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The Chlamydiaceae comprise a group of highly adapted bacterial pathogens sharing

a unique intracellular lifestyle. Three Chlamydia species are pathogenic to humans:

Chlamydia trachomatis, Chlamydia pneumoniae, and Chlamydia psittaci. C. trachomatis

is the leading bacterial cause of sexually-transmitted infections and infectious blindness

worldwide. Chlamydia pneumoniae is a major cause of community-acquired atypical

pneumonia. C. psittaci primarily affects psittacine birds and can be transmitted to

humans causing psittacosis, a potentially fatal form of pneumonia. As opposed to other

bacterial pathogens, the spread of clinically relevant antimicrobial resistance genes does

not seem to be a major problem for the treatment of Chlamydia infections. However,

when exposed to stressing conditions, like those arising from exposure to antimicrobial

stimuli, these bacteria undergo a temporary interruption in their replication cycle and enter

a viable but non-cultivable state known as persistence. When the stressing conditions

are removed, Chlamydia resumes replication and generation of infectious particles. This

review gives an overview of the different survival strategies used by Chlamydia to evade

the deleterious effects of penicillin and IFNγ, with a focus on the different models used

to study Chlamydia persistence, their contribution to elucidating the molecular basis of

this complex phenomenon and their potential implications for studies in animal models

of infection.

Keywords: Chlamydia persistence, penicillin-induced persistence, gamma interferon-induced persistence,

Chlamydia evasion of antimicrobial stimuli, aberrant reticulate bodies, in-vivo implications of Chlamydia

persistence, Chlamydia persistence inducers

INTRODUCTION

The Chlamydiaceae are a family of Gram-negative obligate intracellular bacteria comprising 11
species pathogenic for a variety of animals (Elwell et al., 2016), 3 of which are human pathogens:
Chlamydia trachomatis,Chlamydia pneumoniae, andC. psitacci. Themain impact on human health
is caused by C. trachomatis, which leads to a variety of oculo-genital and perinatal infections.
Based on the antigenic properties of the major outer membrane protein MOMP, C. trachomatis
strains can be classified into different serovars (Stephens et al., 1987; Baehr et al., 1988; Gomes
et al., 2007). Serovars A-C are the etiologic agents of trachoma, the leading cause of infectious
blindness worldwide (Stocks et al., 2014). With an estimate of 131 million new cases per year,
C. trachomatis serovars D-K are the main bacterial cause of sexually-transmitted infections (STI)
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globally (Newman et al., 2015). Notably, up to 70–90% of these
infections may be asymptomatic and long-lasting (Stamm, 1999;
Gonzales et al., 2004), leading to serious complications such as
pelvic inflammatory disease, ectopic pregnancy, and infertility in
women (Lan et al., 1995; Westrom, 1995; Haggerty et al., 2010).
C. trachomatis serovars D-K also cause inclusion conjunctivitis in
adults, and perinatal infections such us ophthalmia neonatorum
and chlamydial pneumonia in infants (Rönnerstam et al., 1985;
Schachter et al., 1986; Stenberg and Mardh, 1991; Darville,
2005; Hammerschlag, 2011). The more invasive serovars L1-
L3 are the cause of a less frequent form of STI called
lymphogranuloma venereum, a systemic illness characterized by
inguinal lymphadenopathy and/or severe proctitis/proctocolitis
(Herring and Richens, 2006; White, 2009). C. pneumoniae is a
widespread pathogen of the human respiratory tract, causing
bronchitis, community-acquired atypical pneumonia and asthma
exacerbation (Grayston et al., 1993; Asner et al., 2014). C. psitacci
is the etiologic cause of psittacosis, a zoonotic disease that can
be transmitted to humans upon close contact with a variety of
birds, most frequently Psittacidae (cockatoos, parrots, parakeets
and lories) or Columbiformes (pigeons) and recently, exposure
to equine placental material has also been found as a risk
factor for transmission (Polkinghorne and Greub, 2017). Clinical
symptoms of psittacosis include high fever, chills, headache,
myalgia, non-productive coughing, respiratory distress and may
be fatal if untreated (Beeckman and Vanrompay, 2009).

All members of the Chlamydiaceae are highly successful
intracellular parasites that undergo a propagation cycle involving
developmental forms with clearly different morphological and
functional properties. The elementary bodies (EBs) are very
small (ca. 0.2µm in diameter), infectious, environmentally
resistant and non-replicative. The reticulate bodies (RBs), on
the other hand, are larger (ca. 0.8µm in diameter), non-
infectious, labile in the extracellular environment and actively
replicative. EBs are pre-loaded with virulence factors including
type III secretion effectors involved in internalization into
the host cell, while RBs are enriched in proteins involved
in nutrient uptake, ATP generation and translation (Saka
et al., 2011). Upon attachment to epithelial cells, EBs are
internalized and confined into a vacuole, termed an inclusion.
At early times post-infection, EBs differentiate into RBs, which
start replicating as the inclusion gradually expands. During
this process, Chlamydia manipulates host cell pathways to
acquire essential nutrients and avoid interaction with degradative
organelles like lysosomes. At mid-cycle, some RBs begin to
differentiate back into EBs asynchronously. At late stages post-
infection the inclusion contains mostly EBs, which are finally
released to the extracellular environment either by host cell lysis
or extrusion of inclusions. In the extracellular environment, EBs
can infect neighboring cells and continue propagating (Saka
and Valdivia, 2010; Elwell et al., 2016). If during replication
Chlamydia encounter non bacteriocidal stress conditions, like
those arising from exposure to certain antibiotics, cytokines or
nutrient deprivation, the bacteria respond by markedly reducing
RBs division and production of infectious particles, being able
to rapidly resume to normal replication once the stressing
conditions are removed (Figure 1A). This response is referred

to as chlamydial persistence or chlamydial stress response, as it
allows these bacteria to survive for long periods of time in cell
culture in presence of unfavorable growth conditions (Schoborg,
2011; Byron, 2012; Elwell et al., 2016).

As opposed to other bacterial pathogens, for which acquisition
of resistance genes by lateral gene transfer confer resistance
to antimicrobial drugs and represent a major concern for
public health (Chatterjee et al., 2018), Chlamydia have so
far remained susceptible to all anti-chlamydial antibiotics.
An exception to this widespread susceptibility is the well-
characterized tetracycline resistance island in the pig pathogen
Chlamydia suis, which so far has not spread to Chlamydia species
affecting humans (Seth-Smith et al., 2017). In fact, there are
no reports of naturally-acquired, stable antibiotic resistance in
Chlamydia strains recovered from human samples (Sandoz and
Rockey, 2010). Interestingly, despite wide availability of effective
drugs and apparent lack of antibiotic resistance mechanisms,
Chlamydia continue to be widespread pathogens, notorious for
their ability to cause long-lasting, persistent infections (Byron,
2012). Perhaps as a result of their long evolutionary history as
obligate intracellular parasites, Chlamydia seem to have evolved
uniquemechanisms to resist antimicrobial effects triggered by the
host innate and adaptive immune responses. In this review, we
will address the current knowledge about the strategies used by
these microorganisms to resist antimicrobial stimuli triggered by
penicillins and IFNγ in cell culture or in-vivomodels of infection,
with a focus in Chlamydia persistence.

EARLY EVIDENCE OF CHLAMYDIA

PERSISTENCE AS A RESPONSE TO
ANTIMICROBIAL STIMULI

The view that Chlamydia only alternates between EB and RB
developmental forms is an oversimplified view of its life cycle.
Already in 1950, Weiss discovered that Chlamydia muridarum
and C. felis (then known as the murine and feline pneumonitis
viruses, respectively), displayed an enlarged, abnormal
morphology upon exposure to the antibiotic penicillin (Weiss,
1950). Similar observations were reported for C. trachomatis
LGV and C. psittaci (by then named lymphogranuloma and
meningopneumonitis viruses, respectively) (Hurst et al., 1953;
Tamura and Manire, 1968; Matsumoto and Manire, 1970).
A seminal report from Galasso and Manire (1961), showed
that penicillin was able to reduce the generation of C. psittaci
infectious progeny in HeLa cells to values as low as 0.1% of the
original titer. Surprisingly, these investigators found that normal
replication rates recovered quickly upon penicillin removal,
even after 3 and a half months of continuous presence of the
antibiotic in cell culture. Morphological analysis by transmission
electron microscopy, demonstrated that in the presence of
penicillin, C. psittaci inclusions contained greatly enlarged RBs,
while normal morphology was recovered upon removal of
the antibiotic (Matsumoto and Manire, 1970). We now know
that those early observations are in line with the presence of
enlarged, aberrant RBs (aRBs), typically found when Chlamydia
undergo nutrient deprivation, exposure to certain antibiotics,
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FIGURE 1 | Chlamydia developmental cycle. (A) Chlamydia are obligate intracellular bacteria that undergo multiple developmental forms with distinct morphological

and functional properties. The infectious elementary bodies (EB) are internalized in the host cells and are confined to a membrane-bound vacuole, termed an

“inclusion.” Soon after invasion, EBs differentiate into replicative but non-infectious reticulate bodies (RBs), which actively divide. Around mid-cycle, RBs begin to

asynchronously differentiate back into EBs and are finally released (by cell lysis or extrusion of intact inclusions) into the extracellular environment, where they can

infect neighboring cells. If during replication Chlamydia is exposed to stressing conditions, like those caused by gamma-interferon (IFNγ), penicillins or deprivation of

essential nutrients, the bacteria enter into a long-lasting, viable but non-cultivable state known as “Chlamydia persistence,” which is typically associated to the

presence of enlarged, aberrant RBs. When conditions are again favorable, the persistence state is reversed and normal replication ensues. (B) This scheme

summarizes different events that Chlamydia may use in order to successfully evade antimicrobial effects triggered during infection in-vitro. First, Chlamydia “senses”

different types of stresses and then respond by entering into a temporary, reversible interruption in the replication cycle (termed “Chlamydia persistence” or “Chlamydia

stress response”). In this state, Chlamydia adapts to adverse conditions by prioritizing cell functions required for long-lasting survival. When the bacteria sense that the

stressing condition has ceased, they exit from persistence and resume normal replication and generation of infectious progeny. The Chlamydia factors and the

molecular mechanisms required for the successful execution of each one of these steps remain poorly elucidated.

INFγ or other compounds/conditions that impose a stress
to these microorganisms (Byron, 2012). The aRBs observed
in-vitro, may be considered the morphological manifestation of
Chlamydia entry into a persistent state, characterized by lack of
cultivability while conditions are unfavorable, and followed by a
quick return to normal replication upon removal of the stressor.
In this context, the persistent state may function as a resilience
pathway triggered in Chlamydia to deal with stressing conditions
elicited by antimicrobial stimuli. Thus, it is reasonable to imagine
that in order to execute such response, these bacteria should
follow a sequence of events involving: (i) sensing of unfavorable
conditions, (ii) entry into a persistent state, (iii) survival in
adverse conditions, (iv) sensing of favorable conditions, (iv)
exit from persistence, and (v) resume to normal production of
infectious progeny (Figure 1B). The mechanistic and molecular
basis underlying each one of the mentioned events, remain
poorly understood. However, we know that under the persistent
state, Chlamydia slows down DNA replication and continues
to transcribe genes, but stops dividing, becoming viable but
non-cultivable (Ouellette et al., 2006; Muramatsu et al., 2016).
This is frequently accompanied by the presence of enlarged aRB
forms, which retain their ability to transition into infectious
EBs once conditions are again favorable. It is important to
mention, however, that a functional approach to the definition
of Chlamydia persistence as a reversible interruption of the
productive cycle (Byron, 2012), is probably more appropriate

than a morphological definition, since aRBs are not always
observed (Schoborg, 2011).

DIVERSE STIMULI TRIGGER CHLAMYDIA

PERSISTENCE IN-VITRO

A variety of stimuli induce Chlamydia persistence including
several antibiotics, gamma-interferon (IFNγ), deprivation of
essential nutrients (i.e., iron, amino acids, glucose), heat-
shock, components found on cigarette smoke, exposure to
adenosine, infection with chlamydiaphage, co-infection with
Herpes Simplex Virus or Porcine Epidemic Diarrhea Virus
(Beatty et al., 1994b; Hsia et al., 2000; Wiedeman et al., 2005;
Huston et al., 2008; Pettengill et al., 2009; Vanover et al.,
2010; Schoborg, 2011; Prusty et al., 2012; Schoborg and Borel,
2014). The diversity of stimuli that can elicit persistence,
suggests that Chlamydia does not respond equally to all of
them. This notion is supported by several studies showing
that the transcriptional responses triggered are significantly
different according to the persistence model used (Mathews
et al., 2001; Belland et al., 2003; Gérard et al., 2004; Goellner
et al., 2006; Ouellette et al., 2006; Mäurer et al., 2007;
Brinkworth et al., 2018). Among the different models of
Chlamydia persistence, we will focus on the two that have been
most thoroughly studied: the beta-lactam antibiotic penicillin
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and IFNγ, a cytokine that is critical for innate and adaptive
immunity.

CHLAMYDIA PERSISTENCE AS A
RESPONSE TO PENICILLINS

As a member of the beta-lactams family of antibiotics, penicillins
exert their antimicrobial activity by blocking the cross-linking of
the peptidoglycan, a key step in cell wall synthesis in bacteria.
The general mechanism of action for beta-lactam antibiotics
is the inactivation of penicillin binding proteins (PBPs) by
targeting their transpeptidase domain. PBPs catalyze the last
step in peptidoglycan synthesis, which is the cross-linking of
pentapeptide sidechains by a transpeptidation reaction. Due to
the structural similarity of beta-lactams with the terminal D-
Ala-D-Ala of the pentapeptide precursor, which is the natural
substrate of PBPs, these antibiotics form a stable acyl-enzyme
covalent bond with PBPs abolishing their peptidoglycan cross-
linking activity (Sauvage et al., 2008). As these cross-links are
pivotal for conferring strength and rigidity to both, Gram-
positive and Gram-negative bacterial cell walls, beta-lactams
usually lead to bacteria lysis due to high internal osmotic
pressures.

Exposure to penicillin in cell culture provided the first
evidence for Chlamydia persistence and the first in-vitro models
to study this phenomenon (reviewed in Beatty et al., 1994b).
Under these conditions, EB to RB transition is not prevented
but once in the RB stage, cell division is blocked, inclusions
are small and populated by only a few enlarged RBs (aRBs)
and there is a halt in RB to EB differentiation until the
antibiotic is removed (Galasso and Manire, 1961; Matsumoto
and Manire, 1970; Skilton et al., 2009). Another feature of
penicillin-induced persistence is that the inhibition of cell
division is accompanied by accumulation of 16s rRNA and only
a partial reduction in replication of genomic or plasmidic DNA
(Lambden et al., 2006; Ouellette et al., 2006; Skilton et al., 2009;
Kintner et al., 2014). Remarkably, a detailed video-microscopy
analysis ofC. trachomatis development during penicillin-induced
persistence showed that in the recovery phase, even though
aRBs remain observable inside the inclusion, normal RBs are
generated from them in an asynchronous manner through a
budding-resembling process (Skilton et al., 2009).

A relatively recent study carried out a careful analysis of
the effect caused by beta-lactams on C. trachomatis serovar E
(Kintner et al., 2014). In this study, HeLa cells monolayers were
infected with C. trachomatis exposed to a variety of beta-lactam
antibiotics at physiologically relevant concentrations, including
6 different penicillins (penicillin G, penicillin V, amoxicillin,
ampicillin, carbenicillin, and piperacillin). Addition of any of
the penicillins tested at the time of infection, did not prevent
inclusion formation even at concentrations 100 times higher than
the physiological serum concentration. However, inclusions were
small and contained aRBs. Also, Kintner et al. demonstrated that
if penicillins are added at 24 h post-infection, when inclusions
are already established, the formation of aRBs is induced and
production of infectious progeny is reduced by 95%. Noticeably,

beta-lactams not belonging to the penicillin group, like the
monobactam aztreonam and the cephalosporins ceftriaxone or
cefotaxime, did not seem to affect inclusion size, morphology
or infectious progeny generation, indicating that not all beta-
lactams trigger the same response (Kintner et al., 2014). The
relevance of these observations is that they could mimic clinically
important scenarios that occur when patients asymptomatically
infected with Chlamydia, are prescribed with beta-lactams due to
other concomitant infections.

Chlamydia encode peptidoglycan-synthesizing high
molecular weight PBPs (PBP-2 and PBP-3) and produce
peptidoglycan, indicative that they possess the natural target
of beta-lactam antibiotics (Barbour et al., 1982; Ouellette et al.,
2012; Jacquier et al., 2014; Packiam et al., 2015). Thus, inhibition
of peptidoglycan production, leading to a disruption in cell wall
synthesis, may be a stressing condition that triggers Chlamydia
persistence in presence of these antibiotics.

The molecular basis of Chlamydia response to stress caused by
exposure to penicillins is still poorly characterized (Figure 2A).
According to a transcriptional analysis carried out by Dr.
Byrne’s group in C. pneumoniae during penicillin-induced
persistence, the late genes omcB and hctB, involved in RB to
EB differentiation, are not induced even at 48 h post-infection,
strongly suggesting that in this condition the expression profile
resembles that of the RB stage (Ouellette et al., 2006). Another
work revealed that late gene transcription is also downregulated
during penicillin-induced persistence in C. psittaci, together
with upregulation of the stress response genes grpE and
groES (Goellner et al., 2006). Additionally, the stress response
protease/chaperone HtrA and its gene, which is conserved across
Chlamydia species, have been reported to be increased during
penicillin-induced persistence (Huston et al., 2008; Di Pietro
et al., 2012). In line with this, treatment with the HtrA inhibitor
JO146 severely impairs production of infectious progeny during
recovery from penicillin-induced persistence in C. trachomatis,
suggesting that this protease plays a role in the reversion process
(Ong et al., 2013).

A relevant question is: can observations emerged from in-
vitro models of penicillin-induced persistence be extrapolated
to events occurring in infected humans? Dr. Schoborg’s
group reported the first animal model to study Chlamydia
persistence (Phillips Campbell et al., 2012). By infecting the
female genital tract of amoxicillin-treated BALB/c mice with
C. muridarum, these investigators made several significant
findings: (i) C. muridarum enters a viable non-infectious state
in the genital tract; (ii) accumulation of chlamydial pre-16s
rRNA is not affected; (iii) aRBs are observed in the infected
tissue and (iv) shedding of infectious particles peaks upon
termination of amoxicillin treatment. These findings indicate
that Chlamydia persistence, as defined in cell culture, can
occur in-vivo upon amoxicillin treatment. Another relevant
observation is that amoxicillin-induced persistence in mice
infected intravaginally with C. muridarum, results in increased
failure of subsequent treatment with the first choice anti-
chlamydial antibiotic azithromycin (Phillips-Campbell et al.,
2014). These observations are consistent with previous results
obtained in cell culture infection models (Wyrick and Knight,
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FIGURE 2 | Model for the molecular basis of Chlamydia evasion of antimicrobial activity elicited by penicillins and IFNγ. (A) Penicillins inhibit crosslinking of the

peptidoglycan (PG), leading to disruption of cell wall synthesis. Chlamydia respond to this stress by downregulating genes required for RB to EB transition (omcB,

hctB), halting cell division and adopting an aberrant, enlarged morphology (aberrant RB) (Goellner et al., 2006; Ouellette et al., 2006). Genes associated to stress

responses are upregulated (grpE, groES, htrA) (Goellner et al., 2006; Di Pietro et al., 2012). During this stage, the bacteria is able to “persist” for long periods of time in

a viable but non-cultivable state and infectious progeny generation is abrogated. When penicillin is removed, Chlamydia exit persistence and resume generation of

normal RBs, which may originate from aRBs through a budding-like process. The protease/chaperone protein HtrA may participate in reversion from penicillin-induced

persistence (Huston et al., 2008; Ong et al., 2013). Reported processes/genes/proteins up- and down-regulated during penicillin-induced persistence are indicated.

Data based on transcriptional or protein studies are highlighted in purple and red, respectively. (B) IFNγ is a cytokine with key roles in host defense against pathogens,

including Chlamydia. IFNγ activates indoleamine-2,3-dioxygenase (IDO), causing the degradation of tryptophan (Trp) into kynurenine (K) and triggering nutritional

stress in Chlamydia. In response to this stress, Chlamydia enters into a persistent state analogous to what is observed with penicillin. In this state, Chlamydia alters

gene transcription and expression in order to modify key biological processes and warrant survival. Reported processes/genes/proteins up- and down-regulated

during IFNγ-induced persistence are indicated. Data based on transcriptional studies (Byrne et al., 2001; Belland et al., 2003; Goellner et al., 2006; Ouellette et al.,

2006) is indicated in purple. Data based on protein studies (Molestina et al., 2002; Mukhopadhyay et al., 2006; Ouellette et al., 2006; Østergaard et al., 2016) is

shown in red. Data supported by both transcriptional and protein studies is indicated in green. Data based on global activity of the translation pathway is shown in

blue. Note that RB to EB differentiation transcripts have been found increased and decreased in different studies, as discussed in the manuscript. trpB (tryptophan

synthase), ctl0225 (a predicted small neutral amino acid transporter) and ctl0694 (a hypothetical oxidoreductase) have been found to play a role in reversion from

IFNγ-induced persistence in C. trachomatis (Muramatsu et al., 2016).

2004). Then, it seems a reasonable clinical consideration that
penicillin-induced Chlamydia persistence may confer increased
resistance to other antibiotics, including first choice anti-
Chlamydia drugs.

CHLAMYDIA PERSISTENCE AS A
RESPONSE TO IFNγ

IFNγ is a pleiotropic cytokine secreted primarily by T-
lymphocytes and NK cells, with key roles in regulation of
immune responses and in host defense against pathogens,
including Chlamydia (McClarty et al., 2007; Billiau and Matthys,
2009). Initially identified as an antiviral factor (Wheelock, 1965),
IFNγ exerts antimicrobial effects on Chlamydia (reviewed in

Beatty et al., 1994b). Byrne et al. (1986) found that IFNγ

restricted C. psittaci growth in human uroepithelial T24 cells
and that this effect was due to increased catabolism of the
essential amino acid tryptophan within the host cell. They
proposed that depletion of intracellular pools of tryptophan was
achieved by IFNγ-mediated increased activity of indoleamine-
2,3-dioxygenase (IDO), a catabolic enzyme that degrades
tryptophan into N-formylkynurenine and kynurenine. Indeed,
increased IDO activity and tryptophan depletion are responsible
for IFNγ-induced growth inhibition of C. trachomatis serovar
B in human conjunctival epithelial cells (Rapoza et al., 1991).
Soon after, a seminal paper from Beatty and collaborators
discovered that in presence of IFNγ, C. trachomatis leads
to a persistent infection “characterized by the development of
noninfectious atypical chlamydial forms, from which infectious
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progeny could be recovered only when IFNγ was removed from
the culture system” (Beatty et al., 1993). A follow-up study
confirmed that IDO-mediated deprivation of tryptophan was
responsible for IFNγ induction of a persistent C. trachomatis
form in cell culture (Beatty et al., 1994a). Similar observations
have been made in C. pneumoniae (Pantoja et al., 2001). All
these findings are consistent with the idea that Chlamydia
undergo persistence to evade the antimicrobial effects caused
by IFNγ-mediated starvation of an amino acid for which these
bacteria are auxotrophs. Independently of tryptophan starvation,
antimicrobial effects triggered by IFNγ during Chlamydia
infection include GTPases of the Immunity Related GTPases
(IRG) and Guanylate Binding Proteins (GBP), which can restrict
the replication of C. trachomatis in mouse and human cells,
respectively (Bernstein-Hanley et al., 2006; Tietzel et al., 2009).

It is of great interest to understand the molecular basis of
Chlamydia persistence in response to IFNγ (Figure 2B). Belland
et al. cataloged C. trachomatis serovar D transcripts that were
up- and down-regulated in an IFNγ-induced persistence and
reactivationmodel of infection inHeLa cells (Belland et al., 2003).
These investigators showed that in presence of IFNγ, Chlamydia
genes involved in tryptophan biosynthesis, DNA repair and
recombination, phospholipid metabolism, stress response, and
protein translation were up-regulated. On the other hand, genes
related to proteolysis, peptide transport, the TCA cycle, cell
division and RB to EB differentiation were down-regulated. In
addition, the early gene euo, which has been proposed as a
repressor of late genes transcription (Rosario and Tan, 2012),
was found highly upregulated during IFNγ-induced persistence
both in C. trachomatis and C. pneumoniae (Belland et al.,
2003; Ouellette et al., 2006). Notably, the transcriptome of
C. trachomatis during IFNγ-induced persistence is in agreement
with well-established properties attributed to aRBs: a halt in
cell division and infectious progeny generation. Similarly, work
from Byrne et al. revealed that genes involved in chromosome
replication, repair and recombination are transcribed during
IFNγ-induced persistence in C. pneumoniae-infected HEp2 cells,
while genes related to cytokinesis are downregulated (Byrne et al.,
2001). One transcriptional study reported that genes involved
in RB to EB differentiation were upregulated in C. pneumoniae
in presence of IFNγ (Ouellette et al., 2006). Even though this is
not in full agreement with previous reports (Belland et al., 2003;
Goellner et al., 2006), the apparent inconsistencies may be due to
different normalizationmethods (i.e., 16s rRNA vs. gyrA vs. DNA
content) used for transcription data analysis (Schoborg, 2011).

Because transcriptional data not always correlate with actual
protein expression profiles, proteomic studies can be very useful
tools to investigate the molecular basis of Chlamydia persistence.
As shown in Figure 2B, early proteomic analysis carried out in C.
pneumoniae during IFNγ-induced persistence, found increased
levels of proteins involved in stress response, nucleotide
and amino acid biosynthesis, DNA replication, transcription,
translation, glycolysis, type III secretion, and cell envelope
(Molestina et al., 2002; Mukhopadhyay et al., 2006). More, a
recent paper used a label-free proteomics approach and carried
out the first comprehensive comparison of C. trachomatis serovar
D EBs, RBs and IFNγ-induced aRBs (Østergaard et al., 2016).

Remarkably, this study uncovered that the proteome of aRBs
was very similar to that of the RBs, except that they expressed
very high levels of tryptophan synthase (subunits TrpA and
TrpB), which can transform indol into tryptophan. This finding
is in agreement with previously mentioned transcriptomic
data (Belland et al., 2003). Interestingly, it has been proposed
that tryptophan synthase, not functional in ocular serovars,
could provide a salvage pathway against tryptophan depletion
for C. trachomatis genital serovars, given their co-existence
with indol-producing microbiota in the female genital tract
(Caldwell et al., 2003; Aiyar et al., 2014). This is in line
with evidence showing that TrpB from C. trachomatis genital
serovars, is capable of utilizing indole for the biosynthesis of
tryptophan (Fehlner-Gardiner et al., 2002). Indeed, a trpB null
mutant of C. trachomatis serovar D can be fully recovered
from IFNγ-induced persistence upon addition of tryptophan
but not indole (Kari et al., 2011). Another notable finding
of the mentioned proteomic study, was that aRBs expressed
overall lower levels of proteins with high tryptophan content,
reflecting at a proteome level, the struggle to resist tryptophan
restriction imposed by IFNγ (Østergaard et al., 2016). This
is in agreement with the observation that the Chlamydiaceae
have undergone evolutionary selection for proteins with lower-
than-average tryptophan content (Down-Trp selection), which
may operate during the persistent state triggered by tryptophan
starvation (Bonner et al., 2014). Ouellette and coworkers found
that during IFNγ-induced tryptophan restriction, C. pneumoniae
accumulates Trp-codon rich transcripts, presumably as a result
of ribosome stalling on Trp-codons (Ouellette et al., 2016, 2018).
This could partially explain a previous report showing that in
response to tryptophan restriction, C. pneumoniae undergoes
increased transcription but inefficient translation, pointing out
to an apparent uncoupling of these two pathways (Ouellette et al.,
2006).

Because Chlamydia have been historically refractory to
genetic manipulation, the role of individual genes involved
in persistence is ill-defined. Only recently, tools have become
available for Chlamydia genetic analysis, though they are still
limited compared to other bacteria (reviewed in Bastidas and
Valdivia, 2016). To date, there is only one report of a systematic
approach to elucidate the genetic basis of Chlamydia persistence
(Muramatsu et al., 2016). Muramatsu et al. used a collection
of ∼2,000 GFP-labeled, chemically-mutagenized C. trachomatis
LGV-L2 strains, to screen for mutants exhibiting a reduced ability
to reactivate from IFNγ-induced stress. The screening consisted
on infecting in parallel HeLa cells pre-treated or not for 24 h with
10 ng/mL, with each individual mutant. The untreated condition
was fixed at 24 h post-infection, while de IFNγ-treated were
instead washed off the cytokine and left to recover for additional
24 h in culture media supplemented with indole before fixation.
By comparing the ratio of the number of inclusions formed
in untreated/recovery for each mutant, 6 mutants sensitive to
IFNγ-induced persistence were identified and for 3 of them
the causative mutation was elucidated. These were missense
mutations in TrpB (subunit of tryptophan synthase), CTL0225 (a
predicted small neutral amino acid transporter), and CTL0694 (a
hypothetical oxidoreductase). Interestingly, all of these mutants
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were able to enter into a persistent state in presence of IFNγ and
failed to reactivate upon addition of tryptophan or indole, yet
displayed different sensitivities to IFNγ (Muramatsu et al., 2016),
highlighting the relative impact of the mutations on protein
function and the potential involvement of different Chlamydia
genes in persistence.

A general principle for the biomedical relevance of cell culture
experiments, is that conditions should resemble the in-vivo
situation as much as possible. In this context, a study investigated
the influence of oxygen levels on IFNγ-induced persistence (Roth
et al., 2010). Roth and collaborators reasoned that in the female
genital tract, C. trachomatismust survive under hypoxia (oxygen
concentrations ≤5%), while most of the in-vitro experiments
are carried out in normoxia. According to this study, switching
the oxygen levels from normoxia to hypoxia in human fallopian
tube cells in-vitro and ex-vivo, correlated with a reduction in the
anti-chlamydial activity of IFNγ against genital but not ocular
serovars of C. trachomatis and with decreased levels of IDO
under hypoxia (Roth et al., 2010). Another study from the same
group later evaluated the activity of first-line anti-chlamydial
antibiotics against C. trachomatis L2 in HeLa cells during IFNγ-
induced persistence in hypoxia vs. normoxia (Shima et al., 2013),
and observed that the efficacy of subinhibitory concentrations
of azithromycin against C. trachomatis was moderately reduced
under hypoxia. Considering that the cellular concentrations
of oxygen were not measured and thus distinctions between
anoxic and hypoxic states within the cells cannot be made,
the physiological relevance of these observations is not clear.
However, these studies highlight that experimental conditions
used to investigate Chlamydia persistence in-vitro should be
carefully considered, as they may have profound effects on the
results, their interpretation and extrapolation for the in-vivo
situation.

IN-VIVO IMPLICATIONS OF CHLAMYDIA

PERSISTENCE

During infection of their hosts Chlamydia encounters stress
imposed by immune responses or eventually by administration
of antimicrobial agents. In light of the experimental findings
discussed above, it is reasonable to speculate that Chlamydia
can enter a persistent state in-vivo. However, the evidence is so
far indirect. Evidence that persistence may occur in-vivo, comes
from direct observation of aRBs in infected tissues. For instance,
by means of immunogold electron microscopy, aRBs have been
observed forC. pneumoniae in atherosclerotic tissue from human
patients (Borel et al., 2008). Similarly, aRBs were detected for
C. suis by immunohistochemistry and immunogold electron
microscopy in the gut of naturally infected pigs (Pospischil et al.,
2009). Also, C. muridarum aRBs were present in endocervical
cells using a female genital tract model of infection in mice
(Rank et al., 2011; Phillips Campbell et al., 2012). Moreover, Dr.
Quayle group identified the presence of aRBs in endocervical
cells obtained from a woman with C. trachomatis cervicitis
(Lewis et al., 2014). While the observation of aRBs in infected
tissues does not necessarily indicate a persistent infection, the

widely demonstrated ability of Chlamydia to cause persistent,
asymptomatic, chronic infections and apparent reactivations, is
strongly suggestive. A clinical observation that further support
the case for Chlamydia persistence in-vivo is post-gonococcal
urethritis. A proportion of patients treated with penicillin
for gonorrhoeae in the 60’s and the 70’s developed post-
gonococcal urethritis caused by C. trachomatis (Richmond et al.,
1972). It has been reported that C. trachomatis is recovered
in 11–50% of patients with gonococcal urethritis, and 75–
100% of these patients may develop post-gonococcal urethritis
after treatment with an antibiotic ineffective for Chlamydia,
like the beta-lactams penicillin or cephalosporins (Augenbraun
and McCormack, 2015). While beta-lactams may succeed in
clearance of Neisseria gonorrhoeae, they may only induce
a persistent state in Chlamydia. Therefore, post-gonococcal
urethritis could be conceived as the clinical manifestation of
Chlamydia reactivation after completion of the beta-lactam
regime in gonorrhoeae patients co-infected with C. trachomatis.
Another indirect evidence of reactivation is the repeated
observation of apparently healed immigrants from endemic
areas undergoing active trachoma decades after, in absence
of an identifiable re-exposure (Thygeson, 1963). Similarly,
based on mice models of infection, C. pneumoniae can be
reactivated in the lungs weeks after the initial inoculation upon
treatment with cortisone, but not in immunocompetent animals,
strongly suggesting that anti-Chlamydia immune responses
trigger these bacteria to enter into a persistent state in
the infected tissues (Malinverni et al., 1995; Laitinen et al.,
1996). Also, the detection of Chlamydia antigens, DNA or
RNA in clinical specimens in the absence of cultivability, is
consistent with a persistent state occurring in-vivo (reviewed
in Hogan et al., 2004). For instance, C. trachomatis antigens
or DNA were identified in biopsy samples from culture-
negative women with post-infectious tubal infertility, even
after antibiotic treatment (Patton et al., 1994). In addition,
C. trachomatis DNA and RNA have been detected weeks
after cultures were already negative in a trachoma model
of infection based on cynomolgus monkeys (Holland et al.,
1992). However, it should be noted that detection of relatively
stable molecules such as DNA or protein antigens does not
necessarily indicate the presence of viable organisms and thus
is not conclusive evidence of a persistent phenotype in-vivo.
Importantly, a recent whole-genome sequence analysis from
clinical samples/isolates presented compelling evidence that the
same strain of C. trachomatis can persist for 3–5 years in the
genital tract of women, regardless of regular antibiotic treatment
and with none to few genomic mutations accumulated (Suchland
et al., 2017). This indicates that Chlamydia’s strategy to persist
in the host cell is not mutational, but may instead rely on the
orchestration of a specific response oriented to avoid pathogen
elimination.

If persistence occurs in-vivo, a likely scenario is that a fraction
of Chlamydia bacteria enters into a persistent state in the host in
response to unfavorable growth conditions, like those arisen from
antibiotic treatment or from IFNγ produced by immune cells in
response to infection.Chlamydia persistencemay then contribute
to the establishment of chronic and minimally symptomatic
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infections that are considered critical for long term tissue damage
and pathogenesis of chlamydial diseases.

PERSPECTIVES AND CONCLUDING
REMARKS

The ability of Chlamydia to enter a persistent state in response
to antimicrobials in cell culture has been studied for decades.
This persistent state invariably includes a reversible interruption
in the productive cycle, but the precise mechanism required
to achieve this vary with the different inducers. Experimental
models of Chlamydia persistence in cell culture are helpful only
if they can be extrapolated to in-vivo infections. To date the in-
vivo occurrence of a persistent state(s) in Chlamydia resembling
that observed in cell culture is consistent with morphological
and clinical observations. For activation of a persistence program
in Chlamydia, the pathogen should undergo a series of events
including: sensing the stress condition, activation of gene
expression programs that enable entry into persistence, staying
persistent, and ultimately sensing favorable conditions that
enable exit from persistence to resume normal replication and
transition into infectious EBs. Many critical questions regarding
each of these steps remain. How is damage sensed? How is
persistence regulated? How does Chlamydia enter into and exit
from persistence? What are the genetic basis for persistence in
the context of different stimuli and interactions with the host?

What chlamydial genes are required for persistence and how do
they participate? Can we intervene in order to preventChlamydia
entry or exit from persistence?What are the consequences of such
interventions for Chlamydia pathogenesis in-vivo? Emerging
tools for genetic manipulations in Chlamydia have started a new
and exciting time for Chlamydia research, opening the possibility
to address those and other relevant questions about Chlamydia
persistence.
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