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Campylobacter spp. are considered the most common bacterial cause of foodborne
gastroenteritis in the world. The family Campylobacteraceae includes the genus
Arcobacter with the three species Arcobacter butzleri, Arcobacter cryaerophilus, and
Arcobacter skirrowii as emergent enteropathogens and potential zoonotic agents. Here,
we characterized genome sequences of Arcobacter that were isolated from water
poultry on farms in Germany. Isolates were cultured, identified by MALDI-TOF MS and
identification was verified with PCR assays. Antibiotic susceptibility testing of isolates
was carried out with erythromycin, ciprofloxacin, doxycycline, tetracycline, gentamicin,
and streptomycin using the gradient strip method (E-test). We also sequenced whole
genomes and predicted antibiotic resistance determinants, virulence factors, performed
a phylogenetic analysis to determine the genetic relatedness of these isolates and
searched for plasmids.

Keywords: Arcobacter skirrowii, Arcobacter butzleri, antimicrobial susceptibility, genomic structure, antibiotic,
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INTRODUCTION

Campylobacter spp. are considered to be the most common bacterial cause of human gastroenteritis
in the world (WHO, 2018). In 1991, the new genusArcobacter (A.)was introduced within the family
ofCampylobacteraceae. Three species,Arcobacter butzleri,Arcobacter cryaerophilus, andArcobacter
skirrowii, are considered potential zoonotic agents (Prouzet-Mauleon et al., 2006; Levican et al.,
2013; Van den Abeele et al., 2014, 2016). Arcobacter spp. are present in the digestive tract of healthy
animals (Ünver et al., 2013), but are also associated with enteritis and reproductive disorders in
animals (De Smet et al., 2012). Arcobacter can be transmitted to humans by contaminated food
(e.g., poultry products) and water (Collado and Figueras, 2011; Hänel et al., 2016).

Isolation of A. skirrowii is often difficult due to its special growth requirements and data on the
antibiotic susceptibility of the bacteria are scarce (Yesilmen et al., 2014). Only few representative
genomes (for example NCBI, BioProject: PRJNA307998, BioSample: SAMN04386098) have been
described.

The aim of this study was to determine the antimicrobial susceptibility of A. skirrowii isolated
from domestic water poultry to six antibiotics commonly used to treat diarrhea in humans.
The genomic features of A. skirrowii isolates were analyzed to improve diagnostic and antibiotic
treatment options.
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MATERIALS AND METHODS

Arcobacter isolates were cultivated from fecal samples collected
in water poultry farms in Thuringia, Germany. A two-step
enrichment procedure was done in Arcobacter broth (Oxoid,
Wesel, Germany) supplemented with antibiotics (cefoperazone,
amphotericin and teicoplanin; CAT, Oxoid) under microaerobic
conditions (5% O2, 10% CO2, and 85% N2) for 48 h at
30◦C. Subsequently, the broth was streaked on plates (Mueller-
Hinton/CAT/5% defibrinated bovine blood) and incubated under
microaerobic conditions for another 24–48 h at 30◦C. Suspicious
colonies were recultivated and identified by matrix-assisted
laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS) as described before (El-Ashker et al., 2015;
Busch et al., 2018). IVD Bacterial Test Standard, Biotyper 3.1
software, and the database DB 4613 (all Bruker Daltonik GmbH,
Bremen, Germany) containing spectra of all Arcobacter species
were used. A confirmation of the species identification was
performed using a multiplex PCR assay (Douidah et al., 2014).

Antimicrobial susceptibility to six antibiotics (erythromycin,
ciprofloxacin, doxycycline, tetracycline, gentamicin, and
streptomycin) was determined using the gradient strip diffusion
method (E-testTM, bioMérieux, Nürtingen, Germany) following
the manufacturer’s instructions (Table 1). The bacterial
suspensions for the E-test were adjusted to an optical density
of 0.1 at 600 nm (corresponding to approximately 3 to
5 × 108 cfu/ml) in PBS. 750 µl were evenly spread on a MH
agar plate and a single strip was put on each plate. After 48 h
of incubation at 30◦C under microaerobic conditions, the
minimum inhibitory concentration (MIC) was determined.
The type strain of A. skirrowii DSM 7302 was used as control.
For erythromycin, ciprofloxacin, doxycycline, and tetracycline
interpretative criteria were based upon EUCAST breakpoints
for Campylobacter. For gentamicin EUCAST Enterobacteriaceae
breakpoints were applied. For streptomycin the cut-off value
for Campylobacter jejuni was used as suggested by the EFSA–
Working Group (European Food Safety Authority [EFSA],
2008). The phenotypes were classified as sensitive (S), resistant
(R), or intermediate (I) (Table 1).

DNA for whole genome sequencing (WGS) was prepared from
colonies harvested from plates. DNA was purified (High Pure
PCR Template Preparation Kit; Roche Diagnostics, Mannheim,
Germany) and sequencing libraries were generated using the
Nextera XT DNA Library Prep Kit (Illumina, Inc., San Diego,
CA, United States). From an Illumina MiSeq run 111,000–
8,300,000 paired-end reads were generated (mean sequencing
depth: 29–216 reads). The assignment of the taxonomic labels
to all reads was performed with MetaPhlAn (Segata et al., 2012)
and Kraken version 0.10.6 (Wood and Salzberg, 2014). Further
read processing included quality trimming and assembly with
SPAdes 3.9.1 (–careful) (Bankevich et al., 2012) and filtering
by removing contigs with a coverage < 5 and a length < 500.
Quality was assessed with QUAST 4.3 (Gurevich et al., 2013).
Annotation was performed with Prokka using the recommended
standard settings (Seemann, 2014). Additionally, PhyloPhlAn
was used to assign microbial phylogeny (Segata et al., 2013)
and visualized with Dendroscope (Huson et al., 2007; Figure 1).

Subsystem category distribution of the assemblies was done with
RAST and SEED (Supplementary Figure 1; Aziz et al., 2008;
Brettin et al., 2015). Based on ARIBA in the standard settings
(Hunt et al., 2017) several databases were used to identify single
nucleotide polymorphisms directly from short reads. Resistance
genes were predicted using the ResFinder (Zankari et al., 2012)
and the PlasmidFinder was used for the analysis of plasmids
(Carattoli et al., 2014). Multilocus Sequence Typing (MLST) was
done using the MLST database (Carattoli et al., 2014) and for
detection of virulence factors VFDB_full was used (Chen et al.,
2005). No reads mapped to reference genes. Therefore, no local
assemblies were run. Virulence-associated genes known from the
literature, i.e., the genes ciaB (HF935951), cj1349 (HF935963),
and cadF (HF935942) were mapped with Geneious (Kearse et al.,
2012) on all assemblies and to the known A. skirrowii sequence
LRUX01000036.1. Further search for plasmids was done with
Bandage (Wick et al., 2015).

All isolates were submitted to the Leibniz Institute, DSMZ-
German Collection of Microorganisms and Cell Cultures1, and
are available under the following DSM numbers: DSM 107942
(A. butzleri FLI 17-1168), DSM 107960 (A. skirrowii FLI 17-
1208-1), DSM 107961 (A. skirrowii FLI 17-1201-3), DSM 107962
(A. skirrowii FLI 17-1208-2), DSM 107963 (A. skirrowii FLI
17-1201-4), DSM 107964 (A. skirrowii FLI 17-1206-2). Whole-
genome sequences, assemblies, and raw data of all isolates were
submitted under the BioProject PRJNA464281.

RESULTS

Five A. skirrowii and one A. butzleri isolates were cultivated
and identified by MALDI-TOF MS, and due to scores <2,3
confirmed by a multiplex PCR assay. As an example, the MALDI-
TOF MS mass list of a wildtyp A. skirrowii 1208_2 is given in
Supplementary Table 4. Reference spectra were generated for
A. skirrowii wild type isolates (spectra are available upon request).

Taxonomic analysis of the WGS data with MetaPhlAn
and Kraken resulted mostly in “unclassified Arcobacter” for
A. skirrowii isolates, whereas A. butzleri could be assigned to
the correct species. Also analyses based on the genomic features
by sequence identity with RAST showed only a relationship
to A. butzleri RM4018 for all isolates. A correct taxonomic
differentiation of the species was possible with PhyloPhlAn.

The antibiotic susceptibility test results for the Arcobacter
isolates obtained by E-test are shown in Table 1. All A. skirrowii
isolates were susceptible to erythromycin, ciprofloxacin,
doxycycline, tetracycline, and gentamicin and showed resistance
to streptomycin. The A. butzleri isolate was susceptible to
ciprofloxacin and doxycycline, showed intermediate resistance to
gentamicin and was resistant to erythromycin, tetracycline, and
streptomycin. Based on the WGS data no resistance determinants
were predicted with the ResFinder.

The mean coverage obtained for the isolates using WGS was
>170 except for A. skirrowii isolate 17-1201-3 with a mean
coverage of only 20. All sequences were assembled and annotated

1https://www.dsmz.de
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TABLE 1 | Antibiotic susceptibility of Arcobacter spp.

17-1201-3 17-1201-4 17-1206-2 17-1208-1 17-1208-2 17-1168

A. skirrowii A. skirrowii A. skirrowii A. skirrowii A. skirrowii A. butzleri

1 2 1 2 1 2 1 2 1 2 1 2

Erythromycin S No S No S No S No S No R No

S ≤ 4mg/L 0.25 1.0 0.25 1.0 0.5 8.0

R > 4 mg/L

Ciprofloxacin S No S No S No S No S No S No

S ≤ 0,5 mg/L 0.03 0.25 0.06 0.25 0.06 0.5

R > 0,5 mg/L

Doxycyclin S No S No S No S No S No S No

S ≤ 2 mg/L 0.064 0.25 0.125 0.50 0.19 2.0

R > 2 mg/L

Tetracyclin S No S No S No S No S No R No

S ≤ 2mg/L 0.12 1.0 0.25 1.0 0.25 4.0

R > 2 mg/L

Gentamicin S No S No S No S No S No I No

S ≤ 2 mg/L 0.5 2.0 1.0 2.0 1.0 4.0

I = 4 mg/L

R > 4 mg/L

Streptomycin R No R No R No R No R No R No

S ≤ 2 mg/L 3.0 8.0 3.0 8.0 4.0 12.0

R > 2 mg/L

EUCAST breakpoints for Campylobacter jejuni were used for erythromycin, ciprofloxacin, doxycycline, tetracycline, and gentamicin. EFSA breakpoints were applied for
streptomycin (European Food Safety Authority [EFSA], 2008). S, susceptible; R, resistant; I, intermediate; 1, laboratory results; 2, ResFinder prediction.

(Supplementary Tables 1, 2). Assemblies consisted of 36 to 145
contigs. Sequence length was predicted to be between 1,911,841
and 1,940,887 concordant bases. Due to the lower coverage of
A. skirrowii isolate 17-1201-3 the assembly resulted in more
contigs, but genome sizes of all A. skirrowii were estimated to
be around 1.9 million bases with approximately 1,980 coding
sequences. The A. butzleri isolate 17-1168 was estimated to
have a genome size of 2.2 million bases and included more
coding sequences (2,143) than the A. skirrowii isolates. The GC
content was determined to be 27.6% for A. skirrowii and 26.9%
for A. butzleri, respectively. When the programs were applied
with standard settings, no reads mapped to reference genes in
the database, therefore no local assemblies were run. However,
the known virulence-associated genes (ciaB (HF935951), cj1349
(HF935963), hecA (HF935064), and cadF (HF935942)) could
be mapped to all assemblies and the published A. skirrowii
sequence LRUX01000036.1. However, all genes mapped with
a low sequence identity (49.9 to 87%). MLST results were
extracted from the WGS data and were assigned to new sequence
types (ST) (Supplementary Table 3), which were published
within the PubMLST.org (ID 888-892). Verification of the
results by traditional sequencing methods for MLST was not
done.

The analysis of subsystem category distribution showed that
the carbohydrate metabolism genes were comparable between
A. skirrowii andA. butzleri. ForA. skirrowii less elements could be
classified for phages, prophages, transposable elements, plasmids,
and a reduced number of genes related to potassium metabolism,
iron metabolism, and iron acquisition.

DISCUSSION

The relevance of Arcobacter as a pathogen for humans has not
yet been clarified, although three species including A. butzleri,
A. cryaerophilus, and A. skirrowii have been associated with
gastrointestinal diseases (Collado and Figueras, 2011). It can be
assumed that the importance of Arcobacter in human infections
is underestimated. For the isolation of A. skirrowii special
cultivation procedures and therefore adequate detection and
identification methods are not available in many laboratories. The
taxonomic analysis of WGS data based on reads (MetaPhlAn
and Kraken) also relies on yet incomplete databases, so
most bioinformatics methods will not detect A. skirrowii. The
taxonomic assignment based on assemblies and annotation with
PhyloPhlAn proved as a fast and efficient method. PhyloPhlAn
is a method using >400 proteins optimized from among
3,737 genomes thus reflecting more functional differences than
phylogenies based on nucleotides.

Data on antimicrobial susceptibility of A. butzleri or
A. cryaerophilus are scarce and almost lacking for A. skirrowii
isolates. A. skirrowii seems to be susceptible to many
antimicrobials (Houf et al., 2001). Although microdilution
assays are usually favored, antibiotic testing is not standardized
yet and the gradient strip method seems to be a more robust
approach for these bacteria (Van den Abeele et al., 2014).

Antibiotic resistance can be induced by gene transfer
or plasmid transfer events for example between human,
animal, and plant-associated bacteria with streptomycin (Sundin
and Bender, 1996). A. butzleri or A. cryaerophilus isolates
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FIGURE 1 | Phylogenetic tree generated with PhyloPhlAn and visualized with Dendroscope.

from Europe (Van den Abeele et al., 2016) showed susceptibility
to gentamicin, tetracycline, erythromycin, ciprofloxacin, and
doxycycline and sometimes resistance to ampicillin. The here
studied A. skirrowii isolates were more sensitive and showed
only resistance to streptomycin. The CDC reported resistance to
ciprofloxacin for almost 25% of human Campylobacter isolates
and 2% were resistant to azithromycin (CDC, 2015). The
antibiotic resistance of the A. butzleri isolate could not be
predicted with the applied bioinformatics tools.

Antibiotic resistance is often mediated by plasmids especially
in the Enterobacteriaceae family (Nikaido, 2009). Plasmids are
commonly present in diverse prokaryotes, play an important role
in the genetic evolution and adaptation of bacteria and were
reported in 9.9% of A. butzleri isolates (Harrass et al., 1998;
Toh et al., 2011). Plasmids could be neither predicted by the
PlasmidFinder nor by visual inspection of the graphical assembly
graphs (Wick et al., 2015) for any of the isolates. In agarose gels
no plasmids could be detected comparable with Becker et al.
(2016).

Multilocus Sequence Typing is a traditional technique
that characterizes isolates using DNA sequences of multiple
housekeeping genes. All isolates were assigned to distinct alleles
and could be defined as new ST (Supplementary Table 3).
Although no virulence factors could be predicted for these

Arcobacter isolates, four genes known to contribute to host
adherence and invasion could be mapped with low sequence
identity (Levican et al., 2013). The low sequence identity was
also an indication that A. skirrowii might show more variability
within the nucleotide sequences which was not reflected in the
databases, yet.

CONCLUSION

In conclusion, A. skirrowii is a known, but rarely detected
pathogen. The main reasons might be slow growth on culture
media, overgrowth by other bacteria and underrepresentation in
databases. Procedures in most routine microbiology laboratories
need to be adapted for the detection and identification of
this pathogen. Antibiotic susceptibility testing of A. skirrowii
is preferably done using the gradient strip method due to
the fastidious growth of the bacteria. Prediction of antibiotic
susceptibility based on WGS data should be treated with caution.

Resistance to erythromycin, tetracycline, and streptomycin
was found only in A. butzleri, while A. skirrowii was only resistant
to streptomycin. Macrolides (here represented by erythromycin)
are the preferred therapeutic agents in Campylobacter infections,
but they are not necessarily first-choice antibiotics for Arcobacter
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infections for which tetracycline was proposed for severe cases
only (Yan et al., 2000; Kayman et al., 2012; Arguello et al.,
2015). An important factor in the development of resistance
to antimicrobial agents is the uncontrolled use of antibiotics in
animal husbandry. Monitoring and reporting of antimicrobial
resistance data as well as WGS data analysis ofCampylobacter and
Arcobacter from domestic animals are important to monitor the
evolution of antimicrobial resistance and to optimize diagnostics.

Here, solutions for diagnostic problems working with
A. skirrowii were evaluated. Cultivation protocols were provided,
MALDI-TOF MS spectra were made available and sequencing
data were published in the NCBI, so that the software tools
based on the RefSeq (such as BLAST and Kraken) will allow
quick identification. The usage of open source software allows
an economic and transparent application of the here established
analysis. The investigated isolates were deposited in the open
collection of the DSMZ. Our data can improve the diagnostic
capabilities also of other laboratories and contribute to future
work on epidemiological, pathogenetic, and functional analysis
of these rarely recognized bacteria. This may further help
to elucidate the mechanisms underlying the pathogenicity
of A. skirrowii. The comprehensive bioinformatics analysis
allows optimizing database dependent bioinformatics tools (for
example the ResFinder, PubMLST, or Kraken). The analysis
of the function of antibiotic resistance of new developing
resistances is important to be able to compare the genetic make-
up of resistant and susceptible strains. It can be speculated
that the efforts undertaken to eradicate Campylobacter spp.
(as cause of gastroenteritis) from the microbiome of farmed
animals will lead to a replacement by Arcobacter spp. Then
an assessment of the pathogenicity of Arcobacter spp. will be
crucial.
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