as edges. Only taxa
with significant correlation coefficients (p < 0.05) were included.
Network generation was performed with Cytoscape version 3.5.1
by using the edge-weighted spring embedded layout algorithm,
with edge width corresponding to the correlation coefficients and
taxa abundance to node size.

Analysis of activity and metabolism was performed via
functional predictions, which were calculated on version 123
of the SILVA database with the “Tax4Fun” package in R and
visualized with the “gplots” package in R (Asshauer et al., 2015).

Accession Numbers
The 16S rRNA transcript sequences were deposited in the
National Center for Biotechnology Information (NCBI) Sequence
Read Archive (SRA) under accession number PRJNA278020.

RESULTS AND DISCUSSION

Impact of Different Land Use Systems on
Active Soil Bacterial Community
Composition
We analyzed a management gradient with increasing intensity
from rainforest reference sites to jungle rubber over rubber
plantations to oil palm plantations in two landscapes. The
entire dataset comprised 1,333,275 high-quality 16S rRNA
transcript sequences, which belonged to 32,280 different OTUs
at species level (3% dissimilarity) (Supplementary Tables
S1, S2). Species richness was highest in oil palm followed by
rubber, rainforest, and jungle rubber (Supplementary Figures
S1, S2 and Table S1). Diversity indices Shannon and PD
did not show significant differences between the analyzed
land use systems (p > 0.11 and p > 0.06, respectively;
Supplementary Table S1). Similar trends were observed in
DNA-based studies targeting the conversion of rainforest to
agricultural systems in which alpha and/or beta diversity
increased as well, although the results were not completely
consistent with respect to statistical significance (Carney et al.,
2004; Tripathi et al., 2012; Schneider et al., 2015; Kerfahi et al.,
2016).

Composition of the active soil bacterial community showed
similar patterns in the corresponding land use systems of both
analyzed landscapes Bukit Duabelas and Harapan (Figure 2).
Proteobacteria decreased continuously with increasing land use
intensity in Bukit Duabelas and in Harapan (46.3 and 52.2% in
rainforest to 29 and 28.3% in oil palm plantation, respectively),
while the abundance of Acidobacteria showed a maximum in
jungle rubber (42.8% in Bukit Duabelas and 47.6% in Harapan)
and rubber systems (47.9% in Bukit and 46.7% in Harapan) before
decreasing again in oil palm (42.5% in Bukit Duabelas and 36.9%
in Harapan).

The different land use systems within the landscapes
showed significant changes in the active bacterial community
composition (p < 0.002; Supplementary Table S3). The
abundances of Rhizobiales within the Proteobacteria decreased
with increasing land use intensity (18.5% in rainforest to 10.45%
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FIGURE 2 | Community composition of active soil bacterial communities in three different land use systems and rainforest reference sites in two different landscapes.
All plots were clustered according to their respective land use and landscape. Community compositions are displayed as relative abundances at order level based on
16S rRNA sequences obtained from extracted soil RNA. Taxa with abundances below 1% in each land use system were summarized as “rare taxa.” The detected
orders are grouped to corresponding phylum (for details see Supplementary Table S2).

in oil palm for Bukit Duabelas and 17.3% in rainforest to 10.6% in
oil palm for Harapan), whereas Frankiales of the Actinobacteria
increased (13% from rainforest to 15.6% in oil palm in Bukit
Duabelas and from 8.6% in rainforest to 12.4% in oil palm
in Harapan). Interestingly, Acidobacteriales and especially the
Acidobacteria subgroup 2 showed an increase of abundance from
rainforest (13.4% in Bukit Duabelas and 13% in Harapan) to
rubber (22.6% in Bukit Duabelas and 19.6% in Harapan), which
decreased in oil palm (17.9% in Bukit Duabelas and 18.1% in
Harapan). Proteobacteria and Acidobacteria were reported to be
very abundant at DNA level in the studied sites and in other
locations (Rousk et al., 2010; Tripathi et al., 2012; Schneider
et al., 2015). Here, at RNA level, Proteobacteria and Acidobacteria
were the most abundant phyla as well. This is not a surprise,
since Acidobacteria and Alphaproteobacteria were previously
reported as generally high abundant in soils and important for

decomposition of soil carbon (Hansel et al., 2008; Leff et al.,
2012). Proteobacteria and Acidobacteria were reported to be
very abundant at DNA level in the studied sites and in other
locations (Rousk et al., 2010; Tripathi et al., 2012; Schneider
et al., 2015). Here, at RNA level, Proteobacteria and Acidobacteria
were the most abundant phyla as well. This is not a surprise,
since Acidobacteria and Alphaproteobacteria were previously
reported as generally high abundant in soils and important for
decomposition of soil carbon (Hansel et al., 2008; Leff et al.,
2012).

As mentioned before, the abundant Rhizobiales, which
constitute the major part of detected Proteobacteria, decreased
with increased land use intensity and increased fertilizer
application from rainforest to oil palm plantation. As Rhizobiales
are known to be involved in plant-associated and free-living N2
fixation, the higher availability of usable nitrogen compounds in
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fertilized systems reduce the requirement for microbial nitrogen
fixation and favors other phylogenetic groups (Yoneyama
et al., 2017). Furthermore, denitrification might be affected
as well, since several taxa within the Rhizobiales were also
reported to be involved in nirK-mediated denitrification (Bremer
et al., 2007; Yoshida et al., 2009). In contrast, nitrification-
related taxa like the Nitrosomonadales or Nitrospira increased
from rainforest to rubber and oil palm plantations (relative
abundances lower than 1%; data not shown). Additionally,
it is notable that while Proteobacteria abundance decreased,
Acidobacteria abundances (especially subgroup 2) increased,
indicating negative correlations between these groups. Despite
their high abundances in several studies, the ecological role of
Acidobacteria in soil is still poorly understood. Some studies
provide contradicting results in which positive as well as negative
correlations as response to high nutrient input are mentioned for
this taxon (Kielak et al., 2016). Interestingly, positive correlations
between Proteobacteria and Acidobacteria have been shown as
well, which is contrary to our results. This could be explained
by the differences in acidobacterial subgroups detected in the
other studies and the so far not completely understood roles of
all subgroups within the Acidobacteria (Kielak et al., 2016).

Effects of Abiotic Soil Parameters on
Active Bacterial Communities
Shape and structure of prokaryotic communities are tightly
connected with their surrounding environment and the
corresponding abiotic and biotic environmental factors (Brevik
et al., 2015). Environmental parameters are crucial factors for
investigating soil-borne bacterial communities in agricultural
systems (Rousk et al., 2010). Especially, the severe biodiversity
and nutrient content alterations in agricultural land use systems
compared to rainforest are of high importance for addressing
and understanding the impact of rainforest conversion on
microbial communities (Corre et al., 2006; Junier et al., 2010;
Rousk et al., 2010; Dam et al., 2014). Based on non-metric
multidimensional scaling (NMDS), differences in active
community composition were tightly connected to conversion of
rainforest to agricultural land use systems (Figure 3). Rainforest
samples clustered separately from the converted systems.
Additionally, clustering analysis confirmed that soil bacterial
communities from rainforest core plots are distinct from that in
almost all core plots of the converted systems (Supplementary
Figure S3). Base saturation (p < 0.001, r2 0.410) was one of
the main drivers of active bacterial communities together with
pH (p < 0.001, r2 0.780), Fe content (p < 0.018, r2 0.248), C:N
ratio (p < 0.011, r2 0.30) and Ca content (p < 0.037, r2 0.2392).
The two analyzed landscapes showed no significant difference
in this respect. Base saturation, which displays soil fertility,
exhibited a major impact on composition of active soil bacterial
communities. Additionally, another study conducted on the
same plots reported that base saturation was decreasing with
increasing land use intensities, indicating that decreasing soil
fertility has a major influence on active bacterial community
structure (Allen et al., 2015). Soil pH is known as one of the
major drivers for soil prokaryotic communities and pH changes

FIGURE 3 | Non-metric multidimensional scaling (NMDS) based on a
Weighted UniFrac distance matrix of soil bacterial community composition in
all core plots of three converted land use systems (jungle rubber, rubber, and
oil palm) and rainforest reference sites in two different landscapes. The
detected stress level was 0.1415033 (for details see Supplementary Figure
S4). The 96 subplot samples were merged to core plot level previous to
calculation of the weighted UniFrac matrix. Purple arrows show significant
correlations of abiotic measurements (carbon to nitrogen ratio (C:N), base
saturation (bases), pH, calcium (Ca) and iron (Fe) and diversity metric PD
(p < 0.05).

were described as a common indirect consequence of fertilizer
application in agricultural systems (Fierer et al., 2007; Foesel
et al., 2014; Brenzinger et al., 2015; Herzog et al., 2015; Lammel
et al., 2015; Stempfhuber et al., 2015; Zhalnina et al., 2015;
Kaiser et al., 2016; Zhang et al., 2017). In our samples pH
increased with higher land use intensity from rainforest to oil
palm plantation. As biodiversity did not change significantly,
pH might affect abundance of certain groups and consequently
be the reason for the most prominent observed abundance
changes within the Alphaproteobacteria, Acidobacteriales, and
Actinobacteria.

Allen et al. (2015) suggested that a decreasing carbon to
nitrogen ratio (C:N), which was identified as an additional
significant driver for the active bacterial communities, typically
indicates a shift toward a more bacteria-dominated system
(Foesel et al., 2014; Allen et al., 2015). We identified C:N
as a significant driver and observed for plantations compared
to rainforest a decreasing C:N ratio in Harapan whereas
the Bukit Duabelas samples showed similar values for all
studied land use systems. Fe concentrations decreased from
rainforest to the fertilized land use systems. Iron is often
a limiting factor due to high demand not only of bacteria
(Hibbing et al., 2009; Colombo et al., 2014). Thus, with
decreasing iron content, we would expect a higher degree of
bacterial competition and a community shaping effect of iron
itself. Ca concentrations exhibited significant effects on active
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communities and showed a positive correlation with increasing
land use intensity from rainforest to oil palm plantation. This
is most likely connected to liming practices and therefore to
fertilizer application to counteract soil acidification (Tripathi
et al., 2012). Therefore, it is indicated that soil bacterial
community shifts after rainforest conversion were caused by
fertilizer application, liming and reduction of plant diversity
as suggested in previous studies (Rooney and Kennedy, 2013;
Abdi et al., 2016; Val-Moraes et al., 2016; Liu et al., 2017).
Previously observed changes of soil parameters after rainforest
transformation to oil palm and rubber plantations indicated that
the availability of N and other nutrients rely on continuous
fertilization and liming (Allen et al., 2015). Thus, it is likely
that the observed active bacterial community structure is highly
dependent on ongoing treatment such as fertilizer application
and liming.

Associations Between Specific Taxa of
the Active Bacterial Community and
Analyzed Land Uses
To identify genera, which were significantly associated with the
analyzed land use systems and are suitable as indicators for
one or combinations of land use systems, we calculated the
point biserial correlation coefficient for each genus, which is the
abundance-based counterpart of the phi coefficient. We detected
for 270 (24%) of the 1,124 in total detected genera significant
biserial correlation coefficients (p < 0.05). Most of these genera
were associated to oil palm plantation (153 genera associated
in total, 113 genera exclusively to oil palm) and rainforest (95
genera in total, 62 genera exclusively to rainforest). Furthermore,
the point biserial correlation values and correspondingly the
strength of association to the respective system were highest in
oil palm plantation and rainforest compared to jungle rubber
and rubber plantation (Supplementary Figure S5). The majority
of associated genera in oil palm and rainforest belonged to
the Actinobacteria (oil palm) and Proteobacteria (rainforest)
(Figure 4). This is in accordance to our analysis of community
composition in which Proteobacteria decreased from rainforest
to oil palm plantation whereas Actinobacteria increased.

Strongest unique associations of rainforest were detected for
genera within the Rhizobiales (Beijerinckiaceae), Rhodospirillales
(Acetobacteraceae), and Caulobacterales (Caulobacteraceae).
Since members of the Rhizobiales or Rhodospirillales like
Beijerinckiaceae are associated with nitrogen fixation, the
strong association to rainforest indicates a higher importance
of nitrogen fixation for gaining usable nitrogen than in
fertilized land use systems. Associations were also detected
for Rickettsiales, which are also known for endosymbiotic
relationships with eukaryotes (Taylor et al., 2012). This could
be an indication for the higher biodiversity outside the bacterial
domain in rainforests. The association of the acidobacterial
subgroup 2 to rainforest is surprising, since its abundance
increased from rainforest toward the studied agricultural
land use systems. Except for one genus, all associations of
genera within the Clostridia were exclusively to rainforest.
Their ability to fix nitrogen in anaerobic environments might

FIGURE 4 | Association networks based on the point biserial correlation
coefficient of genera related to the analyzed land use systems. Analyzed land
use systems are displayed as hub nodes, while bacterial genera are displayed
as nodes. Edges represent the point biserial correlation coefficient. Size of
nodes and intensity of edges contribute to average abundance of genera in all
land uses and weight of the respective point biserial correlation coefficient,
respectively. Color of nodes contributes to prominent bacterial phyla. Hub
nodes and edges are colored according to analyzed land use systems
rainforest, jungle rubber, rubber, and oil palm. Only significant associations
were included in the analysis (p < 0.05).

explain this when assuming a higher demand of nitrogen
fixation in rainforest soils compared with agricultural managed
soils (Hayat et al., 2010). Nitrogen-fixing clostridia were
also reported as dominant in Amazonian rainforest soils,
but contrary results have been reported for other tropical
forest soils like the Brazilian Atlantic forest. Thus, these
results indicate a specific association to soil properties rather
than a general affiliation to tropical forest soils (Faoro et al.,
2010).

In oil palm, the majority of associated species belonged to
the Actinobacteria, followed by Proteobacteria. Actinobacteria
are reported as tolerant to higher temperatures, as well as
Chloroflexi, which were exclusively detected as associated taxa
for oil palm (Bouskill et al., 2012). It has been proposed
that higher light availability in oil palm plantations compared
to rainforest, which also results in higher soil temperatures,
affect the soil microbiome (Schneider et al., 2015). We detected
the nitrification-related genus Nitrospirales and two genera
of the Nitrosomonadales exclusively in oil palm plantations
as associated taxa (Lücker et al., 2010; Ma et al., 2013).
This indicates higher degrees of nitrification in oil palm
soils compared to rainforest, probably caused by fertilizer
application and correspondingly nitrogen input, leading to more
favorable conditions for nitrifiers (Ma et al., 2013; Quan et al.,
2016).

Interestingly, the detected genera with highest abundance
belonged to Acidobacteria and were associated with
combinations of land use systems. An uncultured genus
within the subgroup 2 with an average abundance of 14.9%
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in all land use systems was associated with a combination
of jungle rubber, rubber, and oil palm while an uncultured
genus from subgroup 1 with an average abundance of 9.8%
was characteristic for the combination of jungle rubber
and rubber. In general, Acidobacteriaceae increased in
abundance from rainforest to oil palm, with maxima in
jungle rubber and rubber, indicating specific adaptations to
these environments. The ecological role of the numerous
subgroups within the Acidobacteria is under discussion. It
was reported that the abundance of some subgroups increased
during Amazonian rainforest conversion to managed soils
whereas that of other subgroups decreased (Navarrete et al.,
2015).

Overall, we could show that patterns of associated genera
for different land use types and corresponding soil properties
are distinguishable. The observed pattern corresponded to our
other results, indicating a shift from higher abundances and
associations of nitrogen fixation-related taxa in rainforest to
conditions more favorable for groups associated with nitrification
and heat-tolerance in plantations. This indicated a general shift of
bacterial functions within these systems from higher importance
of biological nitrogen acquisition in unfertilized systems to higher
degrees of nitrification in fertilized land use systems.

Relationship Between Rainforest
Conversion and Key Functions of the
Bacterial Community
Besides shape and structures of soil bacterial communities,
functional profiles and measures of activity are necessary to

study the bacterial responses. To obtain these profiles and
activity measurements in ecological studies are often a challenge,
since metatranscriptomes and high sample numbers are needed,
which can be challenging in large scale projects and areas
with infrastructure gaps. An alternative, especially for large
sample numbers, are functional predictions based on 16S rRNA
analysis using bioinformatic tools like “Tax4Fun” (Asshauer
et al., 2015; Koo et al., 2017) or “PICRUSt” (Langille et al.,
2013). It was shown that these tools provide a sufficient
accuracy of functional profiles compared to those derived directly
from metagenomic or metatranscriptomic sequence analyses.
These tools are frequently used in various projects (Langille
et al., 2013; Asshauer et al., 2015; Mukherjee et al., 2017;
Wemheuer et al., 2017). In this study, we used Tax4Fun to
investigate bacterial metabolic activity (Figure 5) and focused
on all pathways that showed an abundance of at least 1 %
(Supplementary Table S4). Within the thereby recovered 27
KEGG categories, relative abundances ranged from 1 to 8%
(data not shown). We observed different patterns of predicted
gene abundances within the analyzed land use systems in both
landscapes, which were expected due to their different properties.
Since previous results showed relations of bacterial community
composition and fertilizer application, as well as bacterial
community associations and land use changes, we analyzed the
changes of relative abundances of predicted genes encoding
marker enzymes for selected metabolic traits, e.g., nitrogen
metabolism (Supplementary Table S5). We analyzed predicted
gene abundances of the ammonium monooxygenase subunit
A (amoA) for nitrification, nitrogenase (nifH) for nitrogen
fixation, nitrous oxide reductase (nosZ) for denitrification

FIGURE 5 | Prediction-based abundance of selected key genes in rainforest and converted land use systems. The selected genes were used as markers for genes
involved in nitrogen cycling, methane oxidation, chemotaxis, and type IV and type VI secretion systems.
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and assimilatory nitrite reductase (nasD, nirK and nirS) for
nitrate/nitrite assimilation (Hai et al., 2009; Pappu et al., 2017).
For methane-related metabolism, we analyzed the gene encoding
the methane monooxygenase (mmoY and mmoZ) (Henckel et al.,
1999; Murrell et al., 2000; Sengupta and Dick, 2017). In order
to address bacterial interactions, we analyzed the chemotaxis
related genes cheA, cheW, cheY, cheX, and cheR and for secretion
systems the type IV secretion system genes virB4 and virD4
and the type VI secretion system genes hcp and vgrG (Cascales
and Cambillau, 2012; Guglielmini et al., 2014; Briegel et al.,
2015; Jones and Armitage, 2015; Zinicola et al., 2015; Fedi et al.,
2016).

In both landscapes, predicted abundances for nitrogenase
and nitrous oxide reductase gene abundances were significantly
different between rainforest and converted systems (Figure 5).
We observed highest numbers in rainforest and lowest in
converted systems (p < 0.05). Predicted gene abundances for
nasD, nirK did not show significant differences (p > 0.05).
The predicted gene abundances for mmoA exhibited significant
higher abundances in rainforest compared to jungle rubber and
plantations (p < 0.0002).

The gene of the nitrous oxide reductase (nosZ) abundances
was significantly higher in rainforest samples compared to
transformed systems (p < 0.0001). Deduced abundances for
the nitrite reductase gene nirS showed significant decreases
from rainforest to all other studied land use systems in
Harapan landscape (p < 0.02), but no significant changes
in Bukit Duabelas Landscape. In contrast to Bukit Duabelas
landscape, amoA showed significantly higher abundance in
Harapan rainforest, while analyzed methane monooxygenases
did not show significant differences (Supplementary Table S5).

Higher abundance of nitrogenase in rainforest suggests,
that biological nitrogen uptake through nitrogen fixation is
decreased in converted systems, which are in accordance to the
recorded suppressed biological nitrogen fixation in converted
systems (Corre et al., 2006; Pajares and Bohannan, 2016). We
assume that the additional input of ready to use nutrients
in agricultural systems is less beneficial for soil bacterial
groups with the ability to fix nitrogen, resulting in lower
abundances of nitrogen fixation related taxa like Rhizobiales
in fertilized systems (Corre et al., 2006; Barron et al., 2009;
Isobe et al., 2012; Waring et al., 2014; Cong et al., 2015;
Pajares and Bohannan, 2016). Interestingly, Alphaproteobacteria,
which include the Rhizobiales, were negatively affected as
well by rainforest conversion as shown in Figure 2. In
Harapan landscape, predicted abundances for genes involved
nitrification were lower in converted systems as well. Methane
metabolism is known to be linked to nitrogen metabolism,
due to similarities between the ammonia monooxygenase and
the methane monooxygenase (Henckel et al., 1999; Murrell
et al., 2000; Sengupta and Dick, 2017). Both enzymes catalyze
similar reactions and the corresponding bacterial groups bear
the potential to outcompete each other (Akiyama et al., 2014;
Zheng et al., 2014). Accordingly, the methane monooxygenase
gene abundance was higher in rainforest than that of ammonia
monooxygenase subunit A gene. Additionally, the predicted
gene abundances for denitrification were higher in rainforest

compared to the other studied systems in both landscapes.
Therefore, we assume that in converted systems with higher
nitrogen disposition and availability, active soil bacterial
communities respond to land use management and higher
nutrient input with decreased nitrogen fixation. A decrease in
nitrification and denitrification seems unlikely though, since
previous studies demonstrated the increase of the activity of
these processes under the influence of fertilizer input (Ma
et al., 2013; Quan et al., 2016; Wang et al., 2018). Additionally,
we observed that taxa which are associated with the above-
mentioned nutrient cycling pathways underwent the most drastic
changes in relative abundance as well. Indicator species analysis
showed that genera with nitrification ability such as Nitrospira
and Nitrosomonadales were detected in oil palm soils (Figure 4).
However, since functional prediction cannot assign all taxa
with their respective functional potential due to a lack of
detailed information about certain groups (e.g., subgroups of
Acidobacteria), additional analysis is required in this specific case
(Kielak et al., 2016).

Abundances of chemotaxis genes cheW and cheR were
highest in rainforest and decreased toward higher land use
intensity (all p-values < 0.05). However, not all observed
differences of the selected chemotaxis-related genes were
highest in rainforest. The cheX gene abundance was lowest
in rainforest and highest in plantations (p < 0.05). No
significant differences were observed for sensor kinase cheA
and response regulator cheY. For all tested chemotaxis-related
genes, except cheA and cheY, we detected significant differences
between rainforest and plantations. The analyzed che genes are
part of the same operon and were shown to be connected
to swarming capacity and especially in pathogens (Lambert
et al., 2015; Fedi et al., 2016). Since we observed significant
differences between rainforest and the other studied land use
systems for almost all tested genes, we assume that rainforest
transformation not only affects nutrient recycling but also
interactions. Additionally, it is possible that due to strong
association of the analyzed che genes with pathogenic lifestyles,
community dynamics might be altered regarding pathogenicity
as well.

The abundance changes of the investigated secretion system-
related functions indicated an impact of rainforest conversion
on interspecific bacterial activity. Type IV secretion system
genes showed significant higher abundance in rainforest
compared to oil palm samples (p < 0.05). We conclude that
exchange of nucleic acids between bacteria is decreased in
nutrient-rich managed land use systems, possibly due to a
lower degree of competition resulting in a lower pressure
for adaptations and hence nucleic acid exchange. Type VI
secretion system genes showed slightly higher abundance
in rainforest compared to oil palm (p < 0.05) as well.
These results hint less negative interaction and competition
by pathogenesis via antibacterial compounds (Tripathi et al.,
2016). In contrast, we previously observed a significant
effect of iron content on the active bacterial community
composition, which is likely caused by competition for this
limiting compound. However, we did not observe similar
trends for all analyzed predicted genes regarding interaction
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and competition, indicating the need for further analysis. We
recorded several significant changes for the studied functions,
but it has to be considered that prediction-based methods only
provide indications, which have to be confirmed by additional
analysis such as full metagenome and metatranscriptome
analyses.

CONCLUSION

We confirmed our first hypothesis (a) that the diversity of the
active bacterial community was not significantly affected by
rainforest conversion. We showed that rainforest transformation
has a significant impact on active bacterial community
composition as suggested in hypothesis (b). Furthermore, we
could show that changes in soil characteristics deriving from
rainforest conversion and management are a major factor in
reshaping the active bacterial community. Additionally, we
identified that change in pH, base saturation, Fe content and
C:N ratio is significant drivers of soil bacterial community
composition. This suggests a direct connection to fertilizer
applications and liming, which affects composition and amount
of available nutrients, i.e., nitrogen-containing compounds.
Rainforest soils and converted systems revealed distinguishable
patterns of associated taxa, which illustrate the changed
requirements for bacterial life in the different land use systems as
mentioned in hypothesis (c). Furthermore, predicted functional
profiles revealed that uptake of nutrients like nitrogen through
biological fixation decreases with higher land use intensity.
It was also indicated that interactions in form of nucleic
acid exchange as well as antagonistic or competitive behavior
were reduced after rainforest conversion and it is likely that
rainforest transformation leads to soil bacterial communities
with severely altered nutrient cycling activity. Thus, active
bacterial communities are significantly affected by rainforest
transformation. In addition to the impact on active community
composition, we could show that changes of soil properties
introduced by management (e.g., fertilizer application) are the

main drivers for adaptations and probably changes in bacterial
functioning.
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