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Thermotolerant Campylobacter species C. jejuni and C. coli are actually recognized
as the major bacterial agent responsible for food-transmitted gastroenteritis. The
most effective antimicrobials against Campylobacter are macrolides and some, but
not all aminoglycosides. Among these, susceptibility to streptomycin is reduced by
mutations in the ribosomal RPSL protein or by expression of ANT(6)-I aminoglycoside
O-nucleotidyltransferases. The presence of streptomycin resistance genes was
evaluated among streptomycin-resistant Campylobacter isolated from humans and
animals by using PCR with degenerated primers devised to distinguish ant(6)-Ia, ant(6)-
Ib and other ant-like genes. Genes encoding ANT(6)-I enzymes were found in all possible
combinations with a major fraction of the isolates carrying a previously described ant-
like gene, distantly related and belonging to the new ant(6)-I sub-family ant(6)-Ie. Among
Campylobacter isolates, ant(6)-Ie was uniquely found functional in C. coli, as shown
by gene transfer and phenotype expression in Escherichia coli, unlike detected coding
sequences in C. jejuni that were truncated by an internal frame shift associated to
RPSL mutations in streptomycin resistant strains. The genetic relationships of C. coli
isolates with ANT(6)-Ie revealed one cluster of strains presented in bovine and humans,
suggesting a circulation pathway of Campylobacter strains by consuming contaminated
calf meat by bacteria expressing this streptomycin resistance element.

Keywords: Campylobacter coli, Campylobacter jejuni, streptomycin-resistance, aminoglycoside adenylyl
transferases, ANT(6)-I
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INTRODUCTION

Campylobacteriosis is the main cause of foodborne diseases in
the UE and in the United States [Collective Eurosurveillance
Editorial Team, 2015; (Accessed March 2018)1]. The drugs
of choice for the treatment of campylobacteriosis were,
mainly erythromycin (ERY) and ciprofloxacin (CIP), although
quinolones are no longer effective after a fast rise in resistance
mechanisms among Campylobacter species (Carreira et al.,
2012; Hormeño et al., 2016). Aminoglycosides, the third
class of antimicrobials used worldwide after sulfonamides
and beta-lactams, are a recommended alternative for the
treatment of difficult infections caused by thermotolerant
Campylobacter spp. (Wieczorek and Osek, 2013). The advantages
of using aminoglycosides compared to other antimicrobials
are their concentration-dependent bactericidal activity and
relatively predictable pharmacokinetics, and synergism with
other antibiotics (Vakulenko and Mobashery, 2003). Among
aminoglycosides, the first active molecule used was streptomycin
(STR), produced by Streptomyces griseus. STR binds to the
aminoacyl-tRNA site (A site) of the 16S rRNA in the 30S
ribosomal subunit, inducing codon misreading and inhibiting
of translocation (Moazed and Noller, 1987; Woodcock et al.,
1991) which leads to inadequate protein production. When
antibiotic resistance appears it is due to target modification of
ribosomal components, antimicrobial modification, or lowering
drug accumulation in the cell (Vakulenko and Mobashery,
2003). Like in other bacteria, mutation K43R of S12 protein,
a component of the 30S ribosomal subunit encoded by the
rpsL gene, confers high-level of STR resistance in Campylobacter
(Olkkola et al., 2010). Besides that, two out of four ANT(6)-I
subfamily members of aminoglycoside nucleotidyltransferases
(also known as aminoglycosides adenyltransferases of the AADE
family), ANT(6)-Ia and ANT(6)-Ib, are frequently involved in
STR resistance in Campylobacter strains and probably evolved
from Gram-positive bacteria (Pinto-Alphandary et al., 1990;
Shaw et al., 1993; Gibreel et al., 2004; Nirdnoy et al., 2005; Abril
et al., 2010; Qin et al., 2012; Zhao et al., 2016). An additional
role in STR resistance of ANT-like protein has been suggested in
C. coli (Olkkola et al., 2016).

The aim of this work was to characterize the STR resistance
presented in Campylobacter isolates of human and animal origin,
establishing the role of a new enzyme of the ANT(6)-I family,
ANT(6)-Ie, detected in a significant fraction of STR resistant
isolates which molecular typing evidenced spread between animal
and human hosts.

MATERIALS AND METHODS

Bacteria and Antimicrobial Resistance
Campylobacter spp. strains isolated from humans were previously
described (Hormeño et al., 2016) and resulted from systematical
screenings performed during 2010–2012 in fecal samples from

1www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/National
AntimicrobialResistanceMonitoringSystem/default.htm

gastroenteritis patients by the Microbiology services of three
hospitals located in West-Center Spain: San Pedro de Alcántara,
Cáceres; Campo Arañuelo, Cáceres; and Universitario de
Salamanca, Salamanca. Campylobacter spp. isolated from bovine,
fattening pigs and poultry were randomly selected in 2010–2012
from slaughterhouses located all around Spain by the Spanish
Surveillance Network of Antimicrobial Resistance in Bacteria
of Veterinary Origin (VAV Network; Moreno et al., 2000) and
were partially described elsewhere (Florez-Cuadrado et al., 2016).
From each farm, a single Campylobacter isolate was obtained by
culturing pooled feces from animals (bovine and porcine) and
cloacal or meat samples (poultry). Isolates were grown on blood
agar, in a microaerophilic atmosphere (CampyGenTM, Thermo
Scientific) at 42◦C for 24–48 h and were identified by a Vitek-
MS MALDI-TOF system (bioMérieux, Marcy-l’Etoile, France)
to species level. The minimal inhibitory concentrations (MICs)
for STR, ERY, gentamicin (GEN), CIP, and tetracycline (TET)
were determined by agar dilution methods according to the
guidelines of CLSI (Clinical and Laboratory Standards Institute
[CLSI], 2010), including Campylobacter jejuni ATCC 33560 as
the reference strain. Resistance was determined according to the
EUCAST2 (last accessed September of 2018), by using cut-off
values [ecological cut-off value (ECOFF)] of 4 mg/L for STR,
4 mg/L (C. jejuni) or 8 mg/L (C. coli) for ERY, 2 mg/L for GEN,
0.5 mg/L for CIP, and 1 mg/L (C. jejuni) or 2 mg/L (C. coli)
for TET. To test the presence of efflux pumps, MIC to STR
were determined in the presence of the efflux pump inhibitor
phenylalanine-arginine beta-naphthylamide (PaβN, Sigma) at a
concentration of 20 mg/L.

Detection of Resistance Determinants
PCR was performed on DNA obtained by boiling, for 5 min, a
suspension of one or two colonies from pure culture in 250 µL of
milli-Q water, and recovering the supernatant after centrifugation
at 10,000 × g for 10 min. PCR was carried out with 1 µl of
DNA, 0.2 mM of each dNTP (Biotools, Madrid, Spain), 0.5 µM of
each primer [Stab Service (University of Extremadura, Badajoz,
Spain)], 0.025 U/µl of Taq Polymerase (Biotools, Madrid, Spain)
and 1X PCR buffer containing 1.5 mM MgCl2 (Biotools, Madrid,
Spain), during 30 cycles of 94◦C, 30 s; annealing temperature
indicated in Table 1, 30 s; 72◦C, 1 min. Amplicon purification was
done with Speedtools PCR clean-up kit (Biotools, Madrid, Spain),
following the manufacturer’s instructions. DNA sequencing were
performed by STAB Service (DNA Sequencing facilities of the
Universidad de Extremadura, Spain). In silico data analysis was
carried out with bioinformatics tools available in NCBI3, SMS4,
and EBI5.

Mutations in the STR resistance region of the rpsL gene
were screened by sequencing of the PCR amplicon produced by
primers and conditions previously described (Table 1; Olkkola
et al., 2010). Similarly, the possible presence of ant(3”)-Ia genes
carried by Class-I integrons was evaluated by PCR with primers

2www.eucast.org
3http://www.ncbi.nlm.nih.gov
4http://bioinformatics.org/sms
5http://www.ebi.ac.uk
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TABLE 1 | Primers used in this work.

Name Sequence (5′-3′) T1 Bp2 Reference

RPSLF CCAGCGCTTAAAAAT TGTCC 55 247 Olkkola et al., 2010

RPSLR TATCAAGAGCACCA CGAACG

INT1F GGCTCTCGGGTAAC ATCAAGG 54 242 Leverstein-van Hall et al., 2002

INT1R TCAGGAGATCGGAA GACCTC

CSF GGCATCCAAGCAGCAAG 56 VAR3 Lévesque et al., 1995

CSR AAAAGCAGACTTGA CCTGA

SAF TGCAAAA(G/A)CC(G/C) GA(A/G)GATATGG 56 305 This work

SAR TTCCTT(G/T)CG(G/A) CATA(G/T)CC(C/T)TT

SBF GATTGT(T/C)CG(T/C)CAT GAGCTGCT 57 327 This work

SBR GTGCTATCCAGGCAGC CGGTT

SCF TGCCT(A/C)AAATTGG(G/A) T(G/A)AGTT 52 368 This work

SCR ACCTAGCCA(A/G)ATTTCA AA(A/G)CCAAA

STREJF TGCAAAGCGAAAA AAGAAT 49 878 This work

STREJR TTATAATTTTCTTAAAAT TTTGCAAT

STRECF TGCAAAATCAAGATAAAT TTTTAAAAC 51 899 This work

STRECR TTACAATTTTCCTAAAAT TTTACAAT

STREFF GTATGCGCAAAAATGAT TAAAG 50 1110 This work

STREFR AAGGAAAAATTTAAATAT TGGTTTCA

1Annealing temperatures for PCR. 2PCR-Product size in bp. 3Variable size depending on gene-cassette structure (Lévesque et al., 1995).

specific to intI and intI-associated gene cassettes (Table 1). Three
sets of degenerated primers were designed to amplify internal
fragments of genes ant(6)-I (Table 1): ant(6)-Ia (primers SAF and
SAR), ant(6)-Ib (primers SBF and SBR), and ant(6)-Ie (primers
SEF and SER). Further analysis was performed to amplify the
(almost) full coding sequences of ant(6)-Ie genes (Table 1) from
C. jejuni (primers STREJF and STREJR) and C. coli (primers
STRECF and STRECR). Oligonucleotide design was performed
with Oligo v.6 software.

Functional Expression in E. coli
The expression of ant(6)-Ie from C. coli was tested through
cloning the complete gene in the vector pGem-T Easy
(Promega R©), according to the manufacturer’s instructions.
The full length of the gene including its promoter sequence
was amplified by using primers STREFF and STREFR
(Table 1), designed from the genome sequence of C. coli
Z163 (ZP_14079546.1) and assuming that σ70 Campylobacter
promoters have a well-conserved −10 box and lack the −35
box presented in other bacteria (Petersen et al., 2003). The
ligation mixture was electroporated in Escherichia coli XL1-Blue
MRF’ and transformants were selected in Luria-Bertani medium
supplemented with 100 mg/L ampicillin.

Multilocus Sequence Typing of
Campylobacter Isolates From Human
and Animal Origin
A group of Campylobacter isolates was genotyped for flaA-
SVR (short variable region of flaA gene) and multilocus
sequence typing (MLST). PCR fragments of the housekeeping
genes aspA (aspartase A), glnA (glutamine synthetase), gltA
(citrate synthase), glyA (serine hydroxymethyltransferase), pgm
(phosphoglucomutase), tkt (transketolase), and uncA (ATP

synthase a subunit), as well as flaA gene (flagellin), were amplified
and sequenced as described elsewhere (Ugarte-Ruiz et al., 2013).
Allele numbers were assigned by sequence comparisons against
the existing sequences deposited in the Campylobacter MLST
database6.

RESULTS

Streptomycin Resistance Phenotypes in
Isolates From Human Origin
Based on the ECOFF defined by EUCAST for STR resistance
of Campylobacter (MIC > 4 mg/L), 16 out of 141 human
isolates are above the threshold (Figure 1). Among these it
was possible to identify three different phenotypes: high-level
resistance, shown by two C. jejuni strains (MIC > 512 mg/L),
medium-level resistance, in two C. jejuni and five C. coli
isolates (32 ≤ MIC ≤ 256 mg/L), and low-level resistance,
with inhibition of growth immediately above ECOFF, detected
in six C. jejuni and one C. coli (MIC = 8 mg/L). Treatment
with the efflux pump inhibitor PAβN reduced MICs in all
the isolates, with the exception of the highly resistant HSA40,
with maximal susceptibility attained in two isolates from the
medium-level resistance group plus in the seven isolates with
the lowest resistance level (Figure 1). Among analyzed isolates,
low susceptibility against clinically relevant antimicrobials was
generally found to CIP and/or TET but not to ERY or GEN,
although three low-level resistant strains to STR were also found
near the cut-off for CIP and TET (HCC26, HCC27, and HCC34;
Figure 1).

6http://pubmlst.org/campylobacter
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FIGURE 1 | Phenotypic and genotypic analysis of streptomycin (STR) resistant isolates. 1Minimal inhibitory concentrations for STR, erythromycin (ERY), gentamicin
(GEN), ciprofloxacin (CIP), and tetracycline (TET). 2MIC were determined in the presence of PaβN (mg/L). 3Data previously reported (Hormeño et al., 2016).
4Mutations in the RPSL coding sequence were detected by sequencing (WT, no mutation). 5Genes ant(6)-I were amplified with PCR with specific primers. ND, not
determined.

rpsL Polymorphism Among Streptomycin
Resistant Isolates
The rpsL gene region determining resistance to aminoglycosides
(Olkkola et al., 2010) was amplified and sequenced in 15
Campylobacter isolates with MICs above STR ECOFF value
(Accession Nos. LT605180, LT605181, LT605182, LT605184,
LT605185, LT605186, LT605187, LT605190, LT605191,
LT605192, LT605193, LT605194, LT605195, LT605196, and
LT605197). Among 11 polymorphic positions detected, only one
was expressed at protein level corresponding to mutation K43R
(not shown). This occurred in two C. jejuni isolates, HSA32 and
HSA40 (Accession Nos. LT605194 and LT605195), having both
the high-level resistant phenotype (Figure 1).

The ANT(6)-I Family in Campylobacter
The NCBI database includes sequences for three members of the
ANT(6) protein family previously described in Campylobacter:
ANT(6)-Ia, ANT(6)-Ib, and ANT-like sequence cluster (Abril
et al., 2010; Olkkola et al., 2016). The phylogenetic relationships
previously defined within the ANT(6)-I family (Abril et al.,
2010) were re-analyzed (Figure 2), including C. jejuni and
C. coli for clusters ANT(6)-Ia and ANT(6)-Ib, plus the new and
distantly related family member previously identified as ANT-
like (Olkkola et al., 2016). Supported by bootstrapping with a
threshold near 70%, ANT-like sequences cluster is a new member
of the protein family that will be named hereafter ANT(6)-
Ie (Figure 2), the fifth described ANT(6) (aminoglycoside 6-
adenyltransferase) enzyme.

ANT(6)-I Detection in Streptomycin
Resistant Isolates
The role of ANT(6)-I enzymes on STR resistance of
Campylobacter was addressed by using specific primers designed

to detect the coding sequences for ANT(6)-Ia, ANT(6)-Ib,
and ANT(6)-Ie, including degenerated positions for efficient
amplification of homologs of either C. jejuni or C. coli for every
subfamily (Table 1). Among the 16 Campylobacter isolates
resistant to STR detected in this work from human infections,
nine were positive for the presence of ant(6)-I genes with two
isolates positive for the subfamilies ant(6)-Ia, one for ant(6)-Ib
and seven for ant(6)-Ie (Figure 1). The unique two C. jejuni
isolates presenting ant(6)-Ie also have the RSPL polymorphism
K43R and the high-resistance phenotype, whereas the six isolates
with low-level of resistance did not carry any of the screened
genes.

The nucleotide sequences of the seven ant(6)-Ie genes
detected among human isolates, including the six Campylobacter
strains presenting this gene as the unique aminoglycoside 6-
adenyltransferase enzyme, revealed different functional roles
on STR resistance depending on Campylobacter species. The
ant(6)-Ie genes from the two C. jejuni isolates were found non-
functional when compared with the reference used to define
the protein subfamily (ZP_01070142, Figure 2), sharing both
the unique polymorphism C-394-1 (Accession No. LT605198,
isolate HSA32), an out of frame deletion that produces the
premature arrest of translation and the loss of 55% of protein
sequence from its C-terminal end. In contrast, the four ant(6)-
Ie genes from C. coli strains HCC2, HSA28, HSA86, and HCC46
presented identical sequences to ZP_14079546.1, whereas the
polymorphism C466T originating variant P156S in the encoded
protein was detected in the gene from HNA4 isolate (Accession
No. LT605200).

Functional Expression in E. coli of
ANT(6)-Ie
The coding sequence for ANT(6)-Ie from HNA4 was amplified
and cloned in pGEM-T vector and E. coli XL1 Blue (MRF’)
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FIGURE 2 | The ANT(6)-I phylogenetic tree. Multiple sequence alignment was performed by Clustal X 2.1. The phylogenetic tree was deduced by neighbor joining
algorithm, excluding positions with gaps and emulated by NJPlot 2.3. Bootstrap values (N, 100; seeds, 111) are indicated for branches supporting sequence
clustering and assuming previous data (Abril et al., 2010).

cells. Cells carrying the recombinant vector expressed resistance
to STR with a MIC of 64 mg/L, significantly higher than
the control cells transformed with a non-recombinant vector
(MIC = 8 mg/L). Besides, both recipient and transformants
cells remained sensitive to other antimicrobials tested showing
aminoglycoside specificity of the ant(6)-Ie gene: spectinomycin
(MIC ≤ 32 mg/L), GEN (MIC ≤ 1 mg/L), apramycin
(MIC ≤ 4 mg/L), and neomycin (MIC ≤ 4 mg/L).

Genetic and Phenotype Relationships
Among Human and Animal Streptomycin
Resistant Isolates Carrying ANT(6)-Ie
We screened for the three ANT(6)-I encoding genes in
Campylobacter among 65 STR resistant isolates from the three
most common food-producing livestock: poultry, pigs, and cattle
(Table 2). All ant(6)-I genotypes were detected, with C. coli being
largely the most prevalent species among streptomycin resistant
isolates. Interestingly, the presence of the single-gene ant(6)-Ie

genotype represents a major fraction of STR resistant C. coli, with
one fourth of isolates.

Multilocus sequence typing plus flaA typing was performed
in 14 C. coli isolates carrying ant(6)-Ie as the only determinant
expressing STR resistance (Table 3). The multilocus analysis
allowed the detection of a cluster of strains (ST-827, clonal
complex 828) including two isolates from human origin plus one
from bovine. Moreover, one of the human and the bovine origin
isolates shared the same flaA allele 236 and the same resistance
profile against the five clinically relevant antimicrobials tested,
which is considered an indication of a probable common clonal
origin.

DISCUSSION

This work shows the main role of adenylyl transferases belonging
to the ANT(6)-I family on STR resistance in Campylobacter.

TABLE 2 | ant(6)-I genotypes of streptomycin resistant Campylobacter isolates.

Host ant(6)-I profile1

a b e a/b a/e b/e a/b/e Ø 6

Human2 1 1 6(4) - - 1(1) - 7(1) 16 (6)

Poultry 13(8) 1(1) - 10(9) 1(1) - 2(1) 5(1) 32 (21)

Porcine 4(4) - 10(10) 2(2) 7(7) 4(4) 1(1) 1(1) 29 (29)

Bovine 2(1) - 1(1) - 1(1) - - - 4 (3)

6 20(13) 2(1) 17(15) 12(11) 9(9) 5(5) 3(2) 6(3) 81 (59)

1Genotypes were deduced by PCR with primers SAF/R, SBF/R and SCF/R (Table 1). 2Genotypes of human isolates are shown in Figure 1. Data in parentheses refer to
number of isolates belonging to C. coli species. Ø, zero genes detected.
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TABLE 3 | Molecular and antimicrobial resistance typing of Campylobacter isolates carrying1 ant(6)-Ie.

MIC (mg/L)2

Strain Year Origin STR ERY GEN CIP TET CC3 ST4 flaA

ZTA10/00526CPD 2010 Porcine ≥32 1 4 ≥8 ≥32 ST-828 7337 ND

ZTA10/00602CPD 2010 Porcine ≥32 ≥64 4 ≥8 ≥32 ND 7340 ND

ZTA10/00794CPD 2010 Porcine ≥32 1 4 ≥8 ≥32 ST-828 829 ND

ZTA10/01257CPD 2010 Bovine ≥32 1 2 ≥8 ≥32 ST-828 827 0236

ZTA10/01418CPD 2010 Porcine ≥32 ≥64 2 ≥8 ≥32 ST-828 1413 ND

ZTA10/02049CPD 2010 Porcine ≥32 2 2 ≥8 ≥32 ST-828 4950 ND

ZTA11/00514CP 2011 Porcine ≥32 ≥64 2 ≥8 ≥32 ND 7341 0662

ZTA11/00726CP 2011 Porcine ≥32 1 4 0.13 ≥32 ST-828 7338 ND

ZTA11/01342CP 2011 Porcine ≥32 ≥64 4 0.25 ≥32 ST-828 1413 ND

ZTA11/03282CP 2011 Porcine ≥32 0.5 1 ≥8 ≥32 ST-828 1096 0319

ZTA11/03389CP 2011 Porcine ≥32 ≥64 2 ≥8 ≥32 ST-828 2733 ND

HSA028 2010 Human 128 8 2 32 256 ST-828 827 0236

HSA046 2010 Human 64 2 2 0.25 256 ST-828 827 0255

HNA4 2010 Human 32 2 2 2 256 ND 7339 0633

1The fourteen C. coli isolates presenting ant(6)-Ie as the unique streptomycin (STR) resistance determinant (Table 2). 2Minimal inhibitory concentrations for STR,
erythromycin (ERY), gentamicin (GEN), ciprofloxacin (CIP), and tetracycline (TET). 3Clonal Complex. 4Sequence Types and flaA alleles were assigned by MLST database
(see footnote 6). ND, not determined.

Previous reports had described the phenotypic expression of
ANT(6)-I enzymes (Nirdnoy et al., 2005; Abril et al., 2010; Qin
et al., 2012; Olkkola et al., 2016), and now strong evidence is
provided supporting the role of ANT(6)-Ie on STR resistance.
Although ANT(6)-Ie coding sequences were detected in the two
most frequent Campylobacter species, C. jejuni and C. coli, the
association with STR resistance was only proved in C. coli since
no C. jejuni isolate carried this coding sequence as the unique
candidate to express the phenotype (Figure 1 and Table 2).

Besides ANT(6)-I, an additional STR resistance determinant
is ANT(3”)-Ia or AADA which also confers resistance to
spectinomycin. This enzyme is highly prevalent among
enterobacteria (Shaw et al., 1993) and has been detected
associated to class I integrons and their gene cassettes in
Campylobacter, although only anecdotally (Ouellette et al., 1987;
O’Halloran et al., 2004). Indeed, several reports have described
the unsuccessful search of ant(3”) in Campylobacter (van Essen-
Zandbergen et al., 2007; Piccirillo et al., 2013). Similarly, all STR
resistant isolates from humans analyzed in the present work have
been screened for int1 or associated gene cassettes, unsuccessfully
(data not shown). Thus, ANT(6)-I enzymes might be the unique
adenylyl transferases with significant relevance in STR resistance
in Campylobacter.

To the best of our knowledge, this is the first report showing a
RPSL mutation in C. jejuni isolates conferring STR resistance. In
a previous study, with C. coli, it was found that isolates presenting
high-level resistance to STR shared the mutation K43R in RPSL
(Olkkola et al., 2010), similarly to the two C. jejuni isolates
from humans, detected in this work, with MIC > 512 mg/L
(Figure 1). Although both isolates also carry ant(6)-Ie genes,
resistance to STR might be determined by RPSL mutation
since the adenylyl transferase coding sequence is truncated
and most probably not functional. In addition, there was no

contribution to this phenotype from efflux pump activity, as
deduced by the lack of any effect on MIC by PAβN treatment
(Figure 1).

A group of six C. jejuni and one C. coli isolates from humans
that expressed low-level STR-resistance, did not contain any of
the screened determinants and presented a strong decreased
MIC to STR in the presence of PAβN (Figure 1). Thus, efflux
pump activity must be responsible for low-level STR resistance
of these strains, similarly to Mycobacterium tuberculosis where
the effect of outward transporters is known to increase modestly
the MIC for STR (Spies et al., 2008). At least three different
efflux pump systems have been shown to be up-regulated in
Campylobacter strains resistant to a broad range of antimicrobials
(Lin et al., 2005; Akiba et al., 2006; Jeon et al., 2011), so
they could be candidates for determinants to the low level
STR resistance. In addition, treatment with PAβN produced
a strong effect on MIC of Campylobacter isolates carrying
ant(6)-I genes, mostly for those with ant(6)-Ia or ant(6)-Ib as
unique resistance determinants (Figure 1). This observation
might indicate that, among human isolates analyzed in this
work, the only functional adenylyl transferase gene is ant(6)-
Ie and that even these isolates require efflux pump activity to
support the medium-level of resistance. Treatment of ant(6)-
Ie carrying strains with PAβN reduces their STR MIC to
low-level resistance, which might correspond to their in vivo
expression level. Synergic effects of efflux pumps have been
evidenced in Campylobacter with resistance determinants for
quinolones and macrolides, gyrA and 23S rRNA gene mutations,
respectively (Luo et al., 2003; Cagliero et al., 2006; Corcoran
et al., 2006). Indeed, three Campylobacter isolates showing
low-level resistance to STR were also found to have low-level
resistant to CIP and TET (Figure 1), lacked the gyrA C-257-T
mutation conferring low susceptibility to fluoroquinolones
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(Hormeño et al., 2016) and also tetO, the major TET resistant
determinant in this species (not shown, authors’ personal
communication). A weak overexpression of efflux pump activity
might be involved in the antimicrobial resistance phenotype of
these strains.

The set of primers described in this work allows specific
detection of the three ant(6)-I genes described in Campylobacter,
including those belonging to ant(6)-Ie and encoding a
new subfamily of aminoglycoside O-nucleotidyltransferases
(Figure 2) that provides functional information for hundreds
of orthologs annotated as hypothetical proteins, mainly from
Campylobacter and related organisms like Helicobacter. In
addition, the molecular and antimicrobial resistance typing of
Campylobacter isolates expressing ANT(6)-Ie has revealed a
spread pathway for this zoonotic pathogen between cattle and
humans.
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