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Extracellular vesicles (EVs) are involved in numerous processes during infections by
both enveloped and non-enveloped viruses. Among them, herpes simplex virus type-
1 (HSV-1) modulates secretory pathways, allowing EVs to exit infected cells. Many
characteristics regarding the mechanisms of viral spread are still unidentified, and
as such, secreted vesicles are promising candidates due to their role in intercellular
communications during viral infection. Another relevant role for EVs is to protect virions
from the action of neutralizing antibodies, thus increasing their stability within the host
during hematogenous spread. Recent studies have suggested the participation of EVs in
HSV-1 spread, wherein virion-containing microvesicles (MVs) released by infected cells
were endocytosed by naïve cells, leading to a productive infection. This suggests that
HSV-1 might use MVs to expand its tropism and evade the host immune response. In
this review, we briefly describe the current knowledge about the involvement of EVs in
viral infections in general, with a specific focus on recent research into their role in HSV-1
spread. Implications of the autophagic pathway in the biogenesis and secretion of EVs
will also be discussed.
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INTRODUCTION

Extracellular vesicles (EVs) are a heterogeneous group of membrane vesicles, derived from
endosomes or from the plasma membrane, secreted by almost all cell types belonging to the three
domains of cellular life: Bacteria, Archaea, and Eukarya (Yañez-Mo et al., 2015; Sedgwick and
D’Souza-Schorey, 2018; van Niel et al., 2018). EVs have been isolated from numerous biological
fluids such as blood, saliva, urine, cerebrospinal fluid, amniotic fluid, ascetic fluid, breast milk, and
seminal fluid (Yañez-Mo et al., 2015; Zaborowski et al., 2015; Kalra et al., 2016). Initially considered
to be mostly cell debris, EVs have now emerged as key mediators of intercellular communication,
and are currently associated with numerous physiological and pathological processes (Gyorgy et al.,
2011; van der Pol et al., 2012; Yuana et al., 2013) such as cancer (Muralidharan-Chari et al., 2010;
Barros et al., 2018; Nogues et al., 2018; Xu et al., 2018), infection (Silverman and Reiner, 2011;
Lai et al., 2015; Schorey et al., 2015), inflammation and immune response (Robbins et al., 2016),
and myelination and neuron-glia communication (Fruhbeis et al., 2013; Basso and Bonetto, 2016;
Lopez-Leal and Court, 2016; Pusic et al., 2016; Holm et al., 2018).

Although the classification and nomenclature of EVs is complex, two major categories of
EVs can be broadly established: (1) microvesicles (MVs) derived from shedding of the plasma
membrane (Cocucci et al., 2009; Cocucci and Meldolesi, 2015); and (2) exosomes, vesicles released
to the extracellular space upon fusion of multivesicular bodies (MVBs) with the plasma membrane
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(Colombo et al., 2014; Yañez-Mo et al., 2015; Maas et al., 2017).
While exosomes are between 30 and 100 nm in diameter, MVs
are much more heterogeneous, ranging from 100 nm to 1 µm in
diameter (Raposo and Stoorvogel, 2013; Yuana et al., 2013). MVs
are enriched in lipid rafts and commonly associated proteins such
as flotillin-1, and expose phosphatidylserine (PS) on the outer
plasma membrane leaflet (Scott et al., 1984; Del Conde et al.,
2005; Wei et al., 2016). Exosomes, on the other hand, are enriched
in tetraspanins (CD9, CD63 and CD81, among others), which
are frequently used as exosomal markers (Andreu and Yañez-Mo,
2014) and also in endosomal markers such as ALIX and TSG101
(Kowal et al., 2016; Willms et al., 2016). Although the presence of
PS exposed in exosomes has been postulated (Thery et al., 2009;
Colombo et al., 2014; De Paoli et al., 2018) other studies question
that exosomes expose PS just after secretion from cells (Lai R.C.
et al., 2016; Skotland et al., 2017), remaining this point to be fully
clarified.

Extracellular vesicles are also involved in viral infection
(Meckes and Raab-Traub, 2011; Wurdinger et al., 2012; Alenquer
and Amorim, 2015; Altan-Bonnet, 2016; Anderson et al., 2016),
influencing viral entry, spread and immune evasion (Schorey
et al., 2015; Kouwaki et al., 2017). Thus, EVs operate as
an important system of intercellular communication between
infected and uninfected cells (Meckes, 2015; Raab-Traub and
Dittmer, 2017). Indeed, due to their common biogenesis
pathways, EVs and viruses are considered to be close relatives,
and EVs secreted by infected cells can either enhance viral spread
or, on the contrary, trigger an antiviral response (Nolte-’T Hoen
et al., 2016). The great variability of the role of EVs during the
viral life cycle is evident, as they can produce such opposite effects
as the blockage or increase of infection, as well as modulate the
immune response (Wurdinger et al., 2012). Two key biological
activities of EVs during viral infections are the transport of viral
genomes into target cells and the intervention in cell physiology
to facilitate infection (van Dongen et al., 2016).

This review will briefly describe the current knowledge about
the involvement of EVs in viral infections, with a specific focus
on recent research on their role in herpes simplex virus type-1
(HSV-1) spread.

Viruses and EVs
Extracellular vesicles have been implicated in numerous
processes during infections by both enveloped and non-
enveloped viruses. For example, EVs play a relevant role in
hepatitis C virus (HCV) spread, as virions contained in exosomes
can be transported to hepatocyte-like cells, establishing a
productive infection (Ramakrishnaiah et al., 2013). Likewise, the
release of hepatitis A virus (HAV) enclosed in infectious EVs
derived from cellular membranes (Feng et al., 2013) permits
viral escape from antibodies and facilitates viral spread. Several
picornaviruses can be transported in EVs; the secretion of
exosomes containing enterovirus 71 (EV71) has been shown to
establish a productive infection in human neuroblastoma cells
(Mao et al., 2016), and coxsackievirus B can exit infected cells
in MVs derived from mitophagosomes (Robinson et al., 2014;
Sin et al., 2017). Gastroenteric pathogens such as noroviruses
and rotaviruses have also been detected enclosed in EVs that

can transfer a high inoculum to the next host, contributing,
therefore, to fecal-oral transmission and enhancing the viral
propagation (Santiana et al., 2018). Thus, infection with non-
enveloped viruses can induce the release of MVs containing viral
proteins and infectious virus, indicating novel routes of virus
dissemination.

Human immunodeficiency virus 1 (HIV-1) modulates vesicle
secretion through its Nef protein, which is secreted in exosomes
and modifies the intracellular trafficking pathways to enhance
viral infectivity (Lenassi et al., 2010; Pereira and daSilva, 2016).
For retroviruses in general, the Trojan exosome hypothesis states
that these viruses use the cellular exosome biogenesis pathway
for formation of infectious virions and the exosome uptake
pathway for a receptor-independent, Env-independent route of
infection (Gould et al., 2003). According to this model, dendritic
cells (DCs) capture and internalize retroviruses by endocytosis
and, subsequently, some of the non-degraded virions may infect
the DC-interacting CD4+ T cells, contributing to viral spread
through a mechanism known as trans-infection. Both direct
infection and trans-infection might coexist to a different extent
depending on the maturation stage of DC subsets (Izquierdo-
Useros et al., 2010).

Herpesviruses also modulate the secretion pathway of EVs
to exit cells; in fact, the exosome pathway is exploited by the
three subfamilies: alpha-, beta- and gamma- (Liu et al., 2017;
Sadeghipour and Mathias, 2017). Thus, the secretion of exosomes
by HSV-1-infected cells carrying viral RNA and stimulator of
IFN genes (STING) to uninfected cells has recently been reported
(Kalamvoki et al., 2014; Kalamvoki and Deschamps, 2016). The
exosome secretion pathway also plays an important role in
the life cycle of human herpesvirus 6 (HHV-6), whose virions
are released along with intraluminal vesicles via the exosomal
pathway, by fusion of the limiting membrane of MVBs—in which
virus particles and exosomes are enclosed—with the plasma
membrane (Mori et al., 2008). A similar role for MVBs in
the release of human cytomegalovirus (HCMV) has been also
suggested (Fraile-Ramos et al., 2007; Schauflinger et al., 2011).
The human gamma-herpesviruses Kaposi’s sarcoma-associated
herpesvirus (KSHV) and Epstein–Barr virus (EBV) also alter
the protein content of exosomes, probably to modulate the
tumor microenvironment, enhance viral efficiency and promote
tumorigenesis (Vazirabadi et al., 2003; Meckes et al., 2010, 2013).
In addition, exosomes can also transfer functional miRNAs from
EBV-infected cells to subcellular sites of gene repression in
uninfected recipient cells (Pegtel et al., 2010).

HSV-1: A Brief Overview
Herpes simplex virus type-1 is a highly prevalent neurotropic
human pathogen belonging to the alphaherpesvirus subfamily
that can infect neurons and establish latency in these cells
(Roizman et al., 2011; Miranda-Saksena et al., 2018). HSV-
1 causes oral, labial and, occasionally facial lesions, and is
an increasingly important cause of sexually transmitted genital
herpes (Horowitz et al., 2010; Bernstein et al., 2013), producing
a significant percentage of cases (Wald and Corey, 2007). This
virus may also cause serious pathologies such as encephalitis
or keratoconjunctivitis (Whitley, 2006). HSV-1 infects epithelial
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cells and subsequently travels to neurons, establishing latent
infection in the trigeminal ganglia.

Herpes simplex virus type-1 has the ability to infect many
different host and cell types (Karasneh and Shukla, 2011), using
several different receptors and pathways. This virus can enter
cells by fusion of the viral envelope with the plasma membrane,
a pH-independent process, or by endocytosis, which can either
be low pH-dependent or low pH-independent (Reske et al.,
2007; Heldwein and Krummenacher, 2008; Akhtar and Shukla,
2009; Agelidis and Shukla, 2015; Nicola, 2016). Regardless of
the pathway, HSV glycoproteins such as the receptor-binding
glycoprotein D (gD), the fusion modulator complex gH/gL and
the fusion effector gB are essential for virion entry. Maturation
and egress follow four major stages: (a) capsid assembly and
DNA packaging; (b) primary envelopment and de-envelopment;
(c) tegumentation and secondary envelopment; (d) exocytosis of
viral particles and/or cell-to-cell transmission (Owen et al., 2015).
Secondary envelopment may also occur using the endocytic
pathway, and in fact, it has been proposed that endocytosis
from the plasma membrane into endocytic tubules represents the
main source for HSV-1 envelopment (Hollinshead et al., 2012).
According to this mode of envelopment, viral glycoproteins are
exported to the plasma membrane via the secretory pathway
and are subsequently endocytosed in endocytic tubules that are
then used to wrap the viral nucleocapsid, forming the double-
membraned intracellular virion (David, 2012; Hollinshead et al.,
2012). This endocytic process is dynamin-dependent, and it
plays a major role for transporting HSV-1 envelope proteins to
intracellular sites of virus assembly (Albecka et al., 2016).

Herpes simplex virus type-1 may use several mechanisms to
spread from infected to uninfected cells (Agelidis and Shukla,
2015). Several viral glycoproteins, such as the heterodimer gE/gI
or glycoprotein gK, are necessary for release of virions from
parent cells, and it has been recently reported that the host
enzyme heparanase-1 is also required for viral release (Hadigal
et al., 2015). On the other hand, HSV-1 can disseminate in human
tissues by cell-to-cell spread—the direct passage of progeny virus
from an infected cell to a neighboring one—, a mechanism
that might be considered as an immune evasion strategy, since
it protects the virus from immune surveillance (Campadelli-
Fiume, 2007). However, many aspects concerning mechanisms
of viral spread are still unidentified. In this context, secreted
vesicles are interesting candidates to consider, because of their
ability to participate in intercellular communications during viral
infections.

HSV-1 and EVs
Production of secreted vesicles by HSV-1-infected cells has been
previously reported. Light particles (L-particles) (Szilagyi and
Cunningham, 1991; McLauchlan and Rixon, 1992), the first to
be described, are vesicles secreted by human and animal cells
after infection with every alpha-herpesviruses tested (Heilingloh
and Krawczyk, 2017). They are similar to virions in appearance,
but lack the viral nucleocapsid and genome (Szilagyi and
Cunningham, 1991) and are thus non-infectious. L-particles
have been shown to facilitate HSV-1 infection by transfer of
viral proteins and cellular factors required for viral replication

and also immune evasion (Dargan and Subak-Sharpe, 1997;
Kalamvoki and Deschamps, 2016). Another type of particles,
pre-viral DNA replication enveloped particles (PREPs), are
morphologically similar to L-particles, but differ in their relative
protein composition (Dargan et al., 1995).

As mentioned above, recent studies have shown that cells
infected with HSV-1 can use exosomes to export STING to
uninfected cells, along with virions, viral mRNAs, microRNAs
and the exosome marker protein CD9. Those results suggested
that HSV-1 might limit the spread of infection from cell-to-cell
in order to control its virulence and facilitate the dissemination
between individuals (Kalamvoki et al., 2014; Kalamvoki and
Deschamps, 2016; Deschamps and Kalamvoki, 2018). On the
other hand, previous studies carried out by our group indicated
that Rab27a, a small GTPase implicated in exosomes secretion
(Ostrowski et al., 2010), plays an important role in HSV-1
infection of oligodendrocytic cells (Bello-Morales et al., 2012).
In fact, our results showed a drastic reduction not only in viral
production, but also in plaque size of Rab27a-silenced cells
infected with HSV-1, suggesting that Rab27a depletion might be
affecting viral egress. In addition, this GTPase seems to affect the
viral assembly of other viruses, such as HIV-1 (Gerber et al., 2015)
and HCMV (Fraile-Ramos et al., 2010).

More recent findings (Bello-Morales et al., 2018) have
suggested the participation of MVs in HSV-1 spread. Our
study described the features of MVs released by the human
oligodendroglial (HOG) cell line infected with HSV-1 and their
participation in the viral cycle, indicating for the first time that
MVs released by HSV-1-infected cells contained virions, were
endocytosed by naïve cells, and led to a productive infection. This
suggests that HSV-1 spread might use MVs to expand its tropism
and possibly evade the host immune response (Bello-Morales
et al., 2018).

EVs in Viral Immune Evasion
The release of virus from cells mediated by EVs plays a relevant
role in viral spread and pathogenesis, and may help to expand
the natural tropism of viruses to include target cells which lack
canonical viral receptors. On the other hand, EVs may also
transfer virus-encoded proteins and nucleic acids independently
of the viral particles. For instance, both simian immunodeficiency
virus (SIV) (McNamara et al., 2018) and HIV-1 (Lenassi et al.,
2010; Pereira and daSilva, 2016; Puzar Dominkus et al., 2017)
induce the release of Nef protein in exosomes; EBV LMP1 is
also secreted in EVs (Meckes et al., 2010; Nkosi et al., 2018) and
functional exosomes containing miRNAs have been detected in
human clinical samples and mouse models of KSHV-associated
malignancies (Chugh et al., 2013).

However, EVs also have an equally important role: to protect
virions against the action of neutralizing antibodies and thus
increasing their stability within the host during hematogenous
spread. In this sense, acquisition of an envelope can provide
resistance to neutralizing antibodies, and therefore reinforce
viral spread (Sin et al., 2015), since neutralizing antibodies
would be ineffective against virions protected within vesicles
(Robinson et al., 2014). Systemic circulation of viruses enclosed
in EVs would allow them to modulate host cells without
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exposing their proteins or progeny virions to the immune system
(Raab-Traub and Dittmer, 2017). This is especially relevant for
non-enveloped viruses; thus, acquisition of an envelope helps
coxsackievirus to evade the immune system, permitting an
efficient non-lytic viral spread (Sin et al., 2015). But enveloped
viruses may also benefit from MV-mediated spread, as HCV
transmission is enhanced by exosomes (Masciopinto et al., 2004;
Bukong et al., 2014), and HCV-related exosomes seem to be
involved in immune escape (Shen et al., 2017). In fact, hepatic
exosomes—partially resistant to antibody neutralization—can
transport HCV to cells and establish a productive infection
(Ramakrishnaiah et al., 2013). Likewise, HAV exploits EVs as
vehicles to escape antibody-mediated neutralization (Feng et al.,
2013).

Regarding HSV-1, it is accepted that this virus influences
the EV pathway to enhance infection and/or evade the immune
system. For example, it has been demonstrated that HSV-
1 may manipulate the MHC class II processing pathway by
altering the endosomal sorting and trafficking of HLA-DR,
hijacking these molecules from normal transport pathways

to the cell surface and diverting them into the exosome
pathway (Temme et al., 2010). In addition, and as already
mentioned, functional HSV-1 proteins can be transferred to
uninfected cells via L-particles, a process that suggests a viral
immune escape strategy (Heilingloh et al., 2015). Likewise, the
results obtained in our laboratory have shown that infection
of Chinese hamster ovary (CHO) cells with virus-containing
MVs was not completely neutralized by anti-HSV-1 antibodies,
suggesting that they shield the virus (Bello-Morales et al.,
2018).

EVs and the Autophagic Pathway
Conventional autophagy is a eukaryotic degradative pathway
in which cytoplasmic components are sequestered in
autophagosomes that finally will fuse with the lysosome,
degrading its contents by lysosomal hydrolases (Nakatogawa
et al., 2009; Ohsumi, 2014). Autophagy plays an essential role
in several physiological and pathological processes, such as
xenophagy, the removal of intracellular pathogens including
viruses (Wirawan et al., 2012). Autophagy significantly restrains

FIGURE 1 | Models of biogenesis and secretion of MV-enclosed HSV-1 virions. (A) The canonical egress of HSV-1 entails the fusion of a two-membraned viral
particle with the plasma membrane, giving rise to an extracellular free enveloped virion. In this model, the viral envelope is derived from the TGN/endosomes.
(B) Alternatively, this structure might exit the cell after shedding of the plasma membrane, resulting in a three-membraned viral particle, which would correspond to
an enveloped virion enclosed within a shedding MV. (C) According to this model, vesicles/tubules originating from the autophagic pathway wrap around the
nucleocapsid, giving rise to a viral particle surrounded by a double membrane. Then, this structure would reach the plasma membrane and, after fusion, a viral
particle surrounded by a single membrane would exit the cell. (D) In an alternative model, the two-membraned viral particle might exit the cell not by fusion, but by
shedding of the plasma membrane, giving rise to a three-membraned viral particle.
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HSV-1 infection in various cell types (Yakoub and Shukla, 2015),
though some viruses have acquired the ability to modulate
autophagy for their own benefit (Choi et al., 2018). In this
way, HSV-1 and HIV interact with Beclin-1, thereby inhibiting
autophagosome maturation (Orvedahl et al., 2007; Kyei et al.,
2009).

Autophagy, however, may also have a non-degradative
role: in secretory autophagy, a newly discovered pathway,
autophagosomes fuse with the plasma membrane instead of
lysosomes, releasing vesicles enclosing cytoplasmic cargo to the
extracellular environment (Rabouille et al., 2012; Jiang et al.,
2013; Zhang and Schekman, 2013; Ponpuak et al., 2015).

Many other studies have shown that viruses may use
autophagic Atg proteins for morphogenesis and viral egress
(Munz, 2017), for example EBV (Lee and Sugden, 2008; Granato
et al., 2014; Fotheringham and Raab-Traub, 2015; Hurwitz et al.,
2018), varicella zoster virus (VZV) (Buckingham et al., 2016;
Grose et al., 2016) or picornaviruses (Jackson et al., 2005; Taylor
and Kirkegaard, 2008; Klein and Jackson, 2011; Robinson et al.,
2014; Mutsafi and Altan-Bonnet, 2018). Coxsackievirus B, for
instance, may use the autophagic pathway to exit cells enclosed
in LC3-II-positive shedding MVs (Robinson et al., 2014), a
process similar to the autophagosome-mediated exit without
lysis (AWOL) observed in poliovirus (Taylor et al., 2009; Lai
J.K. et al., 2016). According to this model, fusion between
autophagosomes and endosomes generates amphisomes, LC3-
II-positive vesicles enclosing viral particles which can fuse with
the plasma membrane to secrete virions (Lai J.K. et al., 2016).
Remarkably, due to the complexity of their replication cycles,
viruses may exert a dual role on this kind of process: on one
hand, subversion of autophagy in infected cells and on the
other, induction of hyper-autophagy in bystander cells (Killian,
2012).

In a recent study carried out by our group (Bello-Morales
et al., 2018) we have shown the presence of virions in
MVs released by infected cells. Although the exact process of
HSV-1 targeting to MVs remains to be fully unraveled, we
suggested that autophagy may be involved in that process,
since MVs isolated from HSV-1-infected cells were positive
for the autophagy marker LC3-II. Therefore, these results
suggest a role for the autophagic pathway in MV-mediated
HSV-1 spread, although more data is necessary to confirm
that crucial point. On the other hand, this particular study
suggested different models of biogenesis and secretion of MV-
associated HSV-1 depending on the cell type. According to the
canonical model of HSV-1 egress, the nucleocapsid is wrapped
in vesicles/tubules from trans-Golgi network (TGN)/endosomes,
giving rise to an enveloped virion surrounded by a double
membrane that, after fusion with the plasma membrane, gives
rise to an extracellular free enveloped virion (Figure 1A).
However, the egress of this structure by membrane shedding
cannot be excluded, which would produce a three-membraned
viral particle corresponding to an enveloped virion enclosed
within a shedding MV (Figure 1B). Such triple-membraned
virions have been observed upon infection of Mewo cells (Bello-
Morales et al., 2018); however, nucleocapsids might also obtain
their envelopes from the autophagic pathway. In this way,

vesicles/tubules from the autophagic pathway would cover the
nucleocapsid, giving rise to a viral particle surrounded by a
double membrane. Then, this structure would reach the plasma
membrane and, after fusion, a viral particle surrounded by a
single membrane would exit the cell (Figure 1C). This type
of structure has been observed upon infection of HOG and
Hela cells (Bello-Morales et al., 2018). Alternatively, double-
membraned particles might exit the cell not by fusion, but
by shedding of the plasma membrane, originating a three-
membraned viral particle (Figure 1D). Further work will
have to unveil whether viral glycoproteins are targeted to
vesicles/tubules from autophagic pathway (Figures 1C,D) before
wrapping of nucleocapsids. Finally, our results highlight the
relevance of the cellular model when attempting the study
of viral modulation of autophagy and, as different cell types
may give different autophagy responses, it can be difficult to
directly compare different virus-cell systems, especially when
studying viruses that infect more than one cell type (Lin et al.,
2010).

CONCLUSION

Several herpesviruses may modulate the secretory pathway
of EVs in order to enhance viral egress or evade the
immune response. EVs may also increase viral stability during
hematogenous spread by protecting virus from exposure to
neutralizing antibodies. Recent studies have shown that MVs
released by HSV-1 infected cells contained virions which were
endocytosed by naïve cells, leading to a productive infection,
suggesting that the virus uses EVs to expand its tropism and
possibly evade the host immune response. In addition, growing
evidence is demonstrating the importance of autophagy in
viral infections, which several viruses use for morphogenesis
and viral egress. We suggest that HSV-1 might use MVs
for viral spread and propose different models of biogenesis
and secretion of MVs-associated HSV-1 depending on the cell
type.
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