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A Zika virus (ZIKV) pandemic started soon after the first autochthonous cases in Latin 
America. Although Aedes aegypti is pointed as the primary vector in Latin America, little 
is known about the fitness cost due to ZIKV infection. We investigated the effects of ZIKV 
infection on the life-history traits of Ae. aegypti females collected in three districts of Rio 
de Janeiro, Brazil (Barra, Deodoro, and Porto), equidistant ~25 km each other. Aedes aegypti 
mosquitoes were classified into infected (a single oral challenge with ZIKV) and superinfected 
(two ZIKV-infected blood meals spaced by 7 days each other). ZIKV infection reduced 
Ae. aegypti survival in two of the three populations tested, and superinfection produced 
a sharper increase in mortality in one of those populations. We hypothesized higher 
mortality with the presence of more ZIKV copies in Ae. aegypti females from Porto. The 
number of eggs laid per clutch was statistically similar between vector populations and 
infected and uninfected mosquitoes. Infection by ZIKV not affected female oviposition 
success. ZIKV infection impacted Ae. aegypti vectorial capacity by reducing its lifespan, 
although female fecundity remained unaltered. The outcome of these findings to disease 
transmission intensity still needs further evaluation.
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INTRODUCTION

Aedes aegypti (Diptera: Culicidae) is known as the primary vector of dengue virus (DENV) and 
chikungunya virus (CHIKV) and was also found recently to be naturally infected with Zika virus (ZIKV), 
which reinforces the paramount role of this species in arthropod-borne virus transmission (Ferreira-de-
Brito et al., 2016; Patterson et al., 2016). The emergence of an arbovirus followed by an outbreak depends 
upon several factors such as high density of primary vectors, efficient viral replication, and infectivity 
in vertebrate and invertebrate hosts and the presence of immunologically naïve hosts (Liu-Helmersson 
et al., 2014). For instance, recent studies concerning virus infectivity demonstrated that a single amino 
acid substitution in the NS1 gene improved the efficiency of ZIKV transmission from humans 
to Ae. aegypti and thus increasing its prevalence in mosquitoes (Liu et al., 2017; Rossi et al., 2018).
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One of the most critical aspects to arbovirus epidemiology is 
related to the interaction between the genetic backgrounds of insect 
vectors and virus strains, which may influence vectorial capacity 
and transmission rates (Weaver and Reisen, 2010). For instance, 
Brazilian mosquitoes challenged with a ZIKV strain isolated from 
a patient in New Caledonia exhibited low vector competence 
(Chouin-Carneiro et al., 2016) but showed high susceptibility when 
infected with local ZIKV strains (Dutra et  al., 2016; Fernandes 
et al., 2016). Therefore, it is of utmost relevance to investigate the 
interaction between mosquito vectors and locally isolated virus 
strains to provide a more realistic dataset.

The biology and behavior of infected mosquitoes have been 
little explored, although it is an important aspect of vector-borne 
diseases. Transmission models and the vectorial capacity formula 
often overlook that arbovirus infections may alter the behavior 
and/or pose a fitness cost in life-history traits of mosquitoes and 
thus affect transmission [cf. Kramer and Ciota (2015) for a 
comprehensive discussion about this topic]. There is a series of 
experimental data regarding Plasmodium and Anopheles mosquitoes 
that could be  interpreted as host behavior manipulation by the 
parasite to enhance its transmission (Rossignol et al., 1986; Koella 
et  al., 1998; Schwartz and Koella, 2001; Robinson et  al., 2018). 
However, very limited information is available regarding the 
biology of Aedes mosquitoes infected with arboviruses. A few 
reports have demonstrated that DENV and ZIKV are capable to 
alter the expression of genes potentially involved in host-seeking 
behavior, especially odorant-binding protein transcripts (Sim et al., 
2012; Etebari et  al., 2017). The first two evidences of arbovirus 
impact on Ae. aegypti biting rate came from the 1990s, but produced 
conflicting results. First, there was no evidence of alteration in the 
biting behavior of Ae. aegypti after intrathoracic inoculation of 
DENV-2 (Putnam and Scott, 1995). Later, it was observed that 
dengue-infected mosquitoes required more time to feed on blood 
than uninfected ones (Platt et al., 1997). More recently, some papers 
reported a negative effect of DENV-2 on Ae. aegypti life-history 
traits, such as reduced lifespan and fecundity, and also an increase 
in the time to complete a blood meal (Maciel-de-Freitas et al., 2011, 
2013; Sylvestre et al., 2013).

Even though negative effects were revealed for dengue virus, 
little is known about the potential cost of ZIKV infection in vector 
biology. The recent ZIKV emergence and its explosive outbreak 
across the Pacific and Latin America caused thousands of cases in 
cities such as Rio de Janeiro. Therefore, it sounds reasonable to 
speculate that, occasionally, susceptible mosquitoes are likely to 
blood feed more than once in ZIKV-infected hosts during the 
course of an outbreak. Beyond that, opportunities for arboviral 
exposure in mosquitoes already infected are considerable, since 
the viral infection persists throughout the insect life. This 
phenomenon is known as superinfection (Salas-Benito and De 
Nova-Ocampo, 2015). Considering adult Ae. aegypti females have 
a lifespan of 15–30 days measured by mark, release, recapture 
studies (Maciel-De-Freitas et  al., 2007; Maciel-de-Freitas et  al., 
2008; David et  al., 2009; Maciel-de-Freitas and Lourenço-de-
Oliveira, 2009), the likelihood of ingesting blood from two infected 
hosts during its lifespan and its effects on mosquito-virus 
interactions has been receiving little attention. The present study 
aims to investigate the susceptibility of three field Ae. aegypti 

populations to ZIKV, and the infection effects on its life-history 
traits after mosquitoes were exposed to a single or two ZIKV-
infected blood meals.

MATERIALS AND METHODS

Mosquitoes
Eggs were collected through 80 ovitraps (Fay and Eliason, 1966) 
placed roughly every 25 m each other in each of three different regions 
in Rio de Janeiro—Barra (22°58′77″ S, 43°23′41″ W), Deodoro 
(22°51′01″ S, 43°23′52″ W), and Porto (22°53′43″ S, 43°11′03″ W), 
distant 15–25 km from each other. Ovitraps were installed over an 
extensive geographic area to assure we sampled the local Ae. aegypti 
genetic variability. Ae. aegypti females are considered a limited flyer 
with mean distance traveled inferior to 200 m (Maciel-De-Freitas 
et al., 2007), and thus, it is highly unlike that a single mosquito would 
cross all field sites analyzed here. A minimum of 500 eggs were 
collected per site and were hatched in the insectary. Adults were 
maintained at the insectary under a relative humidity of 80 ± 5% and 
a temperature of 25 ± 3°C, with ad libitum access to a 10% sucrose 
solution. Experiments were performed with F1 generation mosquitoes. 
A second collection of eggs was done 5–6 months later using the 
same protocol, and immature mosquitoes were reared to adults to 
perform a second experimental infection to evaluate the effect of 
ZIV on Ae. aegypti life-history traits.

Viral Strain
Females were orally challenged with a ZIKV strain isolated from the 
urine of a patient in Rio de Janeiro. The ZIKV strain belongs to the 
Asian genotype Rio-U1 (GenBank accession number KU926309) 
and showed to have high infectivity to Rio Ae. aegypti mosquito 
populations (Fernandes et al., 2016). Viral titers in supernatants were 
previously determined by serial dilutions in Vero cells, expressed in 
plaque-forming unit per milliliters (PFU/ml). All the assays were 
performed with samples containing 3.55 × 106 PFU/ml. Viral stocks 
were maintained at −80°C until its use.

Oral Infection With ZIKV
Two rounds of experimental infection assays were conducted, using 
the same protocol for mosquito superinfection. Thirty-six hours 
before infection, 6–7 days old inseminated Ae. aegypti females from 
each of the three populations (Barra, Deodoro, and Porto) were 
separated in 18 cylindrical plastic cages (70 mosquitoes/cage) for 
blood feeding. Sugar supply was removed 36-h before mosquitoes 
were challenged with the infective blood meal to increase female’s 
avidity. The oral infection procedures were performed through a 
membrane feeding system (Hemotek, Great Harwood, UK), 
adapted with a pig-gut covering, which gives access to the 
defibrinated rabbit blood. The infective blood meals consisted of 
1 ml of supernatant of infected cell culture, 2 ml of washed rabbit 
erythrocytes, and 0.5 mM of ATP as phagostimulant. The same 
procedure and membrane feeding apparatus were used to feed 
control mosquitoes, but they received a noninfectious blood meal, 
with 1 ml of cell culture medium replacing the viral supernatant.
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Oral Superinfection With ZIKV
The explosive emergence of ZIKV across the Pacific and Latin 
America caused thousands of cases in cities such as Rio de Janeiro. 
Therefore, it is feasible that mosquitoes may feed more than once 
on ZIKV-infected hosts during their lifespan. Herein, we simulated 
Ae. aegypti superinfection with ZIKV by offering a second infective 
blood meal to a fraction of the infected mosquitoes. Seven days 
after the first oral infection (minimum extrinsic incubation period 
expected for ZIKV) (Roundy et  al., 2017), mosquitoes from 
Deodoro and Porto populations were challenged with a new 
infective blood meal, using the same viral strain at the same 
titration (herein called “superinfection”). The other groups (control 
and infected) received a blood meal without the virus. Aedes 
aegypti individuals from Barra were not included in this proce dure, 
since there were not sufficient egg stocks.

Experimental Design
Those females that were visually completely engorged after oral 
infection assays were individualized in cylindrical plastic tubes 
(a height of 6.5 cm and a diameter of 3 cm) containing moistened 
cotton overlaid with filter paper as oviposition substrate on the 
bottom. Tubes were covered on the top with mosquito netting. 
Once a week, we  offered uninfected anesthetized mice to 
mosquitoes to all groups as blood source. Filter papers were 
checked for eggs, and those were counted every third day after a 
blood meal, when a new filter paper was added. Mosquito survival 
was checked daily at 09:00 h. Each dead mosquito was removed 
from the plastic tube, and wing length was measured as the 
distance from the axillary incision to the apical margin, excluding 
the fringe (Harbach and Knight, 1980).

Infected mosquitoes were kept in an incubator under an artificial 
photoperiodic regime of 12 h of light and 12 h of dark, with 10% 
sucrose solution. Temperature was maintained at 28°C, with a 
relative humidity of 70–80% throughout the course of experiment.

Vector Competence of Field Populations
In total, 3–10 mosquitoes from each population were sampled at 
7 and 14 days postinfection (dpi) and on 7 days post superinfection 
(dpsi) to check for infection. For that, bodies and heads of 45 
sampled individuals were separated before the RNA extraction 
procedure to assess ZIKV infection and dissemination, respectively. 
The 44 selected mosquitoes belonged to all three populations: Barra 
(n = 3), Porto (n = 22), and Deodoro (n = 20), from infected (n = 24) 
and superinfected (n = 20) groups.

Viral Quantification
Total RNA was extracted from mosquitoes with the QIAamp 
Viral RNA Mini Kit (Qiagen, Hilden, Germany). Viral RNA 
detection and quantification were performed individually 
through RT-qPCR with SuperScriptTM III PlatinumTM One-Step 
qRT-PCR Kit (Invitrogen, Carlsbad, CA, USA) in QuantStudio 
6 Flex Real-Time PCR System (Applied Biosystems, Foster City, 
CA, USA). Each reaction was made with 600 nM forward primer 
(5′-CTTGGAGTGCTTGTGATT-3′, genome position 3451–
3468), 600 nM reverse primer (5′-CTCCTCCAGTGTTCATTT-3′, 
genome position 3637–3620), and 800 nM probe (5′FAM-AGAAG 

AGAATGACCACAAAGATCA-3′TAMRA, genome position 
3494–3517), previously published (Ferreira-de-Brito et  al., 
2016). Cycling conditions were as follows: 95°C for 2 minutes, 
followed by 40 amplification cycles of 95°C for 15 s, 58°C for 5 s, 
and 60°C for 30 s. Virus copy numbers were calculated by 
interpolation onto an internal standard curve made up of a 
seven-point dilution series (102–108  copies/ml) of in vitro 
transcribed ZIKV RNA (Bonaldo et al., 2016).

Statistical Analysis
Mosquitoes from the two experimental infection assays were 
analyzed as belonging to three treatments: controls, which did not 
feed on ZIKV infectious blood; infected, which received one single 
infected blood meal on 6–7 days old; and superinfected, which 
received an additional infected blood meal on 13–14 days old.

The association among survival and ZIKV infection, population 
and wing length was analyzed using Cox proportional hazard 
regression models to obtain hazard ratios and 95% confidence intervals. 
First, we computed separate univariate Cox regression analyses with 
population (Barra, Deodoro, and Porto), treatment (control, infected, 
and superinfected), and wing length as covariates. Only statistically 
significant variables according to Wald statistic values were included 
in the multivariate Cox model. Kaplan-Meier (KM) survival curves 
were created to each mosquito population according to the different 
treatments (control, infected, or superinfected). We  performed 
log-rank tests to address the global effects of treatment in each 
mosquito population. If significant, we  confronted infected and 
superinfected against controls. Significance level was adjusted for 
multiple comparisons with the Bonferroni criteria. Those analyses were 
performed in the R environment (R Development Core Team, 2011).

Fecundity was analyzed by considering the first four clutches of 
eggs laid, as only a small number of females laid eggs when they were 
more than 4 weeks old, precluding adequate numbers for analysis. 
We considered two aspects of fecundity: 1) oviposition success: the 
likelihood of laying at least one egg (at a given clutch) with a logistic 
analysis that included treatment, population, wing length and clutch 
number (i.e., age); and 2) fecundity: the egg number of the successful 
mosquitoes with a repeated analysis. We included clutch number as 
the repeat and estimated the effects of treatment, wing length and 
population. These analyses were carried out with the statistical 
software JMP v. 13.0 (SAS Institute Inc., 2007).

The abundance of RNA ZIKV was not normally distributed 
(Shapiro-Wilk W = 0.4560, p < 0.001) and, therefore, the three treatments 
were compared through Wilcoxon-Mann-Whitney tests in the R 
environment (R Development Core Team, 2011). Significance level was 
adjusted for multiple comparisons with the false discovery rate (FDR) 
method (Benjamini and Yekutieli, 2001). The effect size of comparisons 
(r) was performed with Cohen’s d calculations (Cohen, 1988).

RESULTS

Oral Infection and Superinfection
A total of 767 Ae. aegypti F1 females from three districts of Rio de 
Janeiro (Barra, Deodoro, and Porto), Brazil, were used in the 
experiments. From that, 44 individuals were used for vector 
competence tests, 399 females were orally infected with a local 
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ZIKV strain (345 were infected once and 54 were superinfected, 
i.e., received a second infective blood meal at 7 days postinfection 
(dpi) with the same ZIKV strain). Of the 723 mosquitoes monitored 
daily during fitness cost assays, 90 belonged to Barra (60 infected 
and 30 controls), 308 to Deodoro (140 infected, 147 controls, and 
21 superinfected), and 325 (145 infected, 147 controls, and 33 
superinfected) to Porto field populations.

Vector Competence Tests
A total of 45 mosquitoes confirmed the susceptibility of the three 
populations to the locally isolated ZIKV strain Rio-U1. From that, 
44 (97.7%) mosquitoes presented ZIKV at their bodies, and 41 
(91.1%) had positive heads. As expected, the number of viral copies 
increased in bodies and heads over time for Porto and Deodoro. 
Regarding ZIKV quantification in bodies, although marginal and not 
significant, we observed a difference between Deodoro and Porto 
infected mosquitoes occurred at 14 dpi, with the former population 
presenting more ZIKV genome copies (W = 23, p = 0.032; Figure 1).

However, no significant difference in the number of viral copies 
was detected when the heads of Porto- and Deodoro-infected 
mosquitoes were compared at 7 and 14 dpi (Figure 1). Superinfected 
mosquitoes from Deodoro and Porto had statistically similar viral 
copies in their bodies. Interestingly, superinfected Ae. aegypti from 
Porto showed significantly more ZIKV RNA loads at their heads 
at 7 days post superinfection (dpsi) than Deodoro population, 
reaching 107 copies (W = 0, p = 0.007; Figure 1).

Survival
Wing length had no detectable influence in mosquito survival 
(W = 0.15, df = 1, p = 0.7), while population and treatment exhibited 
significant effects (W = 28.3, df = 2, p < 0.01; W = 13.8, df = 2, 
p < 0.01, respectively) and thus were included in the multivariate 
analysis. The multivariate Cox model confirmed that populations 
exhibited different survival curves under laboratory conditions, 
despite the ZIKV infection (Table 1). In total, only eight individuals 
survived longer than 60 dpi, five from Deodoro and three from 
Porto. The median survival was 16 (95% confidence interval, CI: 
15–19), 23 (95% CI: 22–25), and 20 (95% CI: 19–23) days to the 

Barra, Deodoro, and Porto populations, respectively. The Cox 
model also revealed that the treatment (i.e., exposure to ZIKV) 
produced a decrease in survival, regardless of population. These 
results suggest that ZIKV infection negatively affects the longevity 
of Ae. aegypti, with a stronger effect (i.e., a higher hazard ratio) in 
superinfected mosquitoes (Table 1).

The ZIKV infection effect on mosquito survival was further 
investigated with survival curves (Figures 2A–C) and paired 
comparisons between infected and control groups. The treatment 
did not alter the survival of Barra mosquitoes ( χ2 = 3.5, df = 1, 
p = 0.062), but produced significant effects on Ae. aegypti populations 
from Deodoro ( χ2 = 8, df = 2, p = 0.01) and Porto ( χ2 = 20.3, df = 2, 
p < 0.01). In Deodoro, ZIKV infection (but not superinfection) 
altered mosquito mortality ( χ2  =  7.6, df  =  1, p  =  0.01). However, a 
different trend was observed for Porto mosquitoes—only the 
superinfection promoted a reduction in survivorship when compared 
to the control group ( χ2 = 22.1, df = 1, p < 0.001).

Oviposition Success
The likelihood of Ae. aegypti females laying at least one egg per 
gonotrophic cycle was strongly affected by mosquito age, with older 
insects having lower oviposition success (Table 2). Deodoro females 
exhibited a significant higher oviposition success (an average of 50% 

TABLE 1 | Associations between mosquito survival and population (Barra, 
Deodoro, and Porto) and also survival and treatment (control, infected, and 
superinfected).

Variable Regression 
coefficient

Hazard ratio 
(95% CI)

z p-value

Population
Barra – 1.00 

(reference)
– –

Deodoro −0.62 0.54 −4.94 <0.01
Porto −0.42 0.65 −3.44 <0.01
Treatment
Control – 1.00 

(reference)
– –

Infected 0.20 1.22 2.51 0.01
Superinfected 0.42 1.53 2.85 0.004

FIGURE 1 | The viral load in the body and head of Aedes aegypti mosquitoes infected and superinfected with ZIKV from Deodoro and Porto field populations.  
Dpi: days postinfection; dpsi: days post superinfection. *p < 0.05; ** p < 0.001. Due to low-sample sizes, Barra population data were not included in the analysis.
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considering the four first batches), while the mosquitoes from Barra 
and Porto exhibited lower averages (27% for both populations). 
On the other hand, the treatment (control, infection, or super-
infection with ZIKV) not affected the oviposition success of 
Ae. aegypti (Table 2).

Fecundity
Fecundity analysis considered the egg number of Ae. aegypti females 
that laid at least one egg. Interestingly, the number of eggs laid by 
females presented a slight increase over time (i.e., with age), from 
49.2 in the first clutch to 55.1 in the fourth, in average (Table 3). 
Mosquito population, treatment and wing size had no effect on the 
number of eggs laid by Ae. aegypti females (Table 3).

DISCUSSION

The vectorial capacity (VC) is defined as the entomological 
component of the basic reproduction rate (R0) of vector-borne 
diseases such as malaria, dengue, and Zika viruses (Service, 1993). 
Therefore, appropriate estimates of VC parameters may provide 
valuable insights into disease epidemiology and also yield the 
establishment of more efficient vector control activities to mitigate 
transmission (Brady et al., 2016). Previous studies have shown 
that a given pathogen can modify life-history traits of vectors 
and, therefore, directly influence the VC and ultimately the R0 
(Scott and Lorenz, 1998; Moncayo et al., 2000; Martin et al., 2010; 
Vezilier et al., 2012). This article describes the effects of a locally 
isolated ZIKV strain (Asian genotype Rio-U1) on the biology of 
three Ae. aegypti field populations from Rio de Janeiro. Our results 
showed that a single (infection) or two ZIKV infected blood meals 
(superinfection) posed significant effects on the longevity, but 
not on the fecundity of female mosquitoes. Moreover, mosquito 
populations differed in their response to virus infection regarding 
survival rates and viral loads in the body and head.

Shortened lifespan due to pathogen infection was observed in 
different insect models, such as Culiseta melanura orally challenged 
with Eastern equine encephalomyelitis virus, Aedes albopictus 
infected with chikungunya, and Anopheles stephensi mosquitoes 
infected with Plasmodium berghei (Scott and Lorenz, 1998; Dawes 
et  al., 2009; Martin et  al., 2010). Negative effects on Ae. aegypti 
longevity were also detected after challenging females with a DENV-2 
strain that has never circulated in the region where mosquitoes were 
collected (Maciel-de-Freitas et  al., 2011; Sylvestre et  al., 2013). 
Interestingly, our study pointed that one of the three tested populations 
(Barra) not had any reduction in lifespan due to ZIKV infection, 
while the other two populations exhibited an increase in mortality 

TABLE 2 | Logistic regression analysis of the mosquito population, treatment, wing 
size, and age when they lay eggs on the success of oviposition of Aedes aegypti 
females.

Variable(s) df χ 2 p-value

Age 9 30.52 0.0001
Wing size 3 3.56 0.312
Population 6 44.01 0.0001
Treatment 6 1.47 0.961
Population × treatment 9 0.98 0.999
Population × age 18 41.26 0.004
Population × wing size 6 0.83 0.991
Age × treatment 18 14.26 0.711
Wing size × treatment 6 4.21 0.648
Wing size × population × treatment 9 3.96 0.914

A

B

C

FIGURE 2 | Aedes aegypti survival curves according to treatment (control, 
infected, and superinfected). Data for (A) Barra, (B) Porto, and (C) Deodoro 
populations. CTR: control (noninfected mosquitoes); INF: infected 
mosquitoes; SINF: superinfected mosquitoes.

TABLE 3 | Repeated measure analysis (with clutch taken as the repeat) of the 
number of eggs laid by Aedes aegypti females.

Variable Num df Den df F p-value

Population 6 48 1.648 0.154
Treatment 6 48 1.503 0.197
Wing size 3 24 2.63 0.073
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when infected (Deodoro) or superinfected (Porto). However, 
considering that Barra had only a few mosquitoes, conclusions about 
this population must be taken carefully. Although we did not accessed 
all the variables that affect the VC, mortality rate is one of the most 
important entomological parameters for its estimation (Luz et al., 
2003) and thus is reasonable to assume that changes on mosquito 
lifespan may affect disease transmission under natural settings.

Despite distant each other less than 25 km, the response of 
mosquito populations to the laboratory environment and to 
ZIKV infection differed substantially. Deodoro mosquitoes had 
a higher significant lifespan than Porto and Barra populations, 
while Porto had a greater survival than Barra, despite the infection 
status. The treatment also produced different outcomes in 
Deodoro and Porto populations. The mortality of infected 
Deodoro mosquitoes decreases in comparison with the control 
group, while only the superinfected females from Porto had a 
significant decline in survival. We hypothesized that the higher 
mortality in superinfected Ae. aegypti from Porto is related to a 
greater viral load in the heads when contrasted to Deodoro 
mosquitoes. Virulence is tightly coupled to parasite load in An. 
stephensi and to higher RNA copy numbers in Drosophilidae, 
which means that the extent of the harm to a host might 
be partially explained by pathogen accumulation (Dawes et al., 
2009; Longdon et al., 2015).

Vector competence seems to be  influenced by specific 
interactions between mosquitoes and arbovirus genotypes. By 
challenging three isofemale families of field-derived Ae. aegypti 
from Thailand with three contemporaneous low-passage DENV-1 
isolates, Lambrechts et  al. (2009) evinced vector competence is 
likely governed to a large extent by virus and mosquito genetic 
interactions in natural populations. Moreover, the susceptibility 
of Ae. aegypti to pathogens is a highly dynamic feature, dependent 
on both genetic and environmental factors. Thus, it is expected 
that both vector competence and fitness cost of an infection also 
vary among geographically close field mosquito populations 
(Gubler et al., 1979; Failloux et al., 2002; Tabachnick, 2013; Severson 
and Behura, 2016). Nuclear markers of Aedes aegypti populations 
collected in Rio de Janeiro, including areas overlapping Deodoro, 
Barra, and Porto, revealed multiple introductions and extensive 
gene flow among populations. However, a strong spatial structuring 
was found considering mitochondrial markers and 25 genes related 
to mosquito immune response and insecticide resistance (Rašić 
et al., 2015). Therefore, these data may explain why the populations 
studied here exhibited different outcomes in longevity and 
superinfected with ZIKV.

Regardless of the extensive studies about the immune pathways 
activated in mosquitoes during a single flavivirus exposure, it 
remains unclear whether the immune system activation through 
a primary virus infection has any effect on a secondary infection 
(Xi et  al., 2008; Souza-Neto et  al., 2009; Sim and Dimopoulos, 
2010). In the case of the infection with phylogenetic closely related 
viruses (at least from the same genus) in a single specimen, a 
superinfection exclusion is expected (i.e., a primary virus infection 
inhibits a secondary infection), since common host immune factors 
might be formerly activated by the first infection (Bolling et al., 
2012). Mosquito cells previously infected with DENV and then 
exposed to the four DENV serotypes displayed a reduction in the 

viral titer (Igarashi, 1979; Kuno, 1982). A similar outcome was 
observed in Culex quinquefasciatus mosquitoes with a persistent 
infection by a Culex flavivirus and subsequently exposed to West 
Nile virus (WNV) (Bolling et al., 2012). However, Kuwata et al. 
(2015) found no evidence of superinfection exclusion of Japanese 
Encephalitis virus or DENV in cells previously infected with a 
Culex flavivirus. In the present study, no evidence of superinfection 
exclusion was identified, since viral titers did not decrease at 7 dpsi. 
Indeed, mosquitoes from Porto had a sharp decline on their 
survival when superinfected.

One limitation of this study is the impossibility of analyzing the 
effect of arbovirus genotypes in the susceptibility and life-history 
traits of the mosquitoes, since we infected them with a single ZIKV 
local strain. Genomic analyses of ZIKV epidemic strains of 2016 
revealed the coexistence of at least seven phylogenetically diversified 
virus clusters circulating in Brazil (Shi et al., 2016; Wang et al., 
2017). Although there is no information available about the 
diversity of ZIKV in small geographic scales such as those studied 
here, high levels of genetic variability of the flavivirus WNV among 
local strains were observed in near counties of the New York State 
infecting Culex mosquitoes (Ehrbar et al., 2017). In line with the 
idea of vector competence being population-specific, the possible 
genetic variability of ZIKV strains could contribute to the 
prevalence and transmission on local levels.

Several papers reported the impact of pathogen infection on 
host fecundity, which associated with a reduction in survival rate, 
would negatively impact VC by reducing the offspring size (Kramer 
and Ciota, 2015). For instance, An. stephensi and Anopheles gambiae 
seem to produce smaller egg batches after infected with Plasmodium 
yoelii nigeriensis (Hogg and Hurd, 1995; Jahan and Hurd, 1998). 
WNV-infected Culex tarsalis presented smaller egg rafts, mainly 
in the first oviposition cycle (Styer et  al., 2007). Aedes aegypti 
females exposed to DENV-2 exhibited an impairment in fecundity, 
which varied over mosquito lifespan. Overall, DENV-2 infection 
seems to interfere with mosquitoes’ fecundity by both reducing 
egg-laying success and batch sizes (Maciel-de-Freitas et al., 2011; 
Sylvestre et al., 2013). Bearing in mind that ZIKV reaches mosquito 
ovaries on the second day postinfection (Li et al., 2017), we sought 
that the virus would exert a resembling impact over fecundity traits 
on the first clutch onward. Surprisingly, ZIKV infection did not 
influence directly on the oviposition success and fecundity, 
although increased mortality early after infection may result in 
lower reproduction rates.

Aedes aegypti vector competence seems to be  genetically 
determined, which means that coadaptation between mosquitoes 
and viruses in a local setting may provide a more efficient transmission 
by sympatric vector genotypes with lower fitness cost (Lambrechts 
et al., 2009). Overall, our findings suggest that ZIKV infection causes 
a reduction in Ae. aegypti survival but did not alter fecundity, 
different from what has been observed for DENV and other 
arboviruses. It is worth mentioning, however, that mosquito 
populations varied in their response to ZIKV infection considering 
survival and viral loads, highlighting that fitness outcomes may 
be governed by the interaction between host and parasite genotypes. 
For example, superinfected mosquitoes from one of the populations 
exhibited more ZIKV copies in the head at 7 dpsi and increased 
mortality. These different outcomes toward field-derived Ae. aegypti 
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might provide additional information regarding local epidemiological 
settings. In conclusion, ZIKV infection yields a reduction in Ae. 
aegypti survival but produced no effects on mosquito fecundity and 
oviposition success. Therefore, the presence of ZIKV negatively 
affected the Ae. aegypti vectorial capacity by reducing mosquito 
lifespan.
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