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In the pediatric population, respiratory infections are the most common cause of
physician visits. Although many respiratory illnesses are self-limiting viral infections
that resolve with time and supportive care, it can be critical to identify the causative
pathogen at an early stage of the disease in order to implement effective antimicrobial
therapy and infection control. Over the last few years, diagnostics for respiratory
infections have evolved substantially, with the development of novel assays and the
availability of updated tests for newer strains of pathogens. Newer laboratory methods
are rapid, highly sensitive and specific, and are gradually replacing the conventional gold
standards, although the clinical utility of these assays is still under evaluation. This article
reviews the current laboratory methods available for testing for respiratory pathogens
and discusses the advantages and disadvantages of each approach.
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INTRODUCTION

Acute respiratory tract infections are one of the leading causes of childhood morbidity and
mortality worldwide, and it has been estimated that globally, respiratory infections are responsible
for about 2 million deaths in children between 0 and 5 years of age (Bryce et al., 2005; Kallander
et al., 2008). Approximately 80% of these respiratory infection cases are caused by viral pathogens
such as influenza A and B, respiratory syncytial virus (RSV) A and B, parainfluenza virus types
1–3, adenovirus, rhinovirus, human metapneumovirus (hMPV), and others (Mahony, 2008). The
non-specific clinical presentation of respiratory infections poses a considerable challenge to the
differential diagnosis of these pathogens. Early and accurate diagnosis of the causative pathogens
in respiratory infections is essential to administer appropriate antiviral or antibacterial therapy,
initiate effective infection control measures, and reduce the length of hospital stay (Barenfanger
et al., 2000; Byington et al., 2002; Akers et al., 2017). In the last decade, there has been a remarkable
improvement in the diagnosis of respiratory pathogens with the availability of molecular and point-
of-care (POC) testing. Although an increasing number of laboratories are adopting rapid molecular
assays, conventional testing methods, such as culture and immunodiagnostics are still used. This
review focuses on current laboratory methods for testing for respiratory pathogens, and discusses
the advantages and disadvantages of each approach.

Frontiers in Microbiology | www.frontiersin.org 1 October 2018 | Volume 9 | Article 2478

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.02478
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2018.02478
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.02478&domain=pdf&date_stamp=2018-10-18
https://www.frontiersin.org/articles/10.3389/fmicb.2018.02478/full
http://loop.frontiersin.org/people/620984/overview
http://loop.frontiersin.org/people/626072/overview
http://loop.frontiersin.org/people/515161/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02478 October 16, 2018 Time: 14:56 # 2

Das et al. Laboratory Diagnosis of Respiratory Tract Infections

NON-MOLECULAR METHODS FOR
DETECTION AND IDENTIFICATION OF
RESPIRATORY PATHOGENS

Electron Microscopy
Electron microscopy (EM) is one of the oldest direct examination
methods that has been implemented for both clinical viral
diagnosis and study of viral ultrastructure and pathogenesis
in developed countries (Roingeard, 2008). Historically, EM has
played an instrumental role in identifying novel viral strains in
several outbreak situations, such as the coronavirus associated
with the severe acute respiratory syndrome (SARS) outbreak
(Falsey and Walsh, 2003; Ksiazek et al., 2003). However, despite
several advantages, the use of EM has been limited in respiratory
viral diagnosis as it is expensive, laborious, time-consuming,
and has a greater turnaround time (approximately 3–16 h
including specimen preparation), and is often insensitive when
compared to other diagnostic methods (Goldsmith and Miller,
2009; Zhang et al., 2013). Additionally, EM requires strict control
of experimental conditions, a high concentration of viral particles
(> 105 L−1), and considerable technical skill and expertise for
accurate analysis.

Culture
Detection of viruses by observing the cytopathic effect and
hemadsorption in cell culture has been considered the “gold
standard” for diagnosis of respiratory viral pathogens for decades.
Viruses such as adenovirus, influenza A/B, RSV, and human
parainfluenza viruses are the most common respiratory viruses
that are isolated and detected by cell culture (Olsen et al.,
1993; Winn and Koneman, 2006). The traditional tube culture
method is advantageous for growing a wide variety of viruses,
including novel or unknown viruses, but takes days and often
weeks to provide results. Over the years, modified cell culture
methods such as the centrifugation enhanced shell-vial method
has reduced the turnaround time from 5 to 10 days to 24 h
(Dilnessa and Zeleke, 2017). Shell-vial culture using combination
cell lines allows simultaneous detection of multiple respiratory
viruses and, as compared to conventional culture, has similar
sensitivity for parainfluenza 1-3 (87% vs. 83%) and influenza
A/B (78% vs. 75%), and significantly higher sensitivity for RSV
(73% vs. 42%) (LaSala et al., 2007). Despite these advantages,
many clinically relevant viruses are difficult to grow in culture
(such as rhinovirus and coronavirus) and may produce variable
results (Ieven and Goossens, 1997; Hodinka, 2013). Additionally,
multiple freezing and thawing of the samples prior to testing
can reduce the viral titer, thus effecting the growth in culture.
Therefore, as compared to molecular tests, both traditional tube
and shell-vial culture methods are laborious, exhibit higher false
negative rates, and have longer turnaround times, making viral
culture less clinically relevant (Leland and Ginocchio, 2007;
Ginocchio, 2007; Hematian et al., 2016).

Culture is also the gold standard for detection of atypical
(bacterial) respiratory pathogens, which is followed by
identification and antimicrobial susceptibility testing by various
manual or automated methods (Tenover, 2011). Bacterial culture

can also often be insensitive, especially when specimen adequacy
is not determined by Gram stain or if specimens were collected
after antibiotic exposure (ATS and IDSA, 2005; Woodhead
et al., 2005; Harris et al., 2017). Bacterial culture is also labor
intensive, requires substantial technical expertise, and has a
typical turnaround time of 48 – 96 h if antibiotic susceptibility
testing is performed, and can therefore be considered inadequate
for optimal patient care and guiding effective antimicrobial
therapy (Tenover, 2011).

Antigen Detection Assays
Rapid Immunoassays
Rapid immunoassays (RIAs) can deliver test results in less
than 30 min and are usually performed in the POC setting,
thus allowing the test results to be incorporated into the
clinical decision-making algorithm (Weinberg and Walker,
2005). Among the four primary RIA formats (latex agglutination,
horizontal flow devices, lateral flow devices, and optical
immunoassays), the lateral-flow immunoassay (LFIA) is the
most versatile and popular immunochromatographic method.
RIAs are relatively inexpensive, easy to perform, and most of
them have waived status in the United States according to
the Clinical Laboratory Improvement Act (CLIA) guidelines,
thereby making them invaluable in outpatient clinics, primary
care, emergency, and low resource settings (Ginocchio, 2007).
Currently, commercially available RIAs are mostly limited to
the detection of influenza A virus, influenza B virus, and RSV.
Numerous studies have revealed that RIAs demonstrate overall
poor sensitivity for influenza and RSV (44–95%); however, they
have a higher median specificity (90 to 95%) as compared
to cell culture (WHO, 2005; Leland and Ginocchio, 2007;
Ginocchio, 2007).

In the pediatric population, commercially available
immunoassays have demonstrated high sensitivity (93%)
for detection of RSV, and a systematic review of published studies
has further revealed that the sensitivity of RSV RIAs is relatively
higher for children (81%) than adults (29%) (Slinger et al., 2004;
Chartrand et al., 2015). The higher sensitivity can be attributed
to the fact that pediatric patients often shed higher titers of
respiratory viruses and for a longer time as compared to adults
(Englund et al., 1996; Kawai et al., 2007). Despite the overall
lower sensitivity, RIAs have been deemed a valuable diagnostic
tool in the emergency department as they can significantly
decrease the length of stay, additional ancillary testing, and
antibiotic prescriptions for those children who do test positive
for influenza (Abanses et al., 2006; Blaschke et al., 2014).

Direct Fluorescent Antibody Tests
Direct fluorescent antibody (DFA) testing of nasopharyngeal
wash specimens is considered a rapid and reliable method
for detecting respiratory viral infections. Commercial DFA kits
have demonstrated high sensitivity and specificity for multiple
respiratory viruses such as hMPV (95 and 100%), adenovirus
(62 and 100%), RSV (94 and 96%), and parainfluenza viruses
(88 and 99.7%), although the results can be subjective and
require technical expertise for accurate interpretation (Landry
and Ferguson, 2000; Ohm-Smith et al., 2004; Rocholl et al., 2004;
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Aslanzadeh et al., 2008; Vinh et al., 2008). The high specificity
(99–100%) of DFA indicates that the test can be used as a reliable
detection method, especially during the initial days of the illness,
as was shown by Shafik et al. (2011) for RSV in children.

Serological Tests
Pathogen-specific antibodies typically appear about 2 weeks
after the initial infection and can be detected by serological
tests. Serological tests can successfully identify antibodies to
most respiratory pathogens such as RSV, adenovirus, influenza
A and B, parainfluenza 1-3 virus, etc., and can detect mixed
infections from hospitalized children suffering from acute
respiratory infections, with the exception of infants for whom
an antibody response is usually undetected (Hall et al., 1991;
Chkhaidze et al., 2006). However, it has been reported that
serological assays are significantly less sensitive for the detection
of parainfluenza virus and adenovirus when compared to
molecular methods, such as RT-PCR (Kuypers et al., 2006).
Kuypers et al. (2006) found that RT-PCR detected 40% more
specimens from pediatric patients that were positive for at
least one respiratory virus than were detected by fluorescent
antibody assay (FA). FA testing, in addition to RT-PCR, is
useful for epidemiological studies as it increases the probability
of identifying acute viral infections and has been used for
accurate assessment of respiratory viruses other than influenza in
children (Sawatwong et al., 2012; Feikin et al., 2013; Zhang et al.,
2017).

For bacteria, serological testing is particularly challenging,
especially for identifying atypical bacterial agents such as
Mycoplasma pneumoniae. With varied sensitivity (14% –
77%) and specificity (49% – 97%) as compared to PCR,
serological testing has limited usefulness clinically (Beersma
et al., 2005; Wellinghausen et al., 2006). The clinical utility
of serologic tests is further limited because they require both
acute and convalescent sera to monitor seroconversion or to
identify a four−fold increase in antibody titer (Loeffelholz
and Chonmaitree, 2010). Additionally, serological tests
are not relevant for identifying frequently recurring viral
infections as the serum IgM levels are lower due to
repeated exposure to vaccines or circulating viruses. For
optimal virus specific IgM testing, an acute-phase serum
specimen should be obtained early in the course of illness
(Dunn, 2015).

NUCLEIC ACID AMPLIFICATION TESTS
FOR DETECTION AND IDENTIFICATION
OF RESPIRATORY PATHOGENS

A wide variety of newer, nucleic acid amplification tests
(NAATs) for the detection of respiratory pathogens are
commercially available. These tests are listed in Table 1
and described below according to complexity and pathogen
coverage. The accuracy of respiratory virus detection by
molecular tests is not only dependent on their specific
assay chemistry, but is also critically affected by the type,
quantity, and quality of specimens collected (Dunn, 2015).

Several types of specimens can be used for detection of
respiratory viruses, including: bronchoalveolar lavage (BAL),
throat swab, nasopharyngeal (NP) washes, NP aspirates, lung
aspirates, and NP swabs, although the appropriate specimen
type depends on the specific patient population. For example,
in pediatric patients, obtaining nasal washes and nasal aspirates
is more technically challenging when compared to NP swabs,
especially in severely ill children and in poor resource
settings (Hammitt et al., 2012). It has been observed that
for optimal test results, specimens should be collected within
3–5 days after onset of symptoms to ensure that the sample
has a high concentration of virus particles, viral antigen
or viral nucleic acids, should be transported to the testing
laboratory in refrigerated condition (2–8◦C) in appropriate
transport media, and testing should be performed within 48 h
(Grys and Smith, 2009).

High Complexity Multiplex Panel Assays
Detection of respiratory pathogens by NAATs such as
PCR, nucleic acid sequence-based amplification (NASBA),
transcription mediated amplification (TMA), strand
displacement amplification (SDA), loop-mediated isothermal
amplification (LAMP), rolling circle amplification (RCA),
etc., have gained immense popularity over the past decade.
Large syndromic panels that can detect multiple pathogens
simultaneously are beneficial for infection control, timely
treatment decisions, and are substantially less expensive than
detecting individual pathogens by monoplex real-time RT-PCR
(Reijans et al., 2008; Schreckenberger and McAdam, 2015). These
multiplex respiratory panels vary in terms of their complexity
(high, moderate, or waived), throughput, pathogens detected,
ability to subtype, instrumentation (batched or random access),
workflow (stepwise or integrated sample-to-answer), ease of use,
and time to result (several hours to minutes) (Caliendo, 2011;
Krunic et al., 2011; Mahony et al., 2011). Studies have reported
increased diagnostic yield (60% vs. 35%) and considerably higher
sensitivity (80–100%) and specificity (82–100%) for these assays
when compared to conventional diagnostic methods such as
DFA, viral isolation, and immunoassays (Reijans et al., 2008;
Gharabaghi et al., 2011).

In comparison to other NAAT-based molecular methods,
high-plex syndromic panels demonstrate comparable
performance, although sensitivity and specificity might
vary for individual targets (Sails et al., 2017). For example,
greater than 99% specificity was observed for all targets
except enterovirus/rhinovirus (94%), and the overall
sensitivity ranged between (83–100%) when the NxTAG
RPP and the Anyplex II RV16 assays were evaluated
for detection of respiratory pathogens in hospitalized
children (Brotons et al., 2016). Syndromic panels can also
detect bacterial infections and viral-bacterial coinfections,
which is vital for developing effective treatment plans
and prevention strategies (Brealey et al., 2015; Brotons
et al., 2016). However, for novel pathogen strains, such
as Flu A(H1N1pdm2009), panel tests often fail to identify
the subtype and require confirmation by other tests
(Bryce et al., 2012).
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TABLE 1 | Commercially available nucleic acid amplification assays for respiratory pathogensa.

Test Manufacturer Technology Targets Sample
typeb

Turnaround
time

Complexity
classification

NxTAG R© respiratory
pathogen panel

Luminex Corporation Real-time RT-PCR Multiplex Panel (20
targets)

NPS ∼4 h High

eSensor R© respiratory viral
panel (RVP)

GenMark Diagnostics Multiplex microarray,
competitive DNA
hybridization

Multiplex Panel (14
targets)

NPS ∼8 h High

Verigene R© RP flex Luminex Corporation RT-PCR & and microarray
hybridization

Multiplex Panel (16
targets)

NPS ∼2 h Moderate

ePlex R© respiratory
pathogen (RP) panel

GenMark Diagnostics RT-PCR Multiplex Panel (17
targets)

NPS ∼2 h Moderate

FilmArray R© respiratory
panel (RP)

BioFire Diagnostics, Inc., Nested multiplex RT-PCR Multiplex Panel (20
targets)

NPS ∼1 h Moderate

FilmArray R© respiratory
panel 2 (RP2)

BioFire Diagnostics, Inc., Nested multiplex RT-PCR Multiplex Panel (21
targets)

NPS ∼45 min Moderate

FilmArray R© respiratory
panel R© (RP) EZ

BioFire Diagnostics, Inc., Nested multiplex RT
-PCR

Multiplex Panel (14
targets)

NPS ∼1 h Waived

Lyra R© parainfluenza virus
assay

Quidel Corporation Real-time RT-PCR Parainfluenza virus
types 1, 2, and 3

NS, NPS ∼4 h High

Lyra R© RSV + hMPV
assay

Quidel Corporation Real-time RT-PCR RSV, hMPV NS, NPS ∼4 h High

SimplexaTM flu A/B &
RSV Kit

Focus Diagnostics, Inc., Real-time RT-PCR Flu A, Flu B, and RSV TS <4 h High

Panther fusion flu
A/B/RSV

Hologic, Inc., Real-time RT-PCR Flu A, Flu B, and RSV NPS ∼2.5 h High

Panther fusion paraflu
assay

Hologic, Inc., Real-time RT-PCR Parainfluenza 1, 2,
and 3

NPS ∼2.5 h High

Panther fusion
AdV/hMPV/RV assay

Hologic, Inc., Real-time RT-PCR Adenovirus, hMPV,
and Rhinovirus

NPS ∼2.5 h High

ARIES R© flu A/B & RSV
assay

Luminex Corporation Real-time PCR Flu A, Flu B, and RSV NPS <2 h Moderate

ARIES R© bordetella assay Luminex Corporation Real-time PCR B. pertussis, B.
parapertussis

NPS <2 h Moderate

SimplexaTM flu A/B &
RSV direct

Focus Diagnostics, Inc., Real-time RT-PCR Flu A, Flu B, and RSV NPS <2 h Moderate

Xpert R© flu/RSV XC Cepheid Real-time RT-PCR Flu A, Flu B, and RSV NPS, NA,
and NW

<1 h Moderate

Solana RSV + hMPV
assay

Quidel Corporation Isothermal
RT-helicase-dependent
amplification (HDA)

RSV, hMPV NS, NPS ∼45 min Moderate

Illumigene R© mycoplasma
direct DNA amplification
assay

Meridian Bioscience, Inc., Loop-mediated
isothermal DNA
amplification (LAMP)

Mycoplasma
pneumoniae

NPS, TS <1 h Moderate

Illumigene pertussis DNA
amplification assay

Meridian Bioscience, Inc., Loop-mediated
isothermal DNA
amplification (LAMP)

Bordetella pertussis NPS <1 h Moderate

Xpert R© xpress Flu/RSV Cepheid Real-time RT-PCR Flu A, Flu B, and RSV NPS, NA,
and NW

∼30 min Waived

Xpert R© xpress flu Cepheid Real-time RT-PCR Flu A, Flu B NPS, NA,
and NW

∼30 min Waived

cobas R© Liat influenza A/B
& RSV assay

Roche Molecular
Diagnostics

Real-time RT-PCR Flu A, Flu B, and RSV NPS ∼20 min Waived

cobas R© Liat influenza A/B
assay

Roche Molecular
Diagnostics

Real-time RT-PCR Flu A, Flu B NPS ∼20 min Waived

Alere i influenza A & B 2
test

Abbott Laboratories Isothermal nucleic acid
amplification

Flu A, Flu B NPS, NS <15 min Waived

Alere i RSV Abbott Laboratories Isothermal nucleic acid
amplification

RSV NPS, NPS
in VTM

<15 min Waived

aFDA 510(k) Premarket Notification (FDA, 2018a). Retrieved from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm; bNPS, nasopharyngeal swab;
NS, nasal swab; NA, nasal aspirate; NW, nasal wash; TS, throat swab. cWaived for direct NS, NPS, and NA/NW specimens; Moderate for NS and NA/NW specimens
eluted in transport media.
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Syndromic respiratory panels with high sample throughput
can usually run 1–96 specimens and are mostly classified as high
complexity assays according to CLIA guidelines, which indicates
that running these panel requires considerable knowledge,
training, and experience (FDA, 2018b). It has been noted that
these high throughput panels are ideal for batch testing, especially
during outbreak situations and respiratory viral seasons when
sample volumes are unusually high (Ginocchio et al., 2009;
Crawford et al., 2010; Tang et al., 2016). Despite the advantages,
implementation of high throughput panels can be challenging
because of demanding sample preparation, processing, and result
interpretation procedures, and the turnaround time varies from
approximately 5–16 h (Beckmann and Hirsch, 2016).

Moderate Complexity Multiplex
Integrated Systems
Moderate complexity sample-to-answer molecular test systems
have gained immense popularity over the last few years because
of their ease of use, faster turnaround time, and efficient
workflow. Currently, the United States. FDA-cleared sample-
to-answer test systems include both low-plex, targeted assays
and high-plex panels that can detect multiple pathogens and
pathogen classes. These tests usually have low to moderate
sample throughput (e.g., 1–12 samples/run), but have faster
turnaround times when compared to batched, high throughput,
multiplex panels (Popowitch et al., 2013). The high-plex, sample-
to-answer panels can detect up to 12–20 pathogens based on
the panel size. Most of these qualitative assays allow random
access that ensures that tests can be performed on demand,
and the reactions occur in closed cassettes or cartridges, thereby
minimizing the risk of contamination (Poritz et al., 2011;
Popowitch and Miller, 2015).

Comparative studies evaluating the performance of these
assays has reported more than 95% agreement between different
commercial platforms, and greater than 85% sensitivity and
99% specificity in most cases (Babady et al., 2018). However,
some high-plex sample-to-answer tests have demonstrated
lower sensitivity for certain pathogens such as adenovirus
(57%), influenza A(H1N1pdm09) (73%), and influenza
B virus (77%) (Popowitch et al., 2013). Cross-reactivity
between adenovirus subtypes has also been reported for some
assays, but the differentiation of these groups is not deemed
clinically important for routine diagnosis (Lin et al., 2004;
Gray et al., 2007).

Despite a short turnaround time of 1–2 h, the clinical
utility of these assays has been questioned since no statistically
significant reduction in antibiotic prescription rates or mortality
has been observed between patients who tested positive for
a non-influenza virus and those who tested negative (48%
vs. 49% respectively) (Green et al., 2016). In some cases, a
reduction in length of hospital stay (7 days vs. 9 days) and
duration of isolation (75 h vs. 82 h) was observed (Rogers et al.,
2015; Akers et al., 2017). The primary concerns for the high-
plex sample-to-answer assays are high cost per test, and the
inability to order customized, targeted panels (Ramanan et al.,
2018). Multiplex assays such as the Verigene RP Flex panel

(Luminex) offer flexible testing and payment options by allowing
users to order any combination of targets for an individual
sample.

Low-Plex Integrated Test Systems
Low-plex integrated respiratory test systems typically target
1–4 pathogens per assay. Comparative studies evaluating the
performance of these assays has reported more than 90%
concordance between different commercial platforms, and
greater than 95% sensitivity and specificity in most cases (Dugas
et al., 2014; Selvaraju et al., 2014; McMullen et al., 2017).
The total turnaround time per sample for these assays varies
between ∼1–2 h, and the number of samples that can be
tested in a standard 8-h work shift depends on the number
of instruments available in the testing laboratory (Ling et al.,
2018). Smaller panels targeting a few pathogens that can be
run independently (random access) or simultaneously (random
batch) could be a viable option for controlling laboratory costs.
Therefore, when considering among various testing options, it
is recommended that in addition to clinical performance, other
assay characteristics such as ease of use, panel composition,
total turnaround time, hands-on time, and cost be considered
before implementing an assay in various clinical settings
(Juretschko et al., 2017).

Waived Molecular Point-of-Care Tests
Nucleic acid amplification based POC testing is relatively new
in the realm of respiratory viral diagnosis and has generated
contradicting opinions regarding their implementation and
clinical utility. Molecular POC assays have extremely short
turnaround times (<30 min), minimal hands-on time (1–2 min),
and can be easily operated by non-laboratory staff members,
thereby making them suitable for near patient implementation
and testing (Brendish et al., 2015; Peters et al., 2017; Ling
et al., 2018). Currently most of the United States. FDA-
cleared commercial POC assays are limited to the detection
of influenza A/B and RSV viruses, with the exception of the
FilmArray R© RP EZ (BioFire) which detects 14 targets (FDA,
2018c). Most of the studies evaluating the clinical performance
of these assays have reported high sensitivity (87–100%) and
specificity (>98%) for detecting influenza A/B and RSV in
pediatric and adult patients (Bell et al., 2014; Nie et al.,
2014; Popowitch and Miller, 2015; Gibson et al., 2017; Ling
et al., 2018). However, these studies have also shown that the
clinical performance varies and sensitivity is significantly low
for influenza B (45.2–54.5%); therefore, the results should be
interpreted with caution and additional confirmatory testing
should be considered, depending on the clinical circumstances
(Jokela et al., 2015; Busson et al., 2017; Davis et al., 2017).
Molecular POC tests can be costly and more prone to
incorrect results and contamination, as the assays are usually
performed by non-laboratory personnel and poor training,
failure to follow manufacturer’s instructions, and failure to
perform adequate quality control might affect the accuracy of
results (Azar and Landry, 2018). Currently, more evidence-based
studies are required to understand the overall clinical utility of
molecular POC testing, since no correlation has been observed
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between implementation of these tests and reduction of antibiotic
usage or hospital length of stay (Andrews et al., 2017;
Brendish et al., 2017).

CONCLUDING REMARKS

Molecular testing has considerably improved the diagnosis of
respiratory pathogens and is being considered as the new “gold
standard”. Although these tests have gained immense popularity,
factors such as the patient population (adult, pediatric, and
immunocompromised), the size of the laboratory, the purpose
of testing (routine or urgent care), and cost/benefit ratio
should be considered before implementing a particular assay.
For example, during the 2012–2013 influenza outbreak, two
nosocomial cases were identified at Memorial Sloan Kettering
Cancer Center on January 1, 2013. Despite implementing
appropriate infection control measures, five more cases were
identified few days later on January 7, 2013. A delay in
reporting the positive influenza result was observed as the
laboratory was following the routine diagnostic algorithm, and
this might have resulted in the subsequent cases of nosocomial
infection. Following the 2012–2013 outbreak, the laboratory
implemented the FilmArray R© RP for routine diagnosis and
the Xpert R© Xpress Flu/RSV, a rapid molecular POC system,
for seasonal use during epidemics and pandemics because
the needs for routine testing and urgent care are completely
different in these situations. Molecular tests are highly sensitive
and specific and result in higher pathogen detection, and
therefore physicians and attending clinicians should evaluate test
results before initiating a particular course of treatment. Rapid
molecular tests are best suited for routine diagnosis and outbreak
situations; whereas, conventional methods, such as cell culture
or EM could be considered for identifying novel strains of the
pathogens.

With the introduction of new technologies, newer assays will
be developed for respiratory and other pathogens. For example,
using NP swab specimens from children, Graf et al. (2016)
demonstrated that untargeted next-generation sequencing-based
metagenomics (mNGS) testing had excellent agreement (93%)
with multiplex molecular panels and detected more viruses
that were either not targeted by the panel or missed due
to highly divergent genome sequences. They concluded that
mNGS can be used for accurate and unbiased detection
of expected or unexpected pathogens. Implementing mNGS
downstream of rapid molecular panel testing has been proven
useful for characterizing the nature of hospital-associated
transmission events and directing the control strategies in
pediatric populations during outbreak situations (Greninger
et al., 2017). However, diagnostic implementation of NGS is
currently limited by incomplete understanding of analytical
performance, high cost of the system and complexity of sequence
data analysis. Future research will be necessary to focus on
demonstrating the clinical utility of these new and upcoming
assays in various patient populations and in resource limited
settings.
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