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Sulfur is an essential element in all living organisms. In tRNA molecules, there are
many sulfur-containing nucleosides, introduced post-transcriptionally, that function to
ensure proper codon recognition or stabilization of tRNA structure, thereby enabling
accurate and efficient translation. The biosynthesis of tRNA sulfur modifications
involves unique sulfur trafficking systems that are closely related to cellular sulfur
metabolism, and “modification enzymes” that incorporate sulfur atoms into tRNA.
Herein, recent biochemical and structural characterization of the biosynthesis of sulfur
modifications in tRNA is reviewed, with special emphasis on the reaction mechanisms
of modification enzymes. It was recently revealed that TtuA/Ncs6-type 2-thiouridylases
from thermophilic bacteria/archaea/eukaryotes are oxygen-sensitive iron-sulfur proteins
that utilize a quite different mechanism from other 2-thiouridylase subtypes lacking
iron-sulfur clusters such as bacterial MnmA. The various reaction mechanisms of
RNA sulfurtransferases are also discussed, including tRNA methylthiotransferase MiaB
(a radical S-adenosylmethionine-type iron-sulfur enzyme) and other sulfurtransferases
involved in both primary and secondary sulfur-containing metabolites.

Keywords: biosynthesis, iron-sulfur cluster, post-transcriptional modification, radical SAM enzyme,

sulfurtransferase, sulfur modification, tRNA

INTRODUCTION

Transfer RNA (tRNA) is an essential adaptor molecule that bridges genomic information
from mRNAs to amino acid sequences in proteins. Precursor tRNA molecules undergo various
maturation steps such as removal of leader, trailer, and intronic sequences, addition of 3'-
CCA sequences, and chemical modification of nucleosides. More than 100 post-transcriptional
modifications of tRNAs have been identified (Cantara et al., 2011; Vire et al., 2017; Boccaletto et al.,
2018), among which sulfur modifications are especially important for tRNA functions. Four kinds
of thionucleoside derivatives are found in tRNAs (Figures 1A,B): 4-thiouridine (s*U) at positions
8 and 9 (Lipsett, 1965; Singer and Smith, 1972; Griffey et al., 1986), 2-thiocytidine (s*C) at position
32 (Carbon et al., 1968; Murao et al., 1972), 2-thiouridine (s>U) at position 33 (Crain et al., 2002),
2-thiouridine derivatives (xm®s*U) at positions 34 (Carbon et al., 1968; Oashi et al., 1970) and 54
(Watanabe et al., 1974), and 2-methylthioadenosine derivatives (ms*x®A) at position 37 (Burrows
etal., 1968; Ishikura et al., 1971) (where “x” represents several functional groups differing between
species and organelles). At position 34, there is taurine (2-aminoethansulfonic acid)-containing
modification at C5 carbon of U (Suzuki et al., 2002), 2-selenouridine derivatives (xm’seU), and
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2-geranyl-thiourideine ~ derivatives  (xm’ges*U)  (Wittwer
et al., 1984; Dumelin et al., 2012). The biosynthesis of tRNA
sulfur modifications involves sulfur trafficking systems and
“modification enzymes.” The sulfur trafficking systems used in
RNA modification are closely related to and shared with cellular
sulfur metabolism (Laxman et al., 2013), whereas modification
enzymes recognize substrate tRNAs and incorporate sulfur
atoms. Some sulfur-containing cofactors and secondary
metabolites are depicted in Figure 1C.

FUNCTIONS OF SULFUR
MODIFICATIONS IN TRNAS

The functions of sulfur modifications are briefly summarized
in this section. For more detailed information, please refer to
previous reviews (Shigi, 2014, 2016) and articles cited therein.
Uridine at position 34 (the wobble base) of tRNAs for lysine,
glutamic acid, and glutamine is almost universally modified
to s*U derivatives, although the C5 carbon of uridine is
also modified by functional groups that differ between species
(Elseviers et al., 1984). Due to steric clashes between the bulky
2-thio group and the 2-OH group of ribose, the ribose of
s2U preferentially adopts the C3'-endo conformation (Yokoyama
et al, 1985; Agris et al, 1992). Therefore, xm°>s>U stabilizes
base paring with NNA and NNG codons for lysine, glutamic
acid, and glutamine (Agris et al, 1973; Murphy et al., 2004;
Durant et al., 2005; Johansson et al., 2008). Absence of the
2-thio modification leads to ribosome stalling at AAA, CAA,
and GAA codons in mRNAs. Interestingly, pausing of the
ribosome causes protein misfolding and aggregation (Nedialkova
and Leidel, 2015), suggesting that optimal codon translation by
tRNA wobble modifications is very important for maintaining
proteome integrity. tRNA modifications are proposed to control
the translation efficiency of specific groups of genes with
mRNA codon bias as a mechanism of adaptation to specific
environments (Laxman et al., 2013; Tigano et al., 2015; Tyagi and
Pedrioli, 2015; Chionh et al., 2016).

In addition to position 34, the distribution of sulfur
modifications at other positions differs between species, and
modifications at positions 32 and 37 in the anticodon loop are
also important for precise codon recognition. The 2-methylthio
modification at position 37 directly stabilizes mRNA-tRNA
interactions with U in the anticodon third position and A in the
codon first position, as revealed by structural analysis of mRNA-
tRNA interactions in the ribosome (Jenner et al., 2010). The s*U
modification at position 8 is responsible for near-ultraviolet light
sensing in bacteria (Favre et al., 1969; Carre et al., 1974; Ryals
et al., 1982). When the cell is irradiated with near-ultraviolet
light, s*U crosslinks with cytidine 13, resulting in a disordered
tRNA structure that leads to translational arrest. In some
thermophilic microorganisms, such as Thermus thermophilus
and Pyrococcus furiosus, 5-methyl-2-thiouridine (m’s*U) or 2-
thioribothymidine (srT) is found at position 54 in almost all
tRNA molecules (Watanabe et al., 1974; Kowalak et al., 1994),
and the 2-thiolation content increases with increasing cultivation
temperature (Watanabe et al., 1976; Kowalak et al., 1994). The

m’s>U modification strengthens the duplex structure formed
by the D-loop and T-loop, which stabilizes the overall tRNA
structure (Horie et al., 1985). In T. thermophilus, m®s?U is
indispensable for growth at high temperature (Shigi et al., 2006a).
52U at position 33 was also found in mitochondrial tRNAT™ from
Leishmania (Crain et al., 2002), the function of this modification
has not been elucidated.

BIOSYNTHETIC PATHWAYS FOR
SULFUR MODIFICATIONS IN TRNAS

In eukaryotes and bacteria, sulfur atoms in sulfur-containing
molecules such as thionucleosides are derived from free
L-cysteine in the cell. The sulfur atom of L-cysteine is activated by
cysteine desulfurase, a pyridoxal-5'-phosphate (PLP)-dependent
enzyme, via covalent attachment to its catalytic cysteine residue
to generate the persulfide (R-SSH) form (Flint, 1996; Lauhon
and Kambampati, 2000; Lauhon, 2002; Nilsson et al., 2002).
Enzyme-linked persulfides are then transferred to downstream
sulfur carrier proteins, and eventually transferred to the final
sulfurtransferases in each pathway (Mueller, 2006; Shi et al.,
2010). Thus, biosynthetic pathways for thionucleosides are part
of a larger metabolic system involving other sulfur-containing
molecules with iron-sulfur (Fe-S) clusters, thiamin, and the
molybdenum cofactor (Moco) (Figure 1C; Schindelin et al.,
2001; Settembre et al., 2003; Hidese et al., 2011). Moreover, each
pathway is mutually influenced by others as part of a “sulfur
trafficking” network (Maynard et al., 2012; Dahl et al., 2013).
Other fascinating features include the involvement of numerous
sulfur carrier proteins that deliver activated sulfur species such
as R-SSH and thiocarboxylates (R-COSH), and the mechanisms
by which they achieve the safe, directional flow of potentially
harmful sulfur atoms (see below).

Thionucleoside synthesis can be classified into two types based
on the involvement of Fe-S proteins, and hence the dependency
on Fe-S cluster biosynthesis. The biosynthesis of s2C32, ms?A37,
and m°s?U54 is dependent on Fe-S clusters (Lauhon et al,
2004; Leipuviene et al,, 2004; Chen et al., 2017). Biosynthesis
of s*U8 and s?U34 differs among species; the biosynthesis of
s*U8 in bacteria, such as E. coli, Salmonella typhimurium, Bacillus
subtilis (Lauhon et al., 2004; Leipuviene et al., 2004; Rajakovich
et al, 2012), and some archaea, such as Thermoproteales,
Thermoplasmatales, Halobacteriales, and Sulfolobales (Liu et al.,
2012), is not dependent on Fe-S clusters, while in methanogenic
archaea and some other archaea, such as Thermococcales, it
is dependent on Fe-S clusters (Liu et al, 2012, 2016). The
biosynthesis of s?U34 is not dependent on Fe-S clusters in
bacteria (Lauhon et al., 2004; Leipuviene et al., 2004; Black and
Dos Santos, 2015), but the opposite is true for archaeal and
eukaryotic pathways (Nakai et al., 2007; Liu et al., 2016).

se?U34 is synthesized from s?U34 via geranylated
intermediate (ges’U) by SelU (YbbB) (Chen et al, 2005;
Dumelin et al., 2012; Sierant et al., 2018b). Desulfuration activity
of 2-thiouracil by DUF523 domain protein in the cell has
recently been reported (Aucynaite et al., 2018). Extensive in vitro
analysis of desulfuration of s>U derivative as a form of nucleoside
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FIGURE 1 | Sulfur modifications in tRNAs and other sulfur-containing metabolites. (A) Chemical structures of sulfur modifications in tRNAs. (B) Positions of
thionucleosides in tRNAs. (C) Examples of sulfur-containing cofactors and secondary metabolites.

or within an RNA chain has been performed, hydrogen
peroxide and cytochrome C or Fe!l -mediated reactions forms
predominantly generate 4-pyrimidinone nucleoside (h?U),
rather than U (Sochacka et al., 2013; Sierant et al., 2018a).
These studies will lead to better understanding of the in vivo
metabolism of thionucleosides.

THE ROLE OF SULFURTRANSFERASE
MNMA IN 2-THIO U SYNTHESIS

MnmaA is a thiouridylase that catalyzes 2-thiolation of uridine
at position 34 in bacteria (Kambampati and Lauhon, 2003).
The homologous enzyme Mtul is involved in s?U formation
in eukaryotic mitochondria (Umeda et al., 2005). In Escherichia

coli, TusA, the TusBCD complex, and TusE are required for s?U
formation (Ikeuchi et al., 2006). TusA interacts with cysteine
desulfurase IscS, accepts the persulfide, and directs sulfur flow
to this pathway. MnmA accepts the persulfide sulfur on its
conserved Cys199 residue in the active site from TusA via TusD
and TusE. However, in most species, there is no need for such
intermediate persulfide carrier proteins (Black and Dos Santos,
2015). MnmA possesses a PP-loop motif and is a member of
the ATP-pyrophosphatase family. This enzyme utilizes a two-
step mechanism to form an adenylated intermediate (Figure 2A).
Nucleophilic attack by the persulfide sulfur generates s>U and
releases AMP. The modification enzyme Thil involved in s*U
synthesis also contains a PP-loop and utilizes a similar two-step
mechanism (Mueller et al., 1998; Mueller and Palenchar, 1999;
Neumann et al., 2014). A snapshot of s*U formation via the
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FIGURE 2 | Two-step reaction mechanism of representative (methyl)sulfurtransferases. (A) The 2-thiouridylation reaction catalyzed by MnmA. A protein persulfide is
utilized as the sulfur donor. (B) Crystal structure of Escherichia coli MnmA, showing the tRNA complex with an adenylated intermediate (PDB ID: 2deu). The
backbone of the tRNA and the PP-loop of MnmA are colored orange and pink, respectively. The two catalytic cysteines (Cys102 and Cys199) are shown in stick
representation. (C) The 2-thiouridylation reaction catalyzed by TtuA/Ncs6. A protein thiocarboxylate may be utilized directly as shown in scheme (1). Alternatively, a
free sulfide from the thiocarboxylate may be utilized once trapped by the Fe-S cluster as shown in scheme (2). (D) Crystal structure of the Thermus thermophilus
TtuA (blue)-TtuB (green) complex (modeled from PDB ID: 5b4e and 5gha). The ATP analog bound to the PP-loop (pink), and the C-terminus of TtuB and the Fe-S
cluster encounter one another in the catalytic center of TtuA. Note that two residues of the C-terminus of TtuB are not visible. (E) The 2-methylthioadenylation
reaction catalyzed by MiaB. A methylsufide formed on the auxiliary (Aux) cluster is utilized as a substrate. (F) Crystal structure of Thermotoga maritima RimO clearly

showing the pentasulfide bridging the rSAM and Aux clusters (PDB ID: 4jc0).

acyl-adenylated intermediate was clearly revealed in a structural
analysis of the E. coli MnmA-tRNA complex (Figure 2B; Numata
etal., 2006). In the catalytic pocket, which is separated from bulk
solvent, the uridine reacts with ATP to form an acyl-adenylated
intermediate that reacts with the terminal sulfur released from
the persulfide on Cys199 with assistance from another conserved
cysteine (Cys102).

THE ROLE OF IRON-SULFUR PROTEIN
NCS6/TTUA IN 2-THIO U SYNTHESIS

In eukaryotes and archaea, Ncs6 and its archaeal homolog NcsA
catalyze the 2-thiolation reaction of uridine at position 34 (Bjork
et al., 2007; Chavarria et al., 2014). In eukaryotes, Ncs6 forms
a heterocomplex with the Ncs2 protein that appears to have a
role beyond catalysis (Esberg et al., 2006; Dewez et al., 2008). In
some thermophilic bacteria and archaea, such as T. thermophilus,
Thermotoga maritima, and Pyrococcus horikoshii, TtuA catalyzes
the same 2-thiouridylation reaction at different positions (e.g.,
position 54) (Shigi et al., 2006a; Arragain et al., 2017). Although

Ncs6/TtuA has a PP-loop motif and requires ATP for activity,
the sulfur transfer mechanism (Figure 2C) is markedly different
from that of MnmA in two aspects: Ncs6/TtuA utilizes an
oxygen-sensitive Fe-S cluster and a unique thiocarboxylate (R-
COSH) that is formed on the carboxy terminus of the sulfur
carrier protein Urm1/TtuB, believed to be ancient ubiquitin-
like post-translational modifiers (Shigi et al., 2008; Leidel
et al, 2009; Shigi, 2012). The C-terminus of Urml/TtuB is
thiocarboxylated with a sulfur atom from free L-cysteine via
an adenylated intermediate catalyzed by the El-like enzyme
Uba4/TtuC. Meanwhile, Tum1/TtuD enhances the activity of
cysteine desulfurases and directs sulfur flow to s*U biosynthesis
(Shigi et al., 2006b; Noma et al., 2009; Shigi et al., 2016).

In TtuA, a [4Fe-4S] cluster is ligated by three conserved
cysteines, leaving one iron atom free for ligand binding, which
may be important in the sulfur transfer reaction (Figure 2D;
Nakagawa et al., 2013; Arragain et al, 2017; Chen et al,
2017). TtuA activates the C2 position of U54 by forming an
acyl-adenylated intermediate. The thiocarboxylate of TtuB is
subsequently attached near the adenylate by the iron-sulfur
cluster, and the sulfur atom then attacks the C2 position of

Frontiers in Microbiology | www.frontiersin.org

November 2018 | Volume 9 | Article 2679


https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Shigi

Sulfur Modification in tRNAs

the uridine (Figure 2C (1)), forming the s?U product. In an
alternative mechanism, a sulfide ion released from TtuB-COSH
may bind to the free iron atom of the Fe-S cluster, and become
incorporated into s>U (Figure 2C (2)). The latter pathway may
be utilized by organisms lacking a TtuB homolog, and the
sulfide could be derived from free sulfide ions in the cell. In
support of this mechanism, sulfur atoms from free sulfides were
incorporated in vitro, and a sulfide captured by the iron-sulfur
cluster was observed in the crystal structure (Arragain et al.,
2017), although direct proof in vivo has not yet been obtained.
Changes in the electronic properties of the Fe-S cluster during
the reaction should also be investigated to understand the role in
sulfur transfer.

It has also been demonstrated that Saccharomyces cerevisiae
Necs6 and Methanococcus maripaludis NcsA can bind [3Fe-4S]
clusters (Liu et al., 2016). TtcA, which has a 2-thiocytidylase
activity at position 32 and belongs to a subgroup of the
Ncs6/TtuA family, also requires the [4Fe-4S] cluster for
catalysis (Jager et al, 2004; Bouvier et al., 2014). In addition,
M. maripaludis Thil has a [3Fe-4S] cluster that is essential
for catalysis (Liu et al., 2016). Knowledge of the functional
differences and distributions of [4Fe-4S], [3Fe-4S], and
other cluster types in these enzymes may lead to a better
understanding of the precise mechanisms of Fe-S cluster-
dependent sulfurtransferases. Although it was revealed that TtuA
recognizes a common T-loop sequence in tRNAs (Shigi et al,
2002), the structural basis of tRNA recognition by Ncs6/TtuA
family enzymes remains to be elucidated.

THE ROLE OF RADICAL
S-ADENOSYLMETHIONINE (RSAM)
ENZYME MIAB IN 2-METHYLTHIO A
SYNTHESIS

Methylthio-A37 methylthiotransferases such as MiaB in bacteria
and its paralogs in eukaryotes (Esberg et al., 1999; Pierrel et al,,
2002; Arragain et al., 2010) are a subgroup of rSAM enzymes
that possesses two Fe-S clusters (Lanz and Booker, 2015). rfSAM
enzymes catalyze the reductive cleavage of SAM to methionine
and the highly reactive 5'-deoxyadenosyl (5-dA) radical using
a [4Fe-4S] cluster, called the “rSAM cluster.” By abstracting a
hydrogen atom from the substrate, the 5'-dA radical generates
a substrate radical intermediate (Figure 2E). The rSAM cluster
and an additional auxiliary [4Fe-4S] cluster (the “Aux cluster”)
are ligated by two sets of three conserved cysteine residues, and
located near each other; the distance between the two clusters
is ~8 A in the structurally characterized related enzyme RimO
(Forouhar et al., 2013; Figure 2F), which catalyzes the insertion
of a methylthio group on the Asp89 residue of the bacterial
ribosomal protein S12 (Anton et al., 2008). Interestingly, the two
ligand-free iron atoms of the rSAM and Aux clusters are bridged
by a pentasulfide chain in this structure. It was proposed that
this bridging sulfur mimics the sulfur donor, and the sulfur does
not appear to come from the iron-sulfur clusters themselves, but
the exact nature of the sulfur donor remains to be determined.

An explanation of the reaction mechanism has been proposed
in which the transfer of a methyl group from another molecule
of SAM to the sulfur atom of the tip of the polysulfide attached
to the Aux cluster is followed by attack of a substrate radical
on the methylated sulfur atom to generate ms*A (Landgraf
et al., 2013; Figure 2E). Recently, a hypermodified nucleoside, 2-
methylthiomethylenethio-A (msms®A), was identified in E. coli
tRNAs, and MiaB is involved in msms?A synthesis (Dal Magro
et al,, 2018). MiaB may abstract a hydrogen radical from the
methyl group of ms?A, which is introduced in the first step of the
reaction, and a second methylthio transfer reaction could then
follow.

RELATIONSHIPS WITH OTHER
SULFUR-CONTAINING METABOLITES

The use of protein-thiocarboxylate intermediates (MoaD-COSH
and ThiS-COSH) in the biosynthesis of sulfur-containing
essential metabolites such as Moco and thiamin was revealed by
pioneering research by the groups of Rajagopalan (Leimkuhler
et al., 2011) and Begley (Settembre et al.,, 2003), respectively.
As described above, tRNA sulfurtransferase Ncs6/TtuA also
utilizes Urm1/TtuB-COSH as a sulfur donor. In some bacteria,
thiocarboxylates are utilized, as demonstrated in the biosynthesis
of L-cysteine in Mycobacterium tuberculosis (Burns et al., 2005)
and L-methionine in Wolinella succinogenes (Krishnamoorthy
and Begley, 2011).

In addition to these primary metabolites, there are numerous
other C-S bond-containing natural products (Figure 1C), the
biosynthesis of which has been comprehensively reviewed
(Dunbar et al, 2017). Protein thiocarboxylates are utilized
in the biosynthesis of siderophores in some Pseudomonas
(Matthijs et al., 2004), such as pyridine-2,6-dithiocarboxylic
acid and thioquinolobactin, and the antibiotic BE-7585A in
Amycolatopsis orientalis, which contains a 2-thiosugar moiety
(Sasaki et al.,, 2014). Although the biosynthetic gene clusters
for these siderophores contain a pathway-specific ThiS paralog,
the BE-7585A biosynthetic gene cluster does not. Instead, the
2-thiosugar is synthesized by borrowing sulfur carrier proteins
from L-cysteine and Moco biosynthesis.

Interestingly, in the biosynthesis of the thiotetronate
antibiotics such as thiolactomycin and Ti 3010 (Tao et al., 2016),
the backbone polyketide is synthesized by a polyketide synthase
(PKS) and a nonribosomal peptide synthase (NRPS) encoded
in the biosynthetic operon. Remarkably, in vivo experiments
showed that the sulfur atom in T 3010 may be incorporated
by a cysteine desulfurase and MnmA, separately encoded from
the biosynthetic operon, which are also probably involved in
s?U biosynthesis in tRNAs. The involvement of these genes
in s?U synthesis should be experimentally validated, it would
therefore be interesting to decipher the mechanism by which
MnmaA specifically recognizes and incorporates the sulfur atom
in the precursor of thiotetronate, in addition to its cognate tRNA
substrates. Alternatively, an additional sulfur carrier protein(s)
may mediate between the MnmA and thiotetronate biosynthesis
machinery.
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The 6-thioguanosine (s°G) modification is a virulence factor in
the plant pathogen Erwinia amylovorans, and two proteins are
required for the formation of s°G both in vivo and in vitro
(Litomska et al., 2018). The first, YcfC, is distantly related to
PLP-dependent transferases such as cysteine desulfurases and
carbon-sulfur lyases. The second, YcfA, is a PP-loop-containing
ATPase distantly related to, and perhaps evolved from, tRNA
modification enzymes such as MnmA, Thil, Ncs6/TtuA, and
TtcA. Furthermore, YcaO forms a thiolate phosphorylated
intermediate similar to that formed by the PP-loop ATPase,
representing another interesting example of the biosynthesis of
thioamide-containing natural products (Mahanta et al., 2018).

PERSPECTIVES

This review summarizes recent advances in our understanding
of the sulfur-related modification of RNA. Recent studies reveal
the widespread involvement of modification enzymes with Fe-
S clusters in all three domains of life. Because Fe-S clusters
and sulfur modifications themselves (Sierant et al., 2018a) are
sensitive to cellular oxidative stress, sulfur modifications may
carefully be regulated by cellular oxidative status. Differences in
the stability of protein persulfides and protein thiocarboxylates
in cells may be important and require investigation in the future.
Cellular sulfur donors mediating sulfur-related modification of
tRNAs are believed to be derived from free L-cysteine (Lauhon
and Kambampati, 2000; Lauhon, 2002; Nilsson et al., 2002; Shigi
et al., 2006b), and numerous types of cellular-free persulfides
such as L-Cys-SSH have been discovered (Ida et al., 2014; Akaike
et al, 2017). The ms?A modification is regulated by L-Cys-SSH
in mammalian cells (Takahashi et al., 2017), while free sulfide
is proposed to serve as a sulfur donor in archaea (Liu et al,
2010). Because sulfur atoms can adopt diverse chemical forms
and partake in a wide range of reactions, it is important to
exercise great caution when attempting to identify the actual
in vivo sulfur donors responsible for the biosynthesis of sulfur-
containing biomolecules.

The roles of thiocarboxylate sulfur-carrier proteins have been
characterized in the biosynthesis of primary metabolites, leading
to the discovery of their roles in those of secondary metabolites.
Regarding sulfur carriers and/or other components shared by
several biosynthetic pathway, the regulation mechanism of
sulfur-flow to each pathway may be interesting and worthy
of exploration, especially between primary and secondary
metabolites. Strategy utilizing carrier proteins are not limited
to the biosynthesis pathway of sulfur-containing molecules, it is
more general strategies in life. In L-lysine synthesis in Thermus
thermophilus (Horie et al, 2009) and L-lysine/L-arginine
synthesis in Sulfolobus acidocaldarius (Ouchi et al, 2013),

Agris, P. F., Sierzputowska-Gracz, H., Smith, W., Malkiewicz, A,
Sochacka, E., and Nawrot, B. (1992). Thiolation of uridine carbon-2

restricts the motional dynamics of the transfer RNA wobble position

“amino-group carrier proteins (AmCPs)” are utilized for carrying
reaction intermediates, which prevents unwanted intramolecular
reactions and enables successive reaction steps to proceed
efficiently. Recently, AmCPs have also been identified as parts
of the machinery producing the natural product diamino-
dihydroxy-heptanoic acid in Streptomyces species (Matsuda et al.,
2017).

The biosynthetic pathways underpinning sulfur modification
of RNA in all domains of life share many aspects in common;
hence research on bacteria can strengthen our understanding
of this process in eukaryotes, including humans. Dysfunctional
RNA modification, especially involving anticodons, can lead to
diseases (Shigi, 2016). Abnormalities in RNA modification are
caused by three main factors: (1) mutations in genes encoding
modification enzymes, (2) mutations in substrate tRNAs, and
(3) alterations in metabolites acting as substrates. The cytosolic
ms?A modification is required for the production of proinsulin,
which explains why single-nucleotide polymorphisms (SNPs)
in the Cdkall gene (a MiaB homolog) are a risk factor for
type II diabetes (Wei et al., 2011). Mutation of the Mtul gene
causes abnormalities in s>U modifications, and leads to the
mitochondrial disease reversible infantile liver failure (RILF) (Wu
et al,, 2016). Similarly, in the mitochondrial disease myoclonic
epilepsy with red ragged fibers (MERRF), a point mutation in mt-
tRNA-Lys leads to the abnormal modification of its anticodon,
resulting in disease (Kirino and Suzuki, 2005).
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