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Impaired lung function is common in people with a history of tuberculosis. Host-
directed therapy added to tuberculosis treatment may reduce lung damage and result in
improved lung function. An understanding of the pathogenesis of pulmonary damage in
TB is fundamental to successfully predicting which interventions could be beneficial.
In this review, we describe the different features of TB immunopathology that lead
to impaired lung function, namely cavities, bronchiectasis, and fibrosis. We discuss
the immunological processes that cause lung damage, focusing on studies performed
in humans, and using chest radiograph abnormalities as a marker for pulmonary
damage. We highlight the roles of matrix metalloproteinases, neutrophils, eicosanoids
and cytokines, like tumor necrosis factor-α and interleukin 1β, as well as the role of
HIV co-infection. Finally, we focus on various existing drugs that affect one or more
of the immunological mediators of lung damage and could therefore play a role as
host-directed therapy.

Keywords: tuberculosis, lung damage, host-directed therapy, cavity, pulmonary function, matrix
metalloproteinase, neutrophils, immune mechanisms

INTRODUCTION

In 2016, an estimated 10.4 million people developed tuberculosis (TB) worldwide. Although
effective diagnosis and treatment saved about 53 million lives between 2000 and 2016, TB
remains a major threat worldwide: 16% of TB cases die from the disease, corresponding
to 1.7 million deaths in 2016 (World Health Organization, 2017). Among those who are
cured successfully, residual pulmonary impairment is common. Various studies have looked
at lung function in patients with a known history of TB; they found abnormal lung function
in 34 – 94% of patients, varying in severity from mild to severe (Willcox and Ferguson,
1989; Plit et al., 1998; de Valliere and Barker, 2004; Chung et al., 2011; Vecino et al., 2011;
Akkara et al., 2013; Baez-Saldana et al., 2013; Ralph et al., 2013a; de la Mora et al., 2015;
Nihues Sde et al., 2015; Manji et al., 2016). It results in considerable medical costs (Jordan
et al., 2010) and decreased quality of life (Ralph et al., 2013a; de la Mora et al., 2015).
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Impaired lung function is associated with chest radiograph
(CXR) abnormalities in most of the studies. It can easily be
measured using spirometry, which measures air volumes and
airflow rates of the lung. Forced vital capacity (FVC) is the
maximal volume of air exhaled by a patient from the position
of maximal inspiration, by means of a rapid, maximally forced
expiration; forced expiratory volume in 1 s (FEV1) is the amount
of air exhaled during the first second of the FVC maneuver. The
nature and severity of pulmonary impairment can be categorized
by combining these two measurements: obstruction is defined as
a FEV1/FVC ratio < 70%, restriction is suggested by a low FVC
(<80% of the predicted value). Obstruction, low FVC, and mixed
defects have all been reported in patients with previous TB.

PURPOSE OF REVIEW

The aim of TB treatment is to kill the causative mycobacteria with
anti-mycobacterial agents. Because of the lengthy duration of the
treatment, the possibilities of drug toxicity, and increasing drug
resistance, host-directed therapies (HDT), have gained attention
(Hawn et al., 2013; Wallis and Hafner, 2015; Zumla et al., 2015).
HDTs are agents that can augment host defense mechanisms,
modulate excessive inflammation or both, by manipulating
the hosts response to a pathogen rather than targeting the
pathogen itself. This may lead to improved clinical treatment
outcomes such as reduced morbidity, mortality, and end-organ
damage, and long-term functional recovery. Supplementing
anti-TB treatment with drugs that reduce pulmonary damage
could result in improved pulmonary function. To predict which
interventions could be beneficial, an understanding of the
pathogenesis of pulmonary damage in TB is important. What
are the immunological processes leading to lung damage in
humans? Where and how in the process could we intervene
to prevent or reduce lung damage? How much damage is
already done at diagnosis and how much still occurs during
treatment?

WHAT DOES PULMONARY DAMAGE IN
HUMAN TB LOOK LIKE?

The established paradigm positions the caseating granuloma as
the characteristic lesion of TB. However, this paradigm originates
from animal studies in the late 20th century, when data on
histology of human TB had become rare. Studies done before
the 1950s describe two characteristic presentations in human
pulmonary TB: the caseous granuloma and the tuberculous
pneumonia. They divide lung pathology into primary and post-
primary TB. Primary TB is the infection that occurs when
people first encounter Mycobacterium tuberculosis (Mtb). Post-
primary TB occurs later, as a result of reactivation of latent TB
or reinfection, and causes the majority of clinical TB (Hunter,
2011). The two differ with regard to their location in the lung,
the host immune response and their histopathology. Primary
TB typically occurs mainly in the lower zones of the lung. It
is usually self-limiting but leads to consolidative pneumonia

or lymphadenitis in a small proportion of individuals. It is
characterized by a greater bacillary load and reduced lipid
accumulation in the alveoli and the interstitium compared to
post-primary TB, as well as an acute inflammatory response;
cavitation however, is rare. Post-primary TB is said to develop
mainly in the apices of the lung. It is characterized by obstructive
pneumonia, which is frequently asymptomatic in its early stages.
Endobronchial spread from the small peripheral airways can lead
to necrotic caseous pneumonia, associated with progressive tissue
necrosis and cavity formation or fibrocaseous disease (Long et al.,
1998; Hunter, 2016). TB typically heals with persisting cavities,
scarring, and pleural adhesions, as observed in autopsies of
persons with previous TB who died of other causes (Theegarten
et al., 2006). However, abnormal findings need not be present
and viable TB can be found in both macroscopically normal
and abnormal appearing lung tissue (Kuhne and Willgeroth,
1988).

Chest radiographs are commonly used to visualize pulmonary
damage. Radiologists distinguish primary and post-primary
TB as the two typical patterns in active TB. Primary TB is
characterized by lymphadenopathy and air space consolidation
often in the middle or lower lobes, with or without an
accompanying pleural effusion. Post-primary TB consists of
consolidation and/or nodules, frequently in the upper lobes or
apices of the lower lobes, with or without cavitation (Nachiappan
et al., 2017). CXRs of people with previous TB show abnormalities
in 14–100%, including fibrosis, bronchiectasis, and persisting
cavities, the latter occurring more often in re-treatment patients
or those with multi-drug resistant TB (Meghji et al., 2016). All
these abnormalities are associated with impaired lung function.

Computed tomography (CT) scans are more sensitive than
CXRs, especially for imaging of centrilobular small nodules or
the so-called tree-in-bud sign; these classical features of early
endobronchial spread of TB are often underestimated on a CXR
(Skoura et al., 2015); [18F]-fluoro-2-deoxy-D-glucose positron
emission tomography (FDG-PET) with CT combines anatomic
imaging with imaging of metabolic activity of lesions. It has
been used in TB to follow the evolution of lung lesions during
treatment (Martinez et al., 2012; Malherbe et al., 2016) and,
importantly, has shown that metabolically active lung lesions may
be present before the onset of clinical disease (Esmail et al., 2016),
and persist after treatment completion (Malherbe et al., 2016).

WHAT HAPPENS AFTER MTB ENTERS
THE LUNG?

After Mtb enters the lung, the bacilli are taken up by alveolar
macrophages, dendritic cells, and neutrophils, or occasionally
epithelial cells; the latter possibly resulting in limited early
bacterial growth. Infected cells start producing and secreting
antimicrobial peptides, cytokines (like interleukin (IL)-1β, tumor
necrosis factor (TNF)-α, IL-12, and IL-6) and chemokines.
Other immune cells and permissive macrophages are attracted
to the site of infection (O’Garra et al., 2013). Mtb itself, using
multiple strategies, directs the recruitment of macrophages and
triggers granuloma formation (Ndlovu and Marakalala, 2016).
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Secondary granulomas are formed by infected macrophages
departing the primary granuloma or when a granuloma
ruptures. While Mtb replicates freely in the macrophages,
dendritic cells migrate to the local lymph nodes, to activate
T cells. The arrival of Mtb specific T-cells in the lung usually
does not happen until 14–21 days after initiation of the
infection (Gallegos et al., 2008). Their production of TNF-
α and interferon-γ (IFN-γ) stimulates killing activities by
macrophages. Moreover, T-cells complete granuloma formation
by forming the lymphocytic cuff surrounding it (O’Garra et al.,
2013).

The balance between the eicosanoids prostaglandin E2 (PGE2)
and lipoxin A4 (LXA4) affects the mode of death of infected
macrophages. LXA4 promotes macrophage necrosis, resulting
in cell lysis of the macrophage, thereby allowing Mtb to escape
and spread to neighboring cells. PGE2 stimulates apoptosis,
leaving the macrophage plasma membrane intact, containing the
bacilli, and enhancing immunity (Chen et al., 2008). Leukotriene
(LT) B4, through regulation of TNF-α production (Tobin et al.,
2012) and possibly attraction of neutrophils (Lammermann et al.,
2013), is also involved, with both high and low levels of LTB4
inducing macrophage necrosis (Tobin et al., 2012).

In only 10% of individuals, progressive primary disease occurs;
in the remaining 90% the initial infection is contained and latent
infection is established (O’Garra et al., 2013). Current thinking
views active and latent TB on a spectrum of tuberculosis disease,
rather than as two distinct disease states as historically classified.
(Barry et al., 2009).

GRANULOMAS

Most human granulomas are composed of a center of infected
macrophages, with the ability to differentiate, for example
into epithelioid cells, multi-nucleated giant cells, and foamy
macrophages. An outer layer of lymphocytes surrounds these
cells, and many other cells, including neutrophils, dendritic
cells, natural killer (NK) cells and fibroblasts may form part
of the granuloma. The granuloma contains the mycobacteria,
preventing their spread, but at the same time serves as
a site of replication and persistence for Mtb (Ndlovu and
Marakalala, 2016). Different types of granuloma exist: cellular,
suppurative, fibrotic, or caseous (Canetti, 1955). Caseous necrosis
occurs when cells within the granuloma undergo necrosis
(O’Garra et al., 2013); alternatively, it has been suggested
that – in post-primary TB - granulomas form in response to
existing areas of necrotic caseous pneumonia (Hunter, 2016).
Caseous necrosis happens in conjunction with extracellular
matrix (ECM) destruction. In the classical paradigm, tissue
destruction occurs as a result of caseous necrosis (O’Garra
et al., 2013). However, an alternative theory proposes that
collagen destruction precedes caseation and, therefore, ECM
destruction is the initial pathological event (Al Shammari et al.,
2015).

Diverse types of granulomas can be present in one lung at the
same time, ranging from small cellular granulomas to multiple
caseous granulomas that coalesce and expel their contents to

form large cavities; they behave independently of each other,
and different immunologic profiles exist between (Ulrichs et al.,
2005; Subbian et al., 2015) and within (Marakalala et al., 2016)
granulomas. Granulomas can be stable, or either resolve or
progress. Clinically, the behavior of a few or even a single poorly
controlled granuloma can determine the outcome of the disease
on a host level (Flynn, 2018).

CAVITIES, BRONCHIECTASIS AND
FIBROSIS

The lung consists of both cellular and extracellular components.
The ECM is comprised of the interstitial connective tissue matrix,
which forms the parenchyma of the lung, surrounding cells and
providing structural scaffolding, and the basement membrane,
which separates the alveolar epithelium or endothelium from
the surrounding stroma. Support of the alveoli by the ECM
is needed for normal lung function; destruction or abnormal
remodeling of the ECM occurs in many pulmonary diseases
and leads to pulmonary impairment (Elkington and Friedland,
2006). The ECM of the lung is mainly made up of type I
collagen and elastin. Type III and IV collagen are important
components of the alveolar wall and basement membrane.
Large fibers are connected by smaller fibrils. Dissemination
of mycobacteria from the lung parenchyma into the airways
as well as formation of cavities requires destruction of
the ECM through cleavage of both small fibrils and large
fibers. Collagens, however, are highly resistant to cleavage by
proteolytic enzymes; only matrix metalloproteinases (MMPs)
are capable of completely degrading the ECM (Elkington
and Friedland, 2006). Consequently, MMPs play an important
role in the development of cavities, bronchiectasis as well as
fibrosis.

The development of cavities in TB has been studied extensively
in rabbits, using Mycobacterium bovis. In these studies, cavities
developed from liquefied caseating granulomas, that contained
large numbers of actively growing bacteria. Bacteria release high
amounts of tuberculin-like products causing a tissue-damaging
delayed-type hypersensitivity reaction (Dannenberg, 2006). This
T-cell mediated immune reaction is important; cavities developed
mainly in pre-sensitized rabbits and desensitization or immune
suppression could prevent cavity formation (Yamamura et al.,
1968; Yamamura et al., 1974). Cavities are formed when
expanding granulomas ruptures their caseous contents into a
bronchus (Dannenberg, 2006).

Histologic studies in humans show a different picture
of cavity formation that challenges the paradigm described
in rabbits (Hunter, 2016): cavities do not develop from
liquefied caseating granulomas, but from a caseous pneumonia.
Host lipids and mycobacterial antigens accumulate in the
alveoli, but only small numbers of bacteria are present.
Similar to the rabbit model, sudden necrosis related to a
delayed-type hypersensitivity reaction against mycobacterial
antigens occurs (Hunter, 2016). However, an alternative yet
controversial theory, based on the small numbers of bacteria
observed and several observations related to autoimmunity
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seen in patients with TB, proposes a role for autoimmunity:
mycobacteria induce inappropriate host responses to self-
antigens, causing autoimmune inflammation (Elkington et al.,
2016). A considerable overlap in gene expression signatures
between TB and autoimmune diseases, greater than seen with
other infectious diseases, supports this theory (Clayton et al.,
2017).

The lipid-rich necrotic material in granulomas does not have
the enzymatic activity to degrade collagen and consequently, its
build-up is only one component of cavity formation. Extracellular
matrix breakdown takes place and involves MMPs. Indeed,
increased concentrations of MMPs have been found in TB cavities
in rabbits (Kubler et al., 2015) and in humans (Sakamoto et al.,
2013; Ong et al., 2015). Neutrophils have also been found in
cavities (Ong et al., 2015).

Bronchiectasis, an irreversible dilatation of the bronchi, is
caused by an ongoing inflammatory process (like TB), which
results in damage to the airway epithelium, leading to an
inability to clear secretions, as well as destruction of the elastin
in the airway walls (Milliron et al., 2015). Similar to cavity
formation, MMPs have been implicated in the development of
bronchiectasis, with increased levels being found in sputum,
bronchoalveolar lavage fluid (BALF), and the lamina propria of
patients with bronchiectasis (Sepper et al., 1995; Zheng et al.,
2002; Guan et al., 2015). Neutrophils, together with macrophages
and T-cells, are the dominant cell type in bronchiectatic
inflammation (King, 2009). Alternatively, traction bronchiectasis
can occur, secondary to scarring of the adjacent parenchyma or
narrowing of more proximal bronchi (Milliron et al., 2015).

Fibrosis results from the excessive deposition of components
of the ECM such as collagen and fibronectin in and around
inflamed or damaged tissue by myofibroblasts. Its pathogenesis
is complicated (Wynn and Ramalingam, 2012), with many
innate and adaptive immune cells and cytokines playing a role.
Transforming growth factor (TGF-β), produced by macrophages,
lung epithelial cells, and fibroblasts, is one of the key players
(Wynn and Ramalingam, 2012) and indeed, higher levels of TGF-
β in serum and BALF correlate with an increase in fibrosis seen
on high-resolution CT scan in patients with TB 6 months after the
start of treatment (Ameglio et al., 2005). TNF-α, IL-β, and IL-17-
induced neutrophil recruitment also seems to play a crucial role
in the development of fibrosis (Wynn and Ramalingam, 2012).
MMPs appear to be involved: some MMPs reduce fibrosis, but
others – perhaps counterintuitively – promote it (Giannandrea
and Parks, 2014). In a Taiwanese study, patients with an MMP-
1 (-1607G) gene polymorphism, leading to excessive MMP-1
production, were more likely to have moderate to advanced
fibrosis on CXR 1 year after completion of TB treatment (Wang
et al., 2010).

WHAT ARE THE IMMUNOLOGICAL
MEDIATORS AND PROCESSES LEADING
TO LUNG DAMAGE?

Much of our recent knowledge of immunological processes in
TB comes from animal models. Mice, rabbits, guinea pigs, and

zebra-fish have all been used to study TB. However, none of
these models completely replicate the immunopathology seen in
human TB. More recently, non-human primates have also been
used, exhibiting a spectrum of pathology closely resembling TB
in humans (Flynn et al., 2015).

For this review, we included studies done in humans, where
serum and BALF markers are commonly used to assess the
immunological processes in the lung. Serum measurements
reflect systemic responses and do not represent what happens
in individual granulomas, as was shown by a difference in gene
expression patterns between granuloma and blood (Subbian et al.,
2015). BALF more closely reflects responses taking place in the
lung, however, even BALF only reflects processes taking place in
the airways and not necessarily those in the lung parenchyma.
Histology is the only way to assess the immunological processes
occurring within a granuloma; however, histological samples are
more difficult to obtain and, therefore, most study findings in
humans are built on assumptions using available body fluid.
Studies that do include histological samples cannot present
longitudinal data.

When conducting our review, we searched for studies that
assessed inflammatory mediators, and associated them with
radiological abnormalities as a marker for pulmonary damage
(Figure 1).

MATRIX METALLOPROTEINASES

There are 23 MMPs in humans. They can be secreted by a
variety of cells, including macrophages/monocytes, neutrophils,
and lung epithelial cells. Their generation is tightly regulated.
They are not stored requiring gene transcription immediately
before secretion; exceptions being MMP-8 and -9 stored in
neutrophils. Once activated, they are regulated by endogenous
inhibitors, called tissue inhibitors of metalloproteinases (TIMPs).
Expression of MMPs is increased by prostaglandin and several
cytokines (including IL-1β, IL-17 (Singh et al., 2018), TNF-α,
and IFN-γ) (Elkington P.T. et al., 2011); hypoxic conditions,
present in TB lesions, also increase expression and secretion of
MMP-1 through the induction of hypoxia-inducible factor 1α

(Belton et al., 2016). A recent study has demonstrated a role
for platelets in MMP-1 upregulation in Mtb-infected monocytes,
in addition to upregulation of IL-1β and IL-10 (Fox et al.,
2018).

As described above, degradation of collagens and elastins by
MMPs during active TB leads to the formation of cavities. Strong
evidence of the role of MMPs in lung damage comes from studies
in transgenic mice expressing human MMP-1. Wildtype mice do
not express the ortholog of MMP-1 in lung and do not develop
caseous necrosis or cavities in response to Mtb; in human MMP-
1 transgenic mice, however, infection with TB leads to collagen
destruction and caseous necrosis (Elkington P. et al., 2011; Al
Shammari et al., 2015). MMPs also play a role in granuloma
formation (Parasa et al., 2017).

Several MMPs are upregulated in blood, sputum, and BALF
of patients with active TB, primarily MMP-1, -3, -7, -8, and
-9 (Elkington P.T. et al., 2011). MMP-1 is the dominant
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FIGURE 1 | Mediators of lung damage in TB and interplay with [lightning flash cartoon], virulent Mtb; COX, cyclooxygenase; IFN-I, type I interferon; IFN-γ, interferon
gamma; IL, interleukin; LOX, lipoxygenase; LT, leukotriene; LTA4H, leukotriene A4 hydrolase; LX, lipoxin; mϕ, macrophage; MMP, matrix metalloproteinase; Mtb,
mycobacterium tuberculosis; neu, neutrophil recruitment; NO, nitric oxide; PGE2, prostaglandin E2; TNF, tumor necrosis factor. NO inhibits assembly of the NLRP3
inflammasome (Mishra et al., 2013).

collagenase in TB (Elkington P. et al., 2011); its secretion is
driven by Mtb directly by activation of multiple intracellular
signaling pathways and by intercellular networks (Ong et al.,
2014). Corresponding TIMPs are not similarly upregulated
by Mtb, leading to a matrix-degrading phenotype in TB
(Price et al., 2001). In a zebrafish model, using M. marinum
to study granuloma formation, mycobacterial-derived ESAT-6
induced MMP-9 secretion, enhancing monocyte recruitment to
granulomas (Taylor et al., 2006; Volkman et al., 2010).

Increased levels of MMPs correlate with pulmonary damage:
sputum levels of MMP-1, -2, and -8 were elevated in patients
with cavities and correlated positively with the extent of infiltrates
on CXR (Walker et al., 2012; Ong et al., 2015). Similarly,
sputum levels of membrane type-1 MMP (a membrane-bound
collagenase expressed on monocytes), plasma concentrations of
procollagen III N-terminal propeptide (PIIINP, a degradation
product of collagen type III), BALF levels of MMP-3, -7, and
-8, and serum concentrations of MMP- 1, -8, and -9, correlated
with more extensive CXR abnormalities in patients with TB
from several different countries (Hrabec et al., 2002; Seddon
et al., 2013; Singh et al., 2014a; Sathyamoorthy et al., 2015; Sigal
et al., 2017). These findings suggest a central role for MMPs

and extracellular matrix degradation in the development of lung
damage in TB.

NEUTROPHILS

Neutrophils are abundant in the airways of humans with active
TB (Eum et al., 2010). Their role in TB appears dichotomous:
high numbers of neutrophils in the blood at the time of exposure
are associated with lower likelihood of infection (Martineau
et al., 2007). Conversely later in TB their numbers in blood were
associated with worse patient outcomes (Barnes et al., 1988; Lowe
et al., 2013). Various soluble mediators (amongst others Il-1β, IL-
8, IL-17, PGE2, LTB4, and granulocyte colony-stimulating factor)
promote neutrophil recruitment (Lowe et al., 2012); others, like
IFN-γ and nitric oxide (NO), reduce neutrophil recruitment and
survival, partly via inhibition of IL-17 (Nandi and Behar, 2011),
IL-1β and 12-lipooxygenase (12-LOX) (Mishra et al., 2017).

At the time of presentation with active TB, neutrophils are
associated with lung damage: a neutrophil-driven, IFN-inducible
whole-blood transcript signature (Berry et al., 2010), higher
blood (Abakay et al., 2015; Panteleev et al., 2017) and BALF
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(Nolan et al., 2013) neutrophil counts, and higher serum levels
of S100 proteins (a protein produced by neutrophils, promoting
their own recruitment) (Gopal et al., 2013; Berrocal-Almanza
et al., 2016) in patients with active TB all relate with the
extent of lung radiographic disease. Lung damage is thought to
be contributed to by their indiscriminate killing mechanisms,
which can result in significant bystander damage to surrounding
host tissue. Moreover, neutrophils are the only cells that store
MMPs (Ong et al., 2015), while they do not synthesize TIMPs,
thus allowing for unrestrained effects of MMPs (Masure et al.,
1991). Removing infected or dying neutrophils is necessary to
protect the surrounding tissue. Removal of apoptotic neutrophils
by macrophages promotes subsequent killing of Mtb, whereas
removal of necrotic neutrophils allows for mycobacterial survival
and proliferation inside the macrophages. Mtb drives neutrophil
necrosis, a process that requires neutrophil-derived reactive
oxygen species (ROS) (Dallenga et al., 2017b). Inhibition of ROS-
production could restore growth control of Mtb by macrophages
(Dallenga et al., 2017a).

EICOSANOIDS

The eicosanoids PGE2, LXA4, and LTB4 are all metabolites
of arachidonic acid (AA). Cyclooxygenase (COX) converts AA
into PGE2, while 5-lipooxygenase (5-LOX) generates LTA4,
which is again converted into either LXA4 by 12-LOX, or
LTB4 by leukotriene A4 hydrolase (LTA4H) (Dietzold et al.,
2015). As mentioned previously, the balance between these
eicosanoids influences the mechanism of macrophage death
(Chen et al., 2008). Macrophage apoptosis leads to an early
immune response with better control of the infection and
minimal immunopathology, while macrophage necrosis leads
to a delayed immune response, inadequate control of infection
and greater immunopathology (Divangahi et al., 2013). Virulent
strains of Mtb promote LXA4 production, thereby stimulating
necrosis and mycobacterial spread (Chen et al., 2008). To our
knowledge, no studies have correlated PGE2 or LXA4 with
pulmonary function in human TB; one can speculate that tipping
the eicosanoid-balance toward PGE2 may result in less lung
damage. Findings in mice and latent TB in humans, however,
show that levels of PGE2 were low early in the infection and
increased later in and during active TB (Rangel Moreno et al.,
2002; Shu et al., 2013; Mayer-Barber et al., 2014; Lee et al., 2015).
This underlines the complex and poorly elucidated role of PGE2
in TB infection and may even suggest a changing role for PGE2
during the course of the disease. LTB4, which is generated by
LTA4H, has been correlated with severity of TB on CXRs in one
study (el-Ahmady et al., 1997).

CYTOKINES

Various studies have assessed the association between cytokines
(including IFN–y and TNF–α, and several pro- and anti-
inflammatory interleukins) and CXR abnormalities in TB
(Dlugovitzky et al., 1997; Sodhi et al., 1997; Casarini et al., 1999;

Tsao et al., 1999, 2000, 2002; van Crevel et al., 2000; Mazzarella
et al., 2003; Ameglio et al., 2005; Wu et al., 2007; Berry et al., 2010;
Su et al., 2010; Walker et al., 2012; Nolan et al., 2013; Chowdhury
et al., 2014; Fan et al., 2015; Sigal et al., 2017). The different
measuring methods used and the fact that several cytokines are
not limited to a single effector function make comparison and
interpretation challenging.

Only TNF-α and IL-1β in both blood and BALF seem to
unambiguously correlate with CXR abnormalities. Higher levels
of TNF-α and IL-1β correlate with the presence or size of cavities
(Tsao et al., 2000; Ameglio et al., 2005; Chowdhury et al., 2014;
Sigal et al., 2017) and with the extent of pulmonary involvement
(Casarini et al., 1999; Walker et al., 2012). Moreover, lower
levels of these cytokines were found in patients with an early
radiological response to TB treatment (improved CXR after
2 months of treatment) compared to those with a later (at
6 months) response (Su et al., 2010). In animal models, the effect
of TNF-α seems to be dose dependent, where both high and
low doses lead to tissue destruction (Bekker et al., 2000; Tobin
et al., 2012). LTA4H polymorphism, and subsequently eicosanoid
patterns, play a role in its regulation (Tobin et al., 2012). Both
TNF-α and IL-1β affect secretion of MMPs and MMPs in their
turn can play a role in the release, activation or inactivation of
TNF-α and IL-1β (Elkington and Friedland, 2006). IL-1β also
associates with activation of fibroblasts (Borthwick, 2016) and the
recruitment of neutrophils (Lowe et al., 2012; Mishra et al., 2017),
which all associate with lung damage.

AUTOPHAGY

Autophagy is an intracellular self-digestion process: cytosolic
material is engulfed by a double-membrane vesicle called the
autophagosome, that delivers it to lysosomes for degradation
and subsequently releases the degraded products back to the
cytosol. Autophagy can be used by the host to eliminate
intracellular pathogens and plays an important role in defense
against Mtb (Gutierrez et al., 2004); both IFN-γ and TNF-
α can induce autophagy (Songane et al., 2012). It can
also downregulate IL-1β production mediated through the
inflammasome (an intracellular multiprotein complex that
triggers formation of proinflammatory cytokines), by removing
large inflammasome complexes or damaged mitochondria -
which, through production of ROS, trigger the inflammasome
(Rathinam et al., 2012). Virulent Mtb can inhibit autophagy
(Gupta et al., 2016), subsequently leading to increased IL-1β

production (Songane et al., 2012). It was found that patients
infected by Mtb strains with poor in vitro autophagy-inducing
ability displayed more severe radiographic extent of disease (Li
et al., 2016). Consequently, inducing autophagy could limit lung
damage.

THE MODULATING ROLE OF HIV

Globally, 13 percent of people with active TB who know their HIV
status are co-infected with HIV-1 (World Health Organization,
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FIGURE 2 | The potential effect of immune mediators on the development of lung damage at different stages of disease. G-CSF, granulocyte-colony stimulating
factor; IL, interleukin; LTB4, leukotriene B4; LXA4, lipoxin A4; mϕ, macrophage; neutro, neutrophils; NO, nitric oxide; PGE2, prostaglandin E2; TNF, tumor necrosis
factor.

2017). Although TB is also a risk factor for airflow obstruction
in patients with HIV (Samperiz et al., 2014; Pefura-Yone et al.,
2015; Gupte et al., 2017), in HIV positive patients with a low
CD4 count (CD4 < 200/mm3) TB often presents with atypical
CXR findings or even normal CXRs, while cavitation is 4-fold
less common (Kwan and Ernst, 2011). These findings suggest
that TB-related pulmonary damage might be reduced in HIV co-
infected patients and the host immune response, necessary for
protection against TB, is required for the development of cavities.
Indeed, several of the factors previously discussed and implicated
in pulmonary damage, are affected by HIV co-infection. For
example, sputum levels of MMP-1, -2, -8, and -9 are reduced
in HIV-TB co-infected patients, compared to patients without
HIV (Walker et al., 2012, 2017) as is the activity and life span
of neutrophils (Lowe et al., 2015). The effect of HIV co-infection
on the levels of several of the other cytokines is variable across
studies and thus it is difficult to interpret a clear trend (Zhang
et al., 1994; Elliott et al., 1999; de Castro Cunha et al., 2005; Riou
et al., 2012; Walker et al., 2012; Mihret et al., 2014; Kassa et al.,
2016).

Paradoxical TB-associated immune reconstitution
inflammatory syndrome (TB-IRIS) develops in approximately
18% (95% CI 16–21%) of patients on treatment for HIV-
associated TB, usually within the first few weeks after starting
ART (Namale et al., 2015). It results in new or recurrent
TB signs and symptoms, commonly involving the lungs,
such as cough, chest pain, and worsening radiographic
pulmonary infiltrates. TB-IRIS is associated with increased
levels of several cytokines, particularly IL-6, TNF-α and
IFN-γ (Tadokera et al., 2011; Conesa-Botella et al., 2012;
Lai et al., 2015; Ravimohan et al., 2015) and inflammasome
activation (Lai et al., 2015). It results in increased neutrophil
recruitment (Nakiwala et al., 2018), and up-regulation of
MMP-1, -3, -7, -8, and -10 (Tadokera et al., 2014; Ravimohan
et al., 2016; Walker et al., 2017). LT4AH also appears to
play a role, as more severe TB-IRIS has been reported

in patients with mutant (TT and CT) LTA4H genotypes
(Narendran et al., 2016).

These findings suggest that TB-IRIS could result in pulmonary
damage and impaired lung function. To date, only one study has
explored the relationship between TB-IRIS and lung function in
14 patients with HIV-associated TB, 3 of whom developed TB-
IRIS (Ravimohan et al., 2016). The study found that an increase
in MMP-8 between baseline pre-ART and 4 weeks post-ART
initiation strongly associated with impairment in lung function,
but the small sample size limits definitive conclusions.

WHERE CAN WE INTERVENE TO
PREVENT OR REDUCE LUNG DAMAGE?

There are several uncertain areas around therapies to prevent
or limit lung damage in TB. Changes in the lungs start to
develop before clinical symptoms appear (Esmail et al., 2016;
Zak et al., 2016; Scriba et al., 2017), and therefore, a large
proportion of lung damage may already have occurred by the
time the patient presents; several mediators of lung damage
may have different roles at different stages of the disease;
granulomas in various stages can be present at the same time
in a single individual, and only a single or a few progressive
granulomas can determine the outcome of the disease. Therefore,
it remains uncertain what happens for example to the contained
granulomas if we systemically treat the patient with potentially
immunosuppressive therapy or what the right time is to intervene
(Figure 2).

ANTITUBERCULOUS THERAPY AS
HOST-DIRECTED THERAPY

Sputum Mtb load is associated with systemic inflammation
and, combined with pre-treatment C-reactive protein levels,
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inversely correlates with CXR improvement 60 days after
start of treatment (Mesquita et al., 2016). Time between
first TB symptoms and start of treatment (de Valliere and
Barker, 2004; Baez-Saldana et al., 2013), duration of treatment
(Chung et al., 2011), and smear positivity (Chung et al.,
2011) are associated with impaired pulmonary function,
suggesting that prompt diagnosis and treatment will limit
lung damage. In addition to a direct anti-mycobacterial effect,
in vitro studies suggest that some antimycobacterial agents
may have immunomodulatory action. Pyrazinamide directly
reduces levels of TNF-α, IL-6 and IL-1β (Manca et al., 2013),
quinolones downregulate MMP-1, -3, and -9 (Singh et al.,
2014a), and rifampicin downregulates MMP-3 production by
bronchial epithelial cells (Singh et al., 2014a) and inhibits
PGE2 production (Yuhas et al., 2007). P-aminosalicylic acid
(PAS), which is an aspirin derivate, suppresses PGE2-dependent
MMP-1 production (Rand et al., 2009). Both isoniazid (INH)
and pyrazinamide (PZA) enhance autophagy (Kim et al.,
2012).

MEDICINES USED IN OTHER HUMAN
DISEASES AS HOST-DIRECTED
THERAPY FOR TB

In an adjunctive approach to TB therapy, treatment could
be supplemented with host-directed therapies. Several readily
available drugs affect cytokines, MMPs or eicosanoids and
therefore potentially reduce pulmonary damage (Table 1).

Steroids have been used as adjunctive treatment in TB
for several decades (Dooley et al., 1997; Critchley et al.,
2013), mainly in TB meningitis, pericarditis, and TB-IRIS, even
though corticosteroid use without concomitant TB treatment
increases the risk of developing TB (Jick et al., 2006). Two
recent reviews concluded that there is no high quality evidence
that steroid treatment significantly affects mortality or sputum
conversion rate in pulmonary TB (Critchley et al., 2014;
Schutz et al., 2018). An earlier review – including mostly
studies done in the 1960s and patients not on rifampicin-
based TB treatment – did find a beneficial effect of steroids
on radiographic resolution and regression of cavities (Smego
and Ahmed, 2003). A meta-regression analysis of 12 studies
found steroids do accelerate sputum TB culture conversion
(Wallis, 2014) – which is inversely associated with development
of airflow obstruction (Radovic et al., 2016); however, high doses
(134 mg prednisone daily) for an extended period (2 months)
are required to reach clinically relevant outcomes (Wallis,
2014). Moreover, the only two studies in this analysis in which
patients were on rifampicin-based treatment show contradicting
results.

Corticosteroids inhibit various cytokines in TB (IFN-γ, TNF-
α, IL-1β) and TB-IRIS (IL-6, IL-10, IL-12p40, TNF-α, IFN-γ, and
IP-10) (Mahuad et al., 2004; Mayanja-Kizza et al., 2005; Meintjes
et al., 2012; Bongiovanni et al., 2015). In patients with tuberculous
meningitis, the effect of corticosteroids was found to be LTA4H
genotype modulated, with only patients with the mutant TT
genotype, leading to a higher inflammatory response, benefitting

TABLE 1 | Host-directed therapies potentially inhibiting lung damage and/or
promoting lung repair.

Host-directed inhibiting lung
damage

Potential mechanism

Steroids ↓ INF-γ, TNF-α, IL-1β (and IL-6,
IL-10, IL-12p40, and IP-10 in
TB-IRIS)

↓ MMP-7 (in TB-IRIS)

Doxycycline ↓ MMP-1, -3, and -9

Vitamin D ↓ MMP-7 and -9

↓ IFN-γ, IL-6, IL-10, TNF-α

↑ autophagy

Rapamycin, everolimus ↓ MMP-1 and -3

↑ autophagy

NSAIDs ↓ PGE21 and ↑ LXA4

Zileuton ↓ 5-LOX

Phosphodiesterase-4 inhibitors ↓ TNF-α

↓ neutrophil recruitment

Metformin ↓ TNF-α

↑ autophagy

Statins ↑ autophagy

TNF-α blockers ↓ TNF-α

PGE2 ↑ PGE21

IFN-γ ↑ IFN-γ

Mesenchymal stromal cells Control inflammation and mediate
tissue repair

1The effect of inhibiting or increasing PGE2 on lung damage could vary depending
on the stage of the disease.

from steroid treatment (Tobin et al., 2012). In patients with TB-
IRIS, however, this difference in genotype on the effect of steroid
treatment was not confirmed (Narendran et al., 2016). The effect
of corticosteroid treatment and TB-IRIS on pulmonary function
is being assessed in a substudy of the PredART trial (Meintjes
et al., 2017).

Little evidence is available for other TNF-α blocking
therapies. A trial of 16 patients with HIV-associated TB
treated with etanercept (but no ART) showed a tendency
to greater CXR improvement from baseline to 6 months
compared to a placebo group, although this was not statistically
significant (p = 0.2) (Wallis et al., 2004). Case reports describe
successful treatment of paradoxical TB reactions or TB-IRIS –
involving the pleura, lymph nodes or brain – with infliximab
(Blackmore et al., 2008; Jorge et al., 2012; Hsu et al., 2016),
or adalimumab (Wallis et al., 2009; Lee et al., 2012). Although
only one case refers to pulmonary TB-IRIS [occurring after
interruption of prior anti-TNF-α treatment (Wallis et al., 2009)],
these case reports support the possible benefits of TNF-α
blockers in the treatment of (complicated) TB. Restarting TNF-
α blockers during or after TB treatment was safe and only
led to one recurrence of TB in a cohort of 22 patients in
Turkey followed for a median of 53 months (Ozguler et al.,
2016).

Doxycycline is the only licensed MMP-inhibitor for use
in humans. It suppresses MMP-1, -3, and -9 secretion by
Mtb infected human macrophages and bronchial epithelial
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cells (Walker et al., 2012). Other agents also inhibit MMPs
in vitro: prednisone – in patients with TB-IRIS – suppresses
MMP-7 gene expression (Tadokera et al., 2014), vitamin D
inhibits secretion of MMP-7 and -9 (Anand and Selvaraj, 2009;
Coussens et al., 2009), and rapamycin (an mTOR-inhibitor and
a known autophagy inducer that can also affect macrophage
polarization (Mercalli et al., 2013)) inhibits MMP-1 and MMP-3
(Singh et al., 2014b). Use of the latter in TB is limited by
the interaction with rifampicin. In mice, broad spectrum
inhibition of MMPs enhances the efficacy of INH and RIF
treatment (Xu et al., 2018). Conceptually, inhibition of MMPs
may lead to less pulmonary damage, but so far, no clinical
trials have directly assessed this. Currently, everolimus, a
rapamycin derivate, is being tested as HDT in patients with
moderate to far advanced pulmonary tuberculosis (together
with vitamin D, auranofin [a gold complex with antimicrobial
activity used in rheumatoid arthiritis], and CC-11050 [a
phosphodiesterase 4 (PDE4) inhibitor]), using rifabutin-based
anti-TB treatment (ClinicalTrials.gov NCT02968927); with
change in FEV1 being one of the secondary outcomes. Both
rapamycin, its derivates, and vitamin D could theoretically
reduce lung damage through inhibition of MMPs, although
the effect of vitamin D treatment on CXR abnormalities is
variable (see below). PDE4 inhibitors, in combination with
INH treatment, have been shown to reduce TB-associated
lung damage in rabbits (Subbian et al., 2011) and pulmonary
bacillary load in mice (Maiga et al., 2015). Doxycycline
is being investigated for its potentially modulating effect
on tissue destruction in pulmonary TB (ClinicalTrials.gov
NCT02774993).

NSAIDs inhibit the enzyme cyclooxygenase (COX),
thereby inhibiting PGE2 production and enhancing LXA4
production. An adjunctive role for NSAIDs in treatment
of human TB has only been shown for acetylsalicylic acid
in reducing PZA-induced arthralgia (Petty and Dalrymple,
1964; Horsfall et al., 1979) and possibly in TB meningitis
(Misra et al., 2010; Schoeman et al., 2011; Mai et al., 2018).
Negative effects have been described: a Taiwanese study
found an association between NSAID use (both traditional
NSAIDs and selective COX-2 inhibitors) and an increased
risk of active TB (Wu et al., 2017). However, it is not
clear whether this association is causative (i.e., decreased
apoptosis at the very early stages of TB) or merely reflects
an increased use of NSAIDs early during TB. In mice,
inhibition of PGE2 by the NSAID ibuprofen was shown
to affect lung pathology: inhibition early in the disease
process leads to an increase in pulmonary inflammation
and pathology (Rangel Moreno et al., 2002), whereas
inhibition later during disease decreased lung pathology
and neutrophil influx (Rangel Moreno et al., 2002; Vilaplana
et al., 2013). Increasing PGE2 by early (day one post infection)
administration of exogenous PGE2 (dinoproston – normally
used for induction of labor) and/or the 5-lipo-oxygenase
inhibitor zileuton (used in the treatment of asthma) to IL-1
deficient mice resulted in less necrotic lung pathology by
TB (Mayer-Barber et al., 2014). No studies with dinoproston
or zileuton have been performed in human TB to date.

A pilot study is currently investigating the effect of ibuprofen
added to multi-drug resistant TB treatment on radiological
improvement of TB, amongst other endpoints (ClinicalTrials.gov
NCT02781909).

In in vitro models, metformin, a widely used antidiabetic
agent, has been shown to inhibit TNF production by monocytes
(Arai et al., 2010), affect macrophage polarization (Nadella
et al., 2017), and promote autophagy (Singhal et al., 2014).
It affects Th1 responses, but data are conflicting: in mice
infected with TB, metformin treatment promotes the expansion
of Mtb-specific IFN-γ secreting T cells in the lungs (Singhal
et al., 2014), whereas in human THP-1 cells (not infected
with Mtb) metformin suppressed the production of Th1-
related cytokines (Chen et al., 2018). Metformin use in patients
with diabetes mellitus on treatment for TB was associated
with decreased mortality compared to patients using other
anti-diabetic drugs in two retrospective observational cohorts
(Singhal et al., 2014; Degner et al., 2018). A retrospective
cohort study of TB patients with diabetes mellitus showed
that those using metformin at diagnosis and during TB
treatment had fewer cavities and fewer CXR abnormalities
compared to those using other anti-diabetic drugs (Singhal et al.,
2014). Another retrospective study, however, showed increased
cavitatory disease in patients using metformin (Degner et al.,
2018).

Vitamin D3 induces autophagy (Campbell and Spector,
2012) and inhibits the secretion of MMP-7, -9 (Anand and
Selvaraj, 2009; Coussens et al., 2009), and several cytokines,
for example IFN-y, TNF-α, IL-6, and IL-10 (Vidyarani et al.,
2007; Harishankar et al., 2014) in vitro. However, its effect on
radiological outcomes are ambiguous: three trials comparing
vitamin D3 as adjunctive therapy demonstrated no effect on CXR
score (Martineau et al., 2011; Ralph et al., 2013b; Mily et al., 2015)
or pulmonary function (Ralph et al., 2013b), while one study
found more CXR improvement in the vitamin-D3 treated group
(Salahuddin et al., 2013).

Statins are widely used inhibitors of cholesterol biosynthesis.
They induce autophagy in vitro (Parihar et al., 2014) with broad
anti-inflammatory effects, although not directly demonstrated
in TB (Hennessy et al., 2016). Their use has been associated
with a reduced risk of developing active TB in some studies
(Lai et al., 2016; Liao et al., 2017; Su et al., 2017), but not
in all (Kang et al., 2014). No studies have been performed in
humans assessing statins in relation to pulmonary damage in
TB; in mice, statins have been found to reduce lung pathology
(Parihar et al., 2014). A future study will look at the effect
of pravastatin added to standard TB treatment on pulmonary
function (NCT03456102).

Several studies looked at the effect of IFN-γ as adjunctive
therapy for TB (Gao et al., 2011). The studies were small, and
most were performed in patients with multi-drug resistant TB.
Aerosolized IFN-γ in combination with TB treatment resulted
in better CXR outcomes compared to TB treatment alone. This
contradicts the finding in mice, where adding IFN-γ resulted
in worse pulmonary outcomes (Sakai et al., 2016). The authors
conclude that IFN-γ might be beneficial as adjunctive therapy in
TB, but larger trials are needed to confirm this.
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Mesenchymal stromal cells are tissue-resident non-
hematopoietic adult progenitor cells. They are believed to
facilitate organ homeostasis and tissue repair and can modulate
immune responses; they have been used in treatment of graft-
versus-host-disease and autoimmune diseases (Parida et al.,
2015). In a phase 1 trial in patients with drug resistant TB,
infusions of autologous mesenchymal stromal cells, 4 weeks
after starting TB treatment, was safe and resulted in CXR
improvement in 25/36 patients compared to 15/36 controls
(Skrahin et al., 2016).

CONCLUSION

The immune mechanisms of parenchymal lung damage in
human TB are complex and incompletely understood. The
difference between pulmonary damage in animal models
(mostly occurring as a result of primary TB) and humans
(mostly occurring as a result of post-primary TB) further
complicates study of this phenomenon. Processes taking
place in the lung are heterogeneous, with granulomas with
varying degrees of mycobacterial control existing next to
each other and inflammatory cells and cytokines appearing
to have different effects at different time points. MMPs seem
to play an important role and consequently, inhibition of
MMPs may lead to reduction in pulmonary damage, however,
this remains to be proven in clinical trials. Neutrophils are
another key mediator of pulmonary damage, whose recruitment
could potentially be inhibited by NSAIDs. The role of other
effectors is less clear and better insight into their effects
over the course of TB infection and disease is needed
to be able to guide potential intervention. Future studies

of human TB and (host-directed) therapy should include
radiographically assessed lung damage and pulmonary function
as an outcome.
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