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Klebsiella pneumoniae (phylogroup Kp1), one of the most problematic pathogens
associated with antibiotic resistance worldwide, is phylogenetically closely related to
K. quasipneumoniae [subsp. quasipneumoniae (Kp2) and subsp. similipneumoniae
(Kp4)], K. variicola (Kp3) and two unnamed phylogroups (Kp5 and Kp6). Together,
Kp1 to Kp6 make-up the K. pneumoniae complex. Currently, the phylogroups can be
reliably identified only based on gene (or genome) sequencing. Misidentification using
standard laboratory methods is common and consequently, the clinical significance
of K. pneumoniae complex members is imprecisely defined. Here, we evaluated
and validated the potential of MALDI-TOF mass spectrometry (MS) to discriminate
K. pneumoniae complex members. We detected mass spectrometry biomarkers
associated with the phylogroups, with a sensitivity and specificity ranging between
80-100% and 97-100%, respectively. Strains within phylogroups Kp1, Kp2, Kp4, and
Kp5 each shared two specific peaks not observed in other phylogroups. Kp3 strains
shared a peak that was only observed otherwise in Kp5. Finally, Kp6 had a diagnostic
peak shared only with Kp1. Kp3 and Kp6 could therefore be identified by exclusion
criteria (lacking Kp5 and Kp1-specific peaks, respectively). Further, ranked Pearson
correlation clustering of spectra grouped strains according to their phylogroup. The
model was tested and successfully validated using different culture media. These results
demonstrate the potential of MALDI-TOF MS for precise identification of K. pneumoniae
complex members. Incorporation of spectra of all K. pneumoniae complex members
into reference MALDI-TOF spectra databases, in which they are currently lacking,
is desirable. MALDI-TOF MS may thereby enable a better understanding of the
epidemiology, ecology, and pathogenesis of members of the K. pneumoniae complex.
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INTRODUCTION

Klebsiella pneumoniae is an increasingly challenging human bacterial pathogen, causing hospital
or community-acquired infections that are associated with high rates of antibiotic resistance
(Wyres and Holt, 2016; European Centre for Disease Prevention and Control [ECDC], 2017).
Population diversity studies have shown that K. pneumoniae is phylogenetically closely related
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to K. quasipneumoniae (subsp. quasipneumoniae and subsp.
similipneumoniae) and K. wvariicola (Brisse and Verhoef,
2001; Holt et al, 2015; Blin et al, 2017). Before recent
taxonomic updates (Rosenblueth et al, 2004; Brisse et al.,
2014), K. pneumoniae and the other above taxa were designed
as K. pneumoniae phylogroups Kpl, Kp2, Kp4, and Kp3,
respectively (Brisse et al., 2004). Together with two novel
phylogroups (Kp5 and Kp6) that were recently described (Blin
et al., 2017), these taxa constitute the K. pneumoniae complex.
Note that Kp6 corresponds to a phylogroup proposed to be
named as K. quasivariicola (Long et al., 2017a). K. pneumoniae
(sensu stricto) is the major cause of human and animal infections
within the complex. However, the involvement in human
infections of the other members of the complex is gaining
recognition (Brisse et al., 2004; Seki et al., 2013; Maatallah
et al, 2014; Holt et al, 2015; Breurec et al, 2016; Becker
et al, 2018). Unfortunately, the unsuitability of traditional
clinical microbiology methods to distinguish species within the
complex leads to high rates of misidentifications (most often as
K. pneumoniae) that are masking the true clinical significance of
each phylogroup and their potential epidemiological specificities
(Brisse et al., 2004; Seki et al., 2013; Long et al., 2017b; Becker
et al,, 2018). In fact, the different members of the K. pneumoniae
complex can only be reliably identified based on whole-genome
sequencing (WGS) or sequencing of specific genetic markers
(e.g., blaygn, blaokp, blasuy, rpoB, gyrA, parC) (Haeggman et al.,
2004; Brisse et al., 2014; Holt et al., 2015). However, the latter
methods are not available for most of the routine laboratories
and are limited in speed, cost and throughput. In the last years,
some PCR-based identification methods were developed but they
are prone to errors or do not distinguish all phylogroups (Brisse
et al., 2004; Bialek-Davenet et al., 2014b; Garza-Ramos et al,,
2015; Fonseca et al., 2017). Clearly, there is a need for a reliable,
cost-effective and fast identification method able to discriminate
members of the K. pneumoniae complex.

Matrix-assisted laser desorption ionization-time of flight
(MALDI-TOF) mass spectrometry (MS) has revolutionized
routine identification of microorganisms, being a fast and cost-
effective technique. It now represents a first line identification
method in many clinical, environmental, and food microbiology
laboratories (van Belkum et al, 2017). In the case of the
K. pneumoniae complex, MALDI-TOF MS identification remains
largely unsatisfactory given the absence of well-characterized,
representative members of the complex in spectral databases.
Currently, only K. pneumoniae and K. variicola are included
in the Bruker database ', and identification of even these
two species is imprecise given the lack of reference spectra
of other phylogroups (Berry et al, 2015; Long et al., 2017b;
Dinkelacker et al., 2018). To address this important limitation of
currently MALDI-TOF MS technology, we used a collection of
well-characterized strains from the six K. pneumoniae complex
phylogroups and analyzed them by MALDI-TOF MS in order
to define the potential of this method to identify species within

https://www.bruker.com/fileadmin/user_upload/1-Products/Separations_
MassSpectrometry/ MALDI_Biotyper/US_CA_System/MBT_list_of_organisms_
10_2017.pdf

the K. pneumoniae complex (Rodrigues et al., 2018). In addition,
we validated our MALDI-TOF MS based model using a test
collection of 49 isolates belonging to the K. pneumoniae complex,
with spectra obtained from different culture media and extraction
procedures.

MATERIALS AND METHODS

Bacterial Strains

A set of 46 strains previously identified by WGS or using
core gene sequences (Bialek-Davenet et al, 2014a; Brisse
et al., 2014; Blin et al., 2017; Passet and Brisse, 2018) were
analyzed in this study (Supplementary Table S1). The strains
belonged to the taxa K. pneumoniae (sensu stricto, i.e., Kpl;
n = 10), K. quasipneumoniae subsp. quasipneumoniae (Kp2,
n=9), K. quasipneumoniae subsp. similipneumoniae (Kp4, n =7),
K. variicola (Kp3, n = 9), and to two taxonomically undefined
lineages named Kp5 (n = 6) and ‘K. quasivariicola’ (Kpé6,
5). The strains represented a diversity of multilocus
sequence typing (MLST) types within each phylogroup. Strains
had been stored in brain heart infusion broth containing 25%
glycerol at —80°C and were sub-cultivated before use in this
study.

n =

Spectra Acquisition

An overnight culture on Luria-Bertani agar (37°C, 18 h) was used
to prepare the samples with the ethanol/formic acid extraction
procedure following the manufacturer recommendations (Bruker
Daltonics, Bremen, Germany). Samples (1 pL) were spotted
onto an MBT Biotarget 96 target plate, air dried and overlaid
with 1 pL of a saturated o-cyano-4-hydroxycinnamic acid
(HCCA) matrix solution in 50% of acetonitrile and 2.5%
of trifluoroacetic acid. Mass spectra were acquired on a
Microflex LT mass spectrometer (Bruker Daltonics, Bremen,
Germany) using the default parameters (detection in linear
positive mode, laser frequency of 60 Hz, ion source voltages
of 2.0 and 1.8 kV, lens voltage of 6 kV) within the m/z
of 2,000-20,000. For each strain, a total of 24 spectra from
eight independent spots were acquired (three spectra per
spot, instrumental replicates, one single day) according to
the main spectra protocol (MSP). External calibration of
the mass spectra was performed using Bruker Bacterial Test
Standard (BTS).

Spectra Analysis

The spectra were preprocessed by applying the “smoothing”
and “baseline subtraction” procedures available in FlexAnalysis
software (Bruker Daltonics, Bremen, Germany), exported as
peak lists with m/z values and signal intensities for each peak
in text format, and imported into a dedicated BioNumerics
v7.6 (Applied Maths, Ghent, Belgium) database. Peak detection
was performed in BioNumerics using a signal to noise ratio
of 20. The instrumental replicates (24 spectra for each strain)
were used to generate a mean spectrum for each strain using
the following parameters: minimum similarity, 90%; minimum
peak detection rate, 60%; constant tolerance, 1; and linear
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phylogroups, as detailed in Table 1.

FIGURE 1 | Peak positions (m/z) for each of the Klebsiella pneumoniae complex strains. Stars denote those peaks that are useful for discrimination among

* Specific biomarkers

tolerance, 300 ppm. Finally, peak matching was performed to
search all distinct peaks (called peak classes in BioNumerics)
using as parameters: constant tolerance, 1.9; linear tolerance,
550 ppm; maximum horizontal shift, 1; peak detection rate,
10. The discriminating value of each resulting peak was
evaluated by a Mann-Whitney test (Vranckx et al, 2017).
In order to test and validate our results an identification
project was constructed in a BioNumerics database, using our
spectra as reference set and a support vector machine (SVM,
supervised algorithm) as classifier (cross-validation procedure).
The application of SVMs classifier algorithms is very useful
to discriminate between groups when the differences are
minimal (DeMarco and Ford, 2013). In the cross-validation
procedure, 70% of the available data (randomly selected) were
used as model, whereas the 30% remaining spectra were
used as test in order to assess the proportion (%) of correct
predictions for each phylogroup. To allocate proteins associated
with the specific peaks, the online tool Tagldent was used’.
In fact, this tool allows the identification of proteins by
their mass considering all the proteins available in UniProt
Knowledgebase (Swiss-Prot and TrEMBL) for the taxonomic
group under study. Additionally, a Neighbor Joining tree

Zhttp://web.expasy.org/tagident/

based on ranked Pearson coeflicient was constructed using
BioNumerics.

External Validation Dataset

Forty-nine isolates belonging to K. pneumoniae phylogroups
Kpl (n = 23), Kp2 (n = 7), Kp3 (n = 7), Kp4 (n = 9) and
Kp5 (n = 3), previously characterized by WGS were used to
assess the robustness of the MALDI-TOF MS method (no
Kp6 isolates other than those used in the model construction
were available). These isolates are part of a study collection
recovered from fecal samples of healthy carriers in Madagascar
(2015-2016) (under the BioProject PRJEB29143). The Kpl
test isolates included producers of ESBL or AmpC enzymes
and represented a snapshot of clinically relevant multidrug
resistant sublineages (2 isolates of ST17, 2 ST48, 2 ST101,
1 ST14, 1 ST20, 1 ST25, 1 ST45, 1 ST307, 1 ST375, 1
ST380). Isolates from Kp3 and Kp4 were randomly selected,
and all available isolates of Kp2 and Kp5 were included.
In order to evaluate the impact of different culture media
and different extraction procedures, spectra were acquired in
triplicate using four different experimental conditions: bacteria
were grown overnight on Luria-Bertani agar (37°C, 18 h) and
Columbia agar plus 5% sheep blood (37°C, 18 h), and from
each culture, were either directly transferred onto MALDI
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targets, or were cell extracted (using the ethanol/formic acid
extraction procedure). Obtained MALDI-TOF spectra were then
projected in our model using the identification project previously
constructed.

RESULTS AND DISCUSSION

Forty-six strains representing a diversity of genotypes within
the six phylogroups currently known within the K. pneumoniae
complex (Supplementary Table S1) were analyzed by MALDI-
TOF MS. Based on the MALDI Biotyper Compass database
version 4.1.80 (Bruker Daltonics, Bremen, Germany), the 46
strains were identified either as K. pneumoniae (31 strains,
all belonging to Kpl, Kp2, Kp4, and Kpé6) or as K. variicola
(15 strains, all strains of Kp3 and Kp5). Identification scores
ranged between 2.16-2.56 for K. pneumoniae and 1.89-2.55
for K wvariicola. Of note, in two cases (Kpl-SB1139 and
Kp6-SB6071) a replicate was reported in one measure as
K. pneumoniae and in other as K. wvariicola. These data
highlight the need to update the database in order to refine
confidence in K. pneumoniae/K. variicola identification and
to enable identification of K. quasipneumoniae and novel
phylogroups.

Figure 1 summarizes the peak positions found in each
strain. Most (about 97%) of the peaks were concentrated in
the region below 10,000 m/z and almost no peak was found
above this value. The similarity among spectra within the

K. pneumoniae complex was always above 87% (data not
shown), with peaks at 4363, 5379, 6287, 6298, 7241, and
9473 m/z being found in all the members of the complex.
Importantly, 10 specific biomarkers associated with specific
members of the K. pneumoniae complex were identified. These
peaks were located within the range 3835-9553 m/z. Based
on the current dataset, the specificity and sensitivity of their
distribution among phylogroups ranged between 97-100 and
80-100%, respectively (Figure 1 and Table 1). Kpl (4153 and
8305 m/z), Kp2 (4136 and 8271 m/z), Kp4 (7670 and 3835
m/z), and Kp5 (4777 and 9553 m/z) each presented two specific
peaks, which may allow their unambiguous identification.
Interestingly, all the pair peaks detected (Kpl, Kp2, Kp4, and
Kp5) always exhibited approximately half of the m/z ratio of
the other peak, which might correspond to the single and
double charged protein ions, as often observed in MALDI-TOF
MS experiments (Fagerquist, 2017). Kp3 strains shared a peak
that was only observed otherwise in Kp5 (7768 m/z). Finally,
Kp6 had a diagnostic peak (5278 m/z) shared only with Kpl.
Kp3 and Kp6 could therefore be identified by exclusion criteria
(lacking Kp5 and Kpl-specific peaks, respectively) (Figure 1
and Table 1). These data reveal the possibility to identify
precisely an isolate of the K. pneumoniae complex based on
the specific combination of the above described peaks. To
the best of our knowledge, this is the first time that mass
spectrometry biomarkers that discriminate all phylogroups of
the K. pneumoniae complex are described. Furthermore, cluster
analysis grouped all strains according to their phylogroup

TABLE 1 | MALDI-TOF mass spectrometry peak biomarkers useful to discriminate Klebsiella pneumoniae phylogroups.

Present in Kp phylogroup(s) Peak position (m/z)’

Sensitivity? [95% CI]

Specificity® [95% CI] Possible
proteins*

Kp1

Kp2

Kp3 and Kp5

Kp4

Kp5

Kp1 and Kp6

41563

8305
4136

8271
7768

3835

7670
4777

9553

5278

10/10, 100% [69.2-100.0%]

10/10, 100% [69.2-100.0%]
9/9, 100% [66.4-100.0%]

9/9, 100% [66.4-100.0%]
15/15, 100% [78.2-100.0%]

7/7,100% [569.0-100.0%]

7/7, 100% [59.0-100.0%]
6/6, 100% [54.1-100.0%)

6/6, 100% [54.1-100.0%]

12/15, 80% [51.9-95.7%)]

35/36, 97.2% [85.5-99.9%)]

36/36, 100% [90.3-100.0%]
37/37, 100% [90.5-100.0%]

37/37, 100% [90.5-100.0%]
31/31, 100% [88.8-100.0%]

39/39, 100% [91.0-100.0%]

39/39, 100% [91.0-100.0%]
40/40, 100% [91.2-100.0%]

40/40, 100% [91.2-100.0%]

41/41,100% [88.8-100.0%]

Yijbd (double
charged ion)
YjbJd

YjbJ (double
charged ion)
YibJd

Ribosomal
protein L31
YdgH (chain,
double charged
ion)

YdgH (chain)
Ribosomal
protein S20
(demethionated
form, double
charged ion)
Ribosomal
protein S20
(demethionated
form)
Ribosomal
protein S22

Cl, confidence interval. ' Position in the spectra using a tolerance of +0.03%. °Proportion of true positives that are correctly identified as such. 3Proportion of true
negatives that are correctly identified as such. 4As determined using Tagldent (https://web.expasy.org/tagident/tagident.html).
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(Supplementary Figure S1), demonstrating the potential of
whole spectrum comparison for strain identification at the
phylogroup level.

About half of the peaks visualized in a bacterial spectrum
in the m/z range used in this work (2,000-20,000) correspond
to ribosomal proteins (van Belkum et al., 2017). Here, we were
able to presumptively identify four of the specific peaks as
ribosomal proteins (520, S22, and L31, respectively 4777/9553,
5278 and 7768 m/z, specific for Kp5, Kp1+Kp6, and Kp3+Kp5).
In fact, the 5278 m/z - Kpl/Kp6 specific peak presumptively
identified as S22 ribosomal protein was observed in Kp2,
Kp3 and Kp5 at 5250 m/z and in Kp4 at 5190 m/z (not
specific), corroborating the information obtained in the protein
alignment (Supplementary Figure S2). Regarding the 7768 m/z
Kp3/Kp5 specific peak assumed as L31 ribosomal protein, it
was found in the remaining phylogroups at 7738 m/z, whereas
the demethionated form of S20 was observed at 4769/9536
m/z. Furthermore, we noticed that S22 was missing in three
isolates of Kpl or Kp6, which may be explained by the fact
that S22 is a stationary phase-induced protein (Yutin et al,
2012).

Regarding the specific peak pairs of Kpl, Kp2 and Kp4,
we presumptively identified the Kpl and Kp2 specific
markers as Yjb], a putative stress response protein, the
sequence of which differs between the two groups and the
remaining phylogroups (present at 4107/8213 m/z). Kp4
specific peaks were identified as the mature form of the
YdgH protein (DUF1471 domain-containing protein), a
periplasmatic protein involved in pathogenesis, observed
in the spectra of the other phylogroups at 3851/7702 m/z
instead of 3835/7670 m/z (Table 1 and Supplementary
Figure S2).

The specificity of the peaks was supported by the
protein alignments obtained from whole-genome sequences
(Supplementary Figure S2). Interestingly, the 4153 m/z
Kpl specific peak was also observed with low intensity
in the three replicates of the SB11-Kp2 isolate (Figure 1).
However, sequence analysis of YjbJ protein (locus tag -
KQQSB11_50044) revealed 100% identity with the other
Kp2 strains and a theoretical molecular mass of 8274 Da
(4137 in the double charged ion form). Furthermore,
this peak was only present at 4153 m/z, corroborating
the hypothesis of an unspecific peak in SB11 Kp2
isolate.

In a previous work, eight specific peaks presumptively
corresponding to four different proteins were described,
including three ribosomal ones (L31, S15, L28) and Yjb], for
the discrimination of Kp1l from Kp3 (Dinkelacker et al., 2018).
However, in our MALDI-TOF MS experiments, we were not
able to detect the presumptively demethionated form of S15
(10077/5038 m/z - Kpl and 10062/5031 m/z - Kp3) or L28
(8875/4437 m/z - Kpl and 8891/4447 m/z - Kp3) ribosomal
proteins. However, we confirmed that the sequence alignment
in our genomes showed in the case of S15 (10209 Da - Kpl,
Kp2, Kp4, Kp6) a one amino-acid change for Kp3 (S79A,
10192 Da) and for Kp5 (A80S, 10225 Da). In the case of 128,
one amino-acid change distinguished Kp1/Kp2/Kp4 (9007 Da)

from Kp3/Kp5/Kp4 (A69S, 9022 Da), thus not being specific for
any phylogroup, although we were not able to detect it in our
spectra.

Using the cross-validation procedure for SVM classifier, a
98.1% rate of correct predictions (average of 10 experiments;
range: 96.9-100%) for the phylogroups was found, showing that
this approach is promising for identification of K. pneumoniae
complex members. Further, an independent validation dataset
of 49 isolates identified at phylogroup level by whole genome
sequence analysis was used. Bacteria were grown in LB or
blood agar and either protein-extracted or directly analyzed.
Consistent with results obtained for the isolates of the model,
the MALDI Biotyper Compass database identified the isolates
either as K. pneumoniae (39 strains, all the Kpl, Kp2, and
Kp4 isolates) or as K. variicola (10 strains, all Kp3 and Kp5
isolates) with identification scores ranging between 1.82 and
2.55 (mean range of 2.34). In contrast, the projection of
the validation dataset spectra in our model using the SVM
classifier showed that all isolates were correctly identified at
the phylogroup level with high confidence. This complete
identification was obtained in all experimental conditions. The
results of this external validation demonstrate the potential
of MALDI-TOF MS as a precise K. pneumoniae phylogroup
identification method. Moreover, they show that the culture
media used as well as the two different sample preparation
procedures do not seem to affect the identification results.
The use of the direct transfer procedure from blood agar, the
condition most frequently used in routine laboratory conditions,
thus appears appropriate for K. pneumoniae identification by
MALDI-TOF MS.

CONCLUSION

This work demonstrates the existence of K. pneumoniae
phylogroup-specific protein biomarkers that can be detected
by MALDI-TOF MS. This finding opens the possibility for
industrial, veterinary or medical microbiology laboratories,
to identify isolates of the K. pneumoniae complex at the
species or phylogroup level. We urge that reference spectra
of the various taxa of the K. pneumoniae complex be
incorporated into reference MALDI-TOF spectra databases.
Improved identification of K. pneumoniae and related taxa will
advance our understanding of the epidemiology, ecology, and
links with pathogenesis of this increasingly important group of
pathogens.
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