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Programming Bacteria With
Light—Sensors and Applications in
Synthetic Biology
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State Key Laboratory of Microbial Technology, Shandong University, Jinan, China

Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves

as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells

have been relatively established, trials in bacterial cells have only been emerging in the

past few years. A number of light sensors have been engineered in bacteria cells and

most of them fall into the categories of two-component and one-component systems.

Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level

of transcription and protein activity which is a major topic in synthetic biology, according

to the central dogma. Additionally, engineered light sensors and practices of tuning

synthetic circuits have served as a foundation for achieving light based real-time feedback

control. Here, we review programming bacteria cells with light, introducing engineered

light sensors in bacteria and their applications, including tuning synthetic circuits and

achieving feedback controls over microbial cell culture.

Keywords: light-sensors, optogenetics, genetic circuits, synthetic biology, feedback control

INTRODUCTION

Synthetic biology aims to rationally design cell functions. A major aspect of synthetic biology is to
explore natural and engineer new parts to be assembled into biological circuits for programmed cell
behaviors (Khalil and Collins, 2010;Way et al., 2014; Patil and Dhar, 2015). Programmed biological
circuits require signal input and a major way is to use chemical inducers. However, chemical
inductions are potentially toxic, have time delay in transport, and are usually irreversible, which
restricts its application in dynamic control of cell behaviors. In contrast, light is minimally invasive,
fast delivered in high resolution (Renicke and Taxis, 2016; Fernandez-Rodriguez et al., 2017), and
shows satisfying reversibility (Motta-Mena et al., 2014; Kawano et al., 2015), which has provided
new strategies for dynamic control of cellular activities. While studies on controlling mammalian
cells with light have exploded during the past 15 years (Levskaya et al., 2009; Wu et al., 2009;
Bacchus and Fussenegger, 2012; Müller and Weber, 2013; Repina et al., 2017; Rost et al., 2017),
light’s potential in bacteria cells are underexplored.

Here, we review recent advances in programming bacteria with light. We first introduce the
evolution of light sensors and how these natural light sensors are further engineered into two-
component and one-component systems with distinct signaling properties. Then we introduce
applications of these sensors, introducing light in tuning bacterial synthetic circuits at the level
of transcription and protein activity control (Table 1). We also introduce light as a novel signal in
bridging the gap between cultured microbes and hardware to achieve real-time feedback control of
cell behaviors.Most of the achievements introduced here weremade in Escherichia coli.Mammalian
optogenetics are not within the scope of the article and are only occasionally mentioned as proof of
concepts.
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TABLE 1 | Summary of optogenetic system characteristics.

Optogenetic

system

Origin Cofactor/

Chromophore

Wavelength

λ on/λoff

(nm)

Time of

activation

Size

(AA)

Mechanism Application References

Cph8/OmpR Phytochrome PCB 650/705 Minutes 650/705 Binding

PompC

Transcription

regulation

Tabor et al., 2011

Levskaya et al.,

2005

CcaS/CcaR CBCRs PCB 535/672 – 535/672 Binding

PcpcG2

Transcription

regulation

Hirose et al., 2008

Tabor et al., 2011

UirS/UirR CBCRs PVB 405/534 – 405/534 Binding

PcsiR1

Transcription

regulation

Ramakrishnan and

Tabor, 2016

YF1/FixJ LOV FMN 430/dark Seconds 430/dark Binding

PFixK2

Transcription

regulation

Möglich et al.,

2009

BphP1/PpsR2 Phytochrome BV 760/640 Seconds 760/640 Binding

PBr_crtE

Transcription

regulation

Ong et al., 2018

AsLOV2 LOV FMN 450/dark Seconds 143 Caging Protein

interaction/deactivation

Wu et al., 2009

EL222 LOV FMN 450/dark Seconds 222 Homodimerization Transcription

regulation

Zoltowski et al.,

2013

VVD LOV FMN or

FAD

450/dark Seconds 150 Homodimerization Protein

interaction/Subcellular

location

Wang et al., 2012

Magnets LOV FAD 450/dark Seconds nMag:152

pMag:150

Heteodimerization Protein

interaction/Subcellular

location

Kawano et al.,

2015

Cry2/CIB1 Cytochromes FAD 450/dark Second 498 Heteodimerization;

Oligomorization

Protein

interaction/Subcellular

location

Repina et al., 2017

phyB/PIF Phytochrome PCB 660/740 Milliseconds 908/100 Dissociation;

Heteodimerization

Protein

interaction/Subcellular

location/signaling

Levskaya et al.,

2009

Dronpa Fluorescent

protein

– 500/400 Seconds 224 Oligomorization Protein

interaction/signaling

Zhou et al., 2012

Lv et al., 2017

LIGHT SENSORS IN BACTERIA

Evolution and Classification of Light
Sensors
A variety of bacterial and eukaryotic light sensors have evolved
to sense ultraviolet, blue, green, red, and near-infrared signals
(Purcell and Crosson, 2008; Schmidt and Cho, 2015; Repina et al.,
2017; OptoBase, 2018) and have been heterologously expressed in
E. coli. From an evolutionary prospective, most of the well-tested
light sensors in E. coli fall into the categories of phytochromes
and Light-oxygen-voltage (LOV) family proteins.

Phytochromes share a photosensory core including
a PAS (Per-Arnt-Sim) domain, a GAF (cGMP-specific
phosphodiesterases, Adenylyl cyclases, and FhlA) domain,
and a PHY (Phytochrome-specific GAF-related) domain. The
core architecture can be linked to functional domains like
Histidine kinase (HK) to become transmembrane sensors of
two component systems. The PHY domain incorporates a
bilin chromophore to sense red light by photoisomerization
(Rockwell and Lagarias, 2010; Burgie and Vierstra, 2014).
Cyanobacteriachromes (CBCRs) and bacteriaphytochromes
(BphPs) are distant relatives of phytochromes and share a
broader range of wavelength sensitivities than phytochromes

(Bhoo et al., 2001; Rockwell and Lagarias, 2010; Burgie
and Vierstra, 2014). The bilin chromophores required for
phytochrome and CBCR/BphP signaling are not present in E.
coli and have to be synthesized from heme by introducing two
genes (Gambetta and Lagarias, 2001).

LOV domains are a member of the PAS domain superfamily
and are joint to domains like HK and Helix-turn-helix (HTH)
DNA binding domains evolutionally. A variety of methods
including light-induced uncaging, tiltering, and dimerization are
adopted to control the fused functional domains (Herrou and
Crosson, 2011). Like phytochromes, a flavin cofactor (FAD or
FMN) is also required for photosignaling of LOV domains but
these cofactors are ubiquitous and does not require additional
synthesis (Christie et al., 1999) (Table 1).

From an evolutionary view point, both families of light
sensors demonstrate great diversity in protein swapping and
are naturally joint to different functional modules to become
diversified membrane bound HK (two-component system) or
cytosolic actuators (one-component system) (Losi and Gärtner,
2008). The understanding of how light sensors evolved into
such diversities has inspired human engineering of natural light
sensors. Based on their potentials for domain swapping, the
light-signaling cores of phytochrome and LOV family proteins
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FIGURE 1 | Schematics of two-component and one-component systems. (A) Two component systems consist of a sensor histidine kinase (HK) and a response

regulator (RR). Activities of response regulators for transcription are tuned by phosphate signaling upon light illumination. (B) Photo-induced LOV2-Jα dissociation

uncages the fused protein in response to blue light, releasing its activity. (C,D) Light-induced dimerization and oligomerization of sensors result in the interaction of the

attached proteins. (E) Photo-induced dissociation of Dronpa tetramer releases the protein of interest.

are joint to different functional modules artificially into two-
component and one-component systems in addition to their
natural counterparts. Here, we review engineered light sensors
in E. coli in the order of two-component and one-component
systems according to their distinct signaling properties (Table 1).

Two-Component Systems
The two-component light responding systems (TCSs) have
been engineered in bacteria to sense ultraviolet (UirS/UirR)
(Ramakrishnan and Tabor, 2016), blue (YF1/FixJ) (Möglich et al.,
2009), green(CcaS/CcaR)(Hirose et al., 2008; Tabor et al., 2011),
red (Cph8/OmpR) (Levskaya et al., 2005), and near-infrared light
(Ong et al., 2018). Light illumination leads to photoisomerization
of the cofactor bound HK, tuning kinase activation and
inactivation. Signal was further relayed by a phosphate group
to the intracellular cognate responsor which controls gene
expression under the matched promoter (Figure 1A).

The Cph8/OmpR system was the first engineered two-
component system which is switched off by red light. A
cyanobacteria phytochrome was used to replace the extracellular
signal sensing domain of the original EnvZ/OmpR system
(Levskaya et al., 2005). The blue light inactivated YF1/FixJ system
was later engineered by swapping the LOV domain in the
Bacillus subtilis YtvA (Ávila-Pérez et al., 2006) with the original
FixL/FixJ system (Möglich et al., 2009). The green light activated
CcaS/CcaR system exists naturally in cyanobacteria (Hirose et al.,
2008) and have been expressed in E. coli (Tabor et al., 2011) and
cyanobacteria (Abe et al., 2014; Miyake et al., 2014). Similarly,

the UV-light activated UirS/UirR system was also derived from
cyanobacteria (Song and Park, 2011).

In contrast to other TCSs, BphP1 is cytosolic and uses light
regulated dimerization instead of phosphate signaling. Upon
illumination, activated BphP1 binds to PpsR2 and releases the
promoter under its repression. UV light is harmful to cells
while near-infrared signals can penetrate tissues (Chen et al.,
2018), which enables applications of the BphP1/PpsR2 system in
mammalian cells (Kaberniuk et al., 2016; Redchuk et al., 2017,
2018b).

The two-component systems are similar in signaling and
spectrally isolated, enabling construction of multiplexed
platforms for multichromatic control of cell behaviors (Tabor
et al., 2011; Motta-Mena et al., 2014; Redchuk et al., 2018a).
However, their signaling processes require two components
and additional genes for chromophore synthesis. These take
additional capacity of vectors, limiting the number of genes of
interests to be put under light control. To solve this problem,
optimized versions of red and green light responding TCSs were
built (Schmidl et al., 2014; Ong and Tabor, 2018). The TCSs
may be intrinsically complex, relatively slow in signal relay
and reversal and less portable, which can be complemented by
one-component systems.

One-Component Systems
One-component light sensors offer direct control over protein
activity, without having to undergo transcription. Sensors in this
category can be diverse, but well-characterized types in bacterial
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FIGURE 2 | Applications of light sensors in bacteria. (A) EL222 light-controlled bidirectional transcription system activates and represses gene expression via different

binding strategies. (B) Split T7RNAP is brought together by Magnets, reconstituting its transcriptional activity. (C) Schematic of microbe-hardware interface and

real-time feedback control system. Realtime feedback control is realized by algorithms and hardware. Hardware includes three modules: (1) a cell culture system (2) a

real-time quantification system (3) a computer-controlled light-delivery system.

cells all belong to the blue light responding LOV family proteins,
with a LOV domain fused to different actuators.

YtvA from B. subtilis regulates the transcription factor σB for
stress response. It consists of a N-terminal LOV domain and a
C-terminal Sulfate transporter and anti-sigma factor antagonist
(STAS) domain (Ávila-Pérez et al., 2006). Blue light activates the
STAT domain which in turn activates the sigma factor and thus
activate transcription (Gaidenko et al., 2006; Möglich andMoffat,
2007; Avilapérez et al., 2009). This system is not portable but
its LOV domain has been used to design the chimeric YF1/FixJ
two-component system (Möglich et al., 2009).

EL222 is a transcription factor from marine bacterium
Erythrobacter litoralis. It has a LOV domain fused to a HTH
DNA binding domain (Zoltowski et al., 2013). The HTH domain
is bound and thereby inhibited by the LOV domain in the
dark. Upon blue light illumination, the HTH domain is released,
thereby enabling DNA-binding (Figure 2A) (Nash et al., 2011;
Rivera-Cancel et al., 2015).

VVD (Vivid) fromNeurospora crassa is another LOV domain-
based photoreceptor, forming homodimers in response to blue
light (Figure 1C) (Zoltowski et al., 2007, 2009; Zoltowski and
Crane, 2008). VVD is unique among all photoreceptors in that
its dimer forming capabilities enables direct control over protein
activity and localization, thereby enabling control over genome
editing, transcription, and beyond. In contrast, EL222 and the
TCSs have to go through transcription and are intrinsically

inferior regarding of response time and reversibility. Due to
its versatility, VVD has been fused to a series of proteins in
mammalian cells in controlling transcription (Wang et al., 2012),
metal binding (Aper and Merkx, 2016), and Receptor tyrosine
kinases (RTK) based cell signaling (Grusch et al., 2014). In
bacterial cells, similar versatility is achieved by Magnets, an
improved version of VVD, as reviewed in the following. VVD
may be susceptible to efficiency and selectivity problems due to its
homodimerization property. Magnets addressed this limitation
by forming heterodimers based on electrostatic interactions. The
designed pairs of photoswitches are thus referred to as positive
Magnet (pMag) and negative Magnet (nMag). In addition, the
switch-off properties of magnets were also tuned to achieve
rapid reversal when light is off (Kawano et al., 2015). Further
study has combined pMag with AD (Assembly domains) for
increased avidity (Furuya et al., 2017). Two major strategies
have been developed to achieve Magnets based light regulations.
The first one fuses pMag and nMag to split proteins or dimer
forming proteins to offer direct control over protein activities
(Nihongaki et al., 2017). The second strategy controls protein
activity by tuning its localization. pMag and nMag are fused to
different proteins as “bait” and “prey.” Blue lightmediates protein
colocalization and thus tuning downstream reactions (Yu et al.,
2016; Shi et al., 2017; Benedetti et al., 2018).

The one-component systems have miniaturized sizes, easy
portability, fast reversibility, and more control sites over the
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TCSs. But to date, only blue light activated OCSs have been
well-characterized in bacteria. Compared with the full spectral
programming viability of TCSs, more channels of OCSs should
be included.

Other Systems in Minority
In addition to the well-tested two-component and one-
component systems above, there are also other sensors in
minority and underexplored in bacteria. The Cryptochrome 2
(CRY2) and Calcium and integrin binding 1 (CIB1) protein
pair is isolated from the plant Arabidopsis thaliana. This protein
pair is a blue light-controlled dimerization module with no
requirement of any exogenously added cofactor, moreover the
CRY2 can also oligomerization independently (Figure 1D). The
basic helix-loop-helix protein CIB1 binds to the blue light
photosensor CRY2 upon light illumination (Repina et al.,
2017). The PhyB/PIF (Phytochrome B/Phytochrome interacting
factor) system is also from A. thaliana and has been harnessed
for optogenetic control of protein–protein interactions, mostly
in eukaryotes. PhyB consists of a N-terminal photosensory
domain and a C-terminal effector domain which binds to
transcription factor PIF in response to red light (Repina et al.,
2017). Dronpa145N, a mutant of fluorescent protein Dronpa, is
switched on by violet light (∼400 nm), forming tetramers and is
switched off by less energetic cyan light (∼500 nm), dissociating
into monomers (Figure 1E) (Zhou et al., 2012; Lv et al.,
2017). Its oligomerization property has enabled direct control
over protein activities. In addition, there are also Cobalamin-
binding domains for green signal (Kainrath et al., 2017; Wang
et al., 2017) and UV receptor UVRB (Müller et al., 2013).
Introduction and validation of these systems may potentially
expand the toolbox.

LIGHT IN TUNING SYNTHETIC CIRCUITS

Synthetic biological circuits can be controlled at multiple levels
according to the central dogma (Nielsen et al., 2013). Recent
advances have harnessed light’s ability to control biological
circuits at the level of transcription and protein activity. Both
two-component and one-component systems have been utilized
to replace chemical inducers to achieve rapid activation and
deactivation kinetics. Here, we review advances in tuning
transcription and protein activity with light and offer a combined
introduction of other minor innovations enabled by light’s great
flexibility.

Illuminating Transcription
Tuning synthetic circuits by tuning transcription is the most
common strategy and both two-component and one-component
light sensors have been utilized (Table 1). Two-component
systems are intrinsically designed for transcriptional control. The
red light responding Cph8/OmpR system has been combined
with quorum sensing to build a synthetic edge detection program
(Tabor et al., 2009). The pDawn and pDusk system demonstrated
potential modularity of light sensors in synthetic biology. The
YF1/FixJ system is inactivated by blue light, thereby leading to the
pDawn system. To achieve blue light activated gene expression,

the lamda repressor cI was used as an inverter (Ohlendorf et al.,
2012). The pDawn and pDusk system was engineered on one
plasmid and does not require additional genes for chromophore
synthesis, thereby achieving easier portability (Farzadfard and
Lu, 2011; Magaraci et al., 2014). In one practice, the pDawn
system has been used to control the expression of an adhesion
gene Ag43 and in turn regulates biofilm formation (Jin and
Riedelkruse, 2018). In addition, the Cph8/OmpR (Lee et al.,
2013), CcaS/CcaR (Nakajima et al., 2016), and YF1/FixJ (Chang
et al., 2017) systems were all proposed to control bacterial cell
factories by light-mediated transcriptional control (Figure 1A).
The TCSs also serve as a useful tool in metabolism engineering
of cyanobacteria. As chemical inducers are not ideal considering
of large-scale cultivation, the light-regulated TCSs can serve
as a good alternative (Song and Park, 2011; Abe et al., 2014).
Considering of their modularity and multiple light channels,
the two-component systems can be multiplexed to achieve
multichromatic control of gene expression (Tabor et al., 2011;
Fernandez-Rodriguez et al., 2017). In one recent study, all three
RGB channels are engineered in E. coli with minimal crosstalk
(Fernandez-Rodriguez et al., 2017). A resource allocator based
on a highly fragmented T7 RNAP was used in this case to
bridge three light signal inputs and transcriptional outputs.
Similarly, An iGEM team proposed a prototype of bacterial 3D
printer by immobilizing bacteria in gels and using intersection
of laser beams to trigger gene expression (Paris-Bettencourt,
2017). Their full spectrum programming ability and similarities
in architecture have established the TCSs as a popular choice in
light-induced transcriptional control.

A variety of new parts based on one-component systems
have been engineered in the past few years. These systems
have shown promise in more rapid induction and reversal
kinetics and are intrinsically less burdensome and more portable
compared to the established two-component systems. A light
controlled bidirectional promoter system was built based on
EL222 (Jayaraman et al., 2016). Light activated DNA binding
features of EL222 has been clearly elucidated. Both light activated
and repressed gene expression was achieved by putting the El222
recognition sequence into different regions of the promoter.
To achieve light activation, the luxR binding region of the
luxI promoter was replaced by the EL222 binding sequence
overlapping the −35 region. As the activation mechanism of
EL222 is similar to that of the luxR class of DNA binding
proteins, light illumination will thus promote EL222 binding and
thereby recruiting the RNA polymerase. Similarly, light repressed
transcription was achieved by putting the EL222 binding region
between the −35 and −10 region and thereby inhibits binding
of RNA polymerase (Figure 2A). They also demonstrated that
these two promoter systems could function in parallel. An E.
coli light bulb was made which only gave off bioluminescence
in the dark based on an EL222 bistable switch (UCL, 2017).
The EL222 system has also recently been introduced into
yeast to perform light regulated metabolite production (Zhao
et al., 2018). In addition, a recent study has further explored
EL222’s potential in cell-free optogenetics (Jayaraman et al.,
2018). Another class of one-component based transcriptional
system was built by fusing split T7 RNAP to VVD and Magnets
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(Han et al., 2016; Baumschlager et al., 2017). Upon blue light
activation, split T7 RNAP was brought together by VVD or
Magnets, reconstituting its activity (Figure 2B). This system
demonstrates good portability. Only transformation of two genes
are required to achieve light induction of gene expression
and engineered expression vectors do not have to go through
reconstruction due to the use of T7 promoter. Both EL222 and
split T7 RNAP systems demonstrate fast reversibility, enabling
dynamic control of gene expression. The one-component system
shows great potential in tuning transcription although not many
parts have been engineered. The most significant advantage of
sensors within this category is that the light sensory parts are
miniaturized, thereby leaving more capacity for targeted genes of
interests. In addition, less signaling and reversal time is required
due to the one-component architecture, thereby enabling precise
dynamic controls.

Light could also be combined with other signals to build
logic gates and complex layered circuits (Camsund et al.,
2011; Drepper et al., 2011; Gardner and Deiters, 2012). One
of the strategies is to combine light and other signals with
the CRISPR technology, which has been proved to achieve
numerous functions (Nielsen and Voigt, 2014). Specifically, a
gRNA could be put under light controlled promoters to combine
light with CRISPR activation and deactivation of downstream
gene expression (Bikard et al., 2013; Qi Lei et al., 2013; Jusiak
et al., 2016). This enables light control over genes on the
chromosome. Such a principle has been practiced in metabolism
engineering, where gRNAs are transcribed in response to light
and then combined with dcas9 for redirection of metabolic
flux (Fernandez-Rodriguez et al., 2017). The 2017 HZAU iGEM
team proposed to use light to control bacteria cell replication
in a similar methodology (HZAU-China, 2017). Instead of
transcribing a gRNA upon light illumination, they fused pMag
and nMag with split dcas9. Upon light illumination, this binds to
DnaA binding sites and inhibit DnaA binding which is essential
for DNA and cell replication. Similar methodologies could be
used to carry out real-time feedback regulation of cell growth and
even constructingmicrobial consortia with predefined ratios with
more light channels available.

Illuminating Protein Activities
In addition to transcriptional control, biological circuits can
also be tuned by offering direct control over protein activities
(Table 1). Optical control of protein activities has been
established in eukaryotic cells in part due to the access to a
wide range of sensors (Brechun et al., 2017; Liu and Tucker,
2017). These sensors belong to one-component systems which
undergo conformational changes or shifts in their dimerization
or oligomerization states upon light illumination. Although
widely applied in eukaryotic cells, light’s potential in regulating
protein activities remains underexplored in bacteria and this
correlates with the fact that one-component systems have just
been explored recently in bacteria. Here, we review recent
practices in bacteria cells and offer a very brief introduction
of strategies used in eukaryotic systems which could serve as a
template for potential counterpart engineering in bacterial cells.

Practices in bacterial cells have only been emerging in recent
years. The magnets were used to control biofilms. pMag was

displayed on the surface of E. coli and nMag was immobilized on
a surface, thus achieving blue light control of biofilm formation
(Chen and Wegner, 2017). Also, biofilm formation has been
controlled by blue light via other strategies (Huang et al., 2018;
Jin and Riedelkruse, 2018; Pu et al., 2018). In addition, light
has also been used to control protein self-assembly in E. coli
(Yu et al., 2017). The phytochrome family has sensing ranges
spanning the spectrum and the bacteriaphytochromes can sense
far red light and have thus been used to construct light controlled
adenylate and guanylate cyclases for cell signaling (Ryu and
Gomelsky, 2014; Ryu et al., 2014). In addition to the major TCSs
and OCSs, highly specialized light controlled proton pumps have
been proposed to control bacteria movement, enabling design of
micromotors (Walter et al., 2007; Lozano et al., 2016; Vizsnyiczai
et al., 2017).

A major topic in eukaryotic cells is tunable protein
degradation, which is practically significant in mammalian cell
biology for proteins too essential to be depleted. Synthetic light
inducible degrons have been engineered in yeast (Usherenko
et al., 2014; Lutz et al., 2016) and higher eukaryotes (Renicke et al.,
2013). Themost common strategy is to fuse a LOV family domain
for caging of the degradation tag. In dark, the degradation tag
is “caged” by the LOV family protein and is only released and
got access to degradation upon light illumination (Figure 1B).
Similar systems could be engineered in bacterial cells by simply
replacing the eukaryotic degron with a bacterial degradation tag
which has been intensively investigated (Cameron and Collins,
2014; Lauritsen et al., 2018).

Light has also been used to control subcellular localizations of
proteins (Brechun et al., 2017). One strategy is based on separated
light sensors which can be brought together upon illumination,
including Phy/PIF and magnets. One part of the system can
be anchored to the target sites while the other could be fused
to the protein of interest. Upon light induction, the protein
of interest will be driven to the target sites by complemented
light sensors. In one study, protein localizations to nucleus,
endosomes, and cell membrane were achieved by the PhyB/PIF6
system (Yang et al., 2013). Another strategy is to fuse LOV
family proteins to cage the signal peptide (Brechun et al., 2017).
Different systems have been engineered to control import to
and export from the nucleus (Di Ventura and Kuhlman, 2016;
Yumerefendi et al., 2016) and a recent study has proposed
a strategy to control tridirectional protein localization among
the nucleus, cytoplasm, and plasma membrane (Redchuk et al.,
2018a). These strategies in eukaryotes may inspire engineering
protein subcellular localization in bacterial cells and beyond.

LIGHT IN BRIDGING MICROBES AND
HARDWARE

To realize real-time and remote feedback control of cell cultures,
a major strategy is to use hardware to monitor culture conditions
and deliver signals to alter cell behaviors responsively (Vance
et al., 2002; Gardner et al., 2003; Mettetal et al., 2008; Muzzey
et al., 2009; Shimizu et al., 2010). However, a huge gap exists
between cultured cells and microbes as there lacks a signal with
kinetics rapid enough for feedback control. Light as a new signal
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has successfully filled in this gap between cultured microbes and
the hardware for its unique switch-on and switch-off kinetics
(Gerhardt et al., 2016). In previous studies light has been used
to construct oscillators (Jayaraman et al., 2016) and dynamically
regulate gene expressions (Milias-Argeitis et al., 2011, 2016;
Melendez et al., 2014; Olson and Tabor, 2014; Olson et al., 2014)
and protein localizations (Toettcher et al., 2011).

Feedback control in these studies have been realized by
the coordination of hardware and algorithms. The hardware
parts are firstly responsible for the cultivation of microbes
and real-time characterization of growth conditions. These data
enter the computer, and algorithms help determine the specific
manipulations which are sent to the hardware to deliver light to
the cells, forming a close loop (Figure 2C). Below we offer an
introduction to the hardware and algorithms and present a brief
outlook for potentials of light-based feedback control.

Hardware shares an essential three-part architecture: (a) an
adapted cell culture system; (b) a real-time quantification system;
and (c) a computer-controlled light delivery system (Figure 2C)
(Milias-Argeitis et al., 2016; Hennemann et al., 2018; Mahajan
and Rai, 2018). The cell culture system is supposed to be
designed according to experimental purposes. It tends to involve
an integrated heated magnetic stirrer both for maintaining
temperature and aeration conditions and ensuring random
sampling. The quantification system tracks cell properties and
medium conditions in real time. Common cell properties include
OD, intensity of fluorescence, or luminescence while medium
conditions may include pH level, concentrations of organic,
and inorganic molecules. Microfluidic devices are often used
in practice. The light delivery system is a controlled light
source with tunable wavelength and intensity. The wavelength is
mainly determined by signaling properties of the light sensors
encoded in vivo while intensity and duration of illumination
are determined dynamically according to data input from the
quantification system and previous modeling data.

Current algorithms fall into two categories: the proportional-
integral (PI) algorithm (Dorf and Bishop, 2011) and The
model predictive control (MPC) algorithm (Camacho and
Alba, 2013). The PI algorithm is the most popular variation
of the proportional-integral-derivative (PID) algorithm. It
continuously accepts the error between a desired setpoint (SP)
and a measured process variable (PV) to form the sum of two
terms: one proportional to the current error, and the other
proportional to the time integral of the error. Using the result,
the PI algorithm applies responsive correction to the next control
function. However, PI controller are not capable to accurately
tracking time-varying references, unless they change very slowly.
The MPC algorithm requires a model of the controlled system,
which is different from the PI algorithm. Based on the model,
it uses the current dynamic state of a process to predict future
values of the outputs, and then the appropriate changes in the
input variables can be calculated based on both predictions
and the current state. Thus, the accurate model predictions
can provide early warnings of potential problems. However,
requirement of an established model restricts its application,
especially for complex cellular behaviors where a model is
difficult to construct (Milias-Argeitis et al., 2016).

With the development of hardware and algorithms,
optogenetic feedback control is exploring the potential in
other prospects including both basic science and engineering.
For example, it can be used to analyze other dynamic processes
such as cell cycles (McAdams and Shapiro, 2003), differentiation
(Kuchina et al., 2011; Ray et al., 2011; Levine et al., 2012;
Vishnoi et al., 2013), stress responses (Young et al., 2013), and
migration (Weitzman and Hahn, 2014). Besides, optogenetic
feedback control can be employed to optimize metabolic
pathways, especially when metabolites can disturb normal
cell behaviors (Zaslaver et al., 2004; Temme et al., 2012).
Also, the capability of optogenetic feedback control can be
further explored with the development of novel quantification
and measurement strategies. For example, employing RNA
sequencing for measuring mRNA in real time can enable
more parameter readouts and meanwhile enhance accuracy
compared to the fluorescent protein approach (Olson and Tabor,
2014).

CONCLUDING REMARK

Controlling cellular behaviors have been a significant topic in
synthetic biology. Light has demonstrated its great capacity
in controlling cellular behaviors for its minimal toxicity and
rapid activation and deactivation kinetics compared to chemical
inducers. While mammalian optogenetics have been established
for years, programming bacteria with light has been an emerging
new field. In the past 15 years, a variety of Two-component
and One-component systems have been engineered. These
systems have been widely utilized in tuning synthetic circuits
at the level of transcription and protein activity. Given the
existing sensor toolbox and accumulated practices at the level
of transcriptional and protein activity control, light has also
been further explored to bridge the gap between cultured
microbes and hardwares. Real-time feedback control over cell
behaviors was achieved thanks to light’s unique signaling
properties.

Despite the great promise, practices have been mainly
restricted by limited choices of light sensors. The TCSs
demonstrate potential in multiplexed light programming
but takes up additional space on vectors and are inferior
in reversal kinetics. On the other hand, the OCSs are
miniaturized and rapidly switched off but limited to blue
light. This leads to the necessity to expand the toolbox:
The first strategy is to learn from established mammalian
optogenetics, introducing new systems into bacteria cells; A
second strategy is to continually mine naturally existing systems,
the same as how some current systems were discovered; and
a third strategy is to improve current parts by modification
and construct new parts based on their modularity, which
has demonstrated success in the development of most
OCSs.

Programming bacteria behaviors with light has shown great
promise thanks to light’s unique signaling properties. With
current sensor systems improved and new systems to be explored,
we believe light will illuminate more bacteria behaviors in the
near future.
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