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Objectives: Previous studies have reported that the gut microbiome has an important
link with the development of hypertension. Though previous researches have focused
on the links of gut bacteria with hypertension, little has been known about the linkage
of gut viruses to hypertension and the development of hypertension, largely due to the
lack of data mining tools for such investigation. In this work, we have analyzed 196 fecal
metagenomic data related to hypertension aiming to profile the gut virome and link the
gut virome to pre-hypertension and hypertension.

Design: Here, we have applied a statistically sound method for mining of gut virome
data and linking gut virome to hypertension. We characterized the viral composition and
bacterial composition of 196 samples, identified the viral-type of each sample and linked
gut virome to hypertension.

Results: We stratified these 196 fecal samples into two viral-types and selected 32
viruses as the biomarkers for these groups. We found that viruses could have a superior
resolution and discrimination power than bacteria for differentiation of healthy samples
and pre-hypertension samples, as well as hypertension samples. Moreover, as to the
co-occurrence networks linking viruses and bacteria, we found increasingly pervasive
virus-bacteria linkages from healthy people to pre-hypertension people to hypertension
patients.

Conclusion: Overall, our results have shown ample indications of the link between
human gut virome and hypertension, and could help provide microbial solutions toward
early diagnoses of hypertension.

Keywords: hypertension, gut virome, virus-bacteria linkages, viral-types, diagnose

INTRODUCTION

Viruses are ubiquitous, highly abundant and diverse components of microbial communities of our
bodies and natural environments (Rodriguez-Brito et al., 2010), which could shape the taxonomical
and functional composition of the microbial community by altering the fitness of hosts and
promoting genetic exchange (Andersson and Banfield, 2008). Previous studies have reported that
the human viromes consist of viruses that infect eukaryotic cells, as well as prokaryotic cells
(Handley, 2016) and they could integrate their genome in the host genome or drive continuous
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activation of the immune system due to chronic infection
(Virgin, 2014). Furthermore, it is estimated that viral infections
contribute to 15-20% of all human cancers such as prostate
cancer, breast cancer, and brain cancer (McLaughlin-Drubin
and Munger, 2008). It is becoming clear that viruses play a
critical role in different ecosystems and it is essential to develop
tools to discover and characterize more viruses, especially in
human gut microbial community. Current tools for identifying
virus and provirus sequences have been developed, including
Phage_Finder (Fouts, 2006), Prophinder (Lima-Mendez et al.,
2008), PHASTEST (Arndt et al., 2017), PhiSpy (Akhter et al,
2012), VirSorter (Roux et al., 2015), VirFinder (Ren et al., 2017),
as well as general-purpose tools such as Kraken (Wood and
Salzberg, 2014). Among these tools, VirSorter, VirFinder, and
Kraken are the most recent programs for identifying the viral
sequences in assembled metagenomics data and these tools have
significantly better rates of detecting true viral contigs (Ren et al.,
2017).

The human microbiome consists of more than 100 trillion
microbial cells that reside mainly in the gut and form large
communities (McKenna et al., 2008; Qin et al., 2010; Glasner,
2017), and the gut microbial community is an inalienable part
of the host. In recent decades, the potential roles of the gut
microbiome have been demonstrated, revealing that the gut
microbiome has a profound influence on the immune system
(Hooper et al., 2012) and the central nervous system (Sharon
etal., 2016). Many links between the gut microbiome and various
diseases also have been verified, including liver cirrhosis (Qin
et al., 2014), type 2 diabetes (Qin et al., 2012; Wu et al., 2017),
colorectal cancer (Feng et al., 2015), obesity (Ley et al., 2006;
Thaiss et al., 2016) and hypertension (Li et al., 2017; Yan et al,,
2017). Based on these studies, several microbial taxonomical
biomarkers and functional biomarkers specific to these diseases
have been discovered, and fecal microbiota transplantation is
being applied as a therapeutic strategy to treat specific diseases
such as inflammatory bowel disease (IBD; Anderson et al.,
2012). However, most existing microbiome studies are focused
on bacteria and archaea, and filter out informatics on viruses, yet
viruses have been shown to be important in shaping the human
microbiome and the human host (Carding et al., 2017; Nikolich-
Zugich et al., 2017). Thus, the analyses of virome, a “dark matter”
in the microbial community, have become critical. Among many
issues associated with studying human viruses, understanding the
role of the gut virome in the development of diseases is a priority.

The importance of this problem can be appreciated
by considering the relationship between the virome and
hypertension, which is a global public health problem and affects
about 31% of the worldwide population. Previous studies have
reported that primary pulmonary hypertension is associated with
human immunodeficiency virus infection (Opravil et al., 1997;
Barnett and Hsue, 2017) and alterations of the gut microbiota
have played an essential role in the development of hypertension
(Lietal., 2017; Yan et al., 2017), based on the metagenomic data
from healthy individuals and hypertension patients. However,
due to the limitations of identifying the viruses, the analysis of
viral sequences, which have been estimated to comprise 4-17%
of gut metagenomic data (Minot et al., 2011), was quite limited.

Hence, a comprehensive analysis of the alterations of viruses in
the gut microbiota, especially the links among healthy people,
pre-hypertension people and hypertension patients, and the
association between viruses and bacteria, is a priority for a more
complete understanding of the underlying mechanisms for
hypertension.

This study is aimed to better understand the alterations of
the gut virome, especially for bacteriophages, among healthy
people, pre-hypertension people, and hypertension patients, to
judge whether viruses could be selected as sensitive biomarkers
for diagnosing hypertension, and thus to comprehend the
mechanism of the development of hypertension from a viral
perspective. Hence, we selected the metagenomic data from a
recent hypertension study, which reported that the novel causal
role of the gut microbiota based on the metagenomic analysis
of fecal samples from 196 individuals, and applied a statistically
sound method for mining of gut virome data and linking viral
alterations with healthy people, pre-hypertension people, and
hypertension patients. This research was mainly guided by the
following scientific questions: (i) How does viral diversity differ
between different groups? (ii) Which viruses are enriched in
different groups and can be selected to differentiate the stage of
hypertension? (iii) How does the discrimination power of viruses
compare to bacteria for identifying hypertension in patients?
(iv) What are the virus-bacteria relationships represented by
networks at different stages of hypertension?

MATERIALS AND METHODS

Data Description

The metagenomic data used in this study were obtained
from a human hypertension study (PRJEB13870) (Li et al,
2017). A total of 196 fecal samples were collected from
196 individuals of a cohort study focusing on a community
from Kailuan, China, where 11 hospitals participated in the
collection of these samples and conduction of the physical
examinations (Li et al., 2017). Based on the systolic blood
pressure (SBP) and diastolic blood pressure (DBP) information
of hosts, Li et al. divided these fecal samples into three groups,
namely, healthy controls (Control, SBP < 125 mmHg and
DBP < 80 mmHg for untreated subjects, 41 samples), pre-
hypertension persons (pHTN, 125 mmHg < SBP < 139 mmHg or
80 mmHg < DBP < 89 mmHg, subjects without antihypertensive
treatments, 56 samples) and hypertension patients (HTN,
140 mmHg < SBP, or 90 mmHg < DBP patients without
antihypertensive treatments, 99 samples) (Li et al., 2017). In
this study, we downloaded the pre-filtered metagenomic data
of 196 samples, which had the host genome data removed
and pre-controlled the quality of these data. Based on the
original information of samples, we renamed these samples and
assembled the high-quality paired-end reads.

Assembly of the Human Gut

Metagenomic Data
In this study, due to the hardware limitations for metagenome
assembly, to obtain more information on the virome, we
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randomly chose metagenomic datasets of 60 samples out
of 196 samples, including 20 samples from healthy controls
(C1-C20 samples), 20 samples from pre-hypertension persons
(P1-P20 samples) and 20 samples from hypertension patients
(HI-H20 samples), to conduct cross-assembly. MEGAHIT
v1.1.1-2-g02102e1 (Li et al, 2016) was applied to cross-
assemble these 60 samples using option —meta-large and with
a k-mer list of 27, 37, 47, 57, 67, 77, 87, 97, 107, 117,
and 127. To achieve a high prediction accuracy for viral
sequences, contigs longer than 1,000 bp were kept for further
analysis. Ultimately, we obtained 525,986 contigs, which had
an average N50 length of 4,152 bp and ranged from 1,000 to
374,762 bp.

Taxonomic Annotation and Abundance

Profiling of Virus

In this work, we chose Kraken to predict viral sequences from
all contigs and annotate the taxonomy of each viral sequence
against its virus database (version: October 2017). These viral
sequences were used to construct viral databases for calculating
the viral composition of 196 fecal samples. Contig coverage
(Reads Per Kilobase per Million mapped reads, RPKMs) was
calculated by mapping reads to each sequence of the viral
database with Bowtie2 (Langmead and Salzberg, 2012) using
default settings and normalized by contig length and number
of mapped reads in each sample for all 196 fecal samples.
Averaged RPKM for each virus was calculated and normalized
in each sample to obtain the relative abundance of each
virus.

Taxonomic Identification and Abundance

Profiling of Bacteria

To obtain the bacterial composition of the 196 fecal samples,
firstly, we removed the reads that mapped to viral sequences
with Bowtie2 (Langmead and Salzberg, 2012) from each sample’s
raw data to construct the dataset of these reads. Secondly, these
datasets were used to profile the community structure of samples
and bacteria information with metaphlan2 (Truong et al,
2015) using the option “~ignore_viruses,” “~ignore_eukaryotes,”
and “-ignore_archaea.” Finally, the bacterial composition of
samples was merged with the “merge metaphlan_tables.py”
command.

Rarefaction Curve and o Diversity of
Sample

Based on the relative abundance of viral contigs and viruses,
rarefaction analyses were performed to discriminate whether
we obtained the majority of the viral contigs and viruses
from these fecal samples. For 196 samples, we calculated the
count of shared viral contigs/viruses and all viral contigs/viruses
between every two samples, and then plotted by R (version
3.4.3). To estimate the virus richness of 196 fecal samples, we
calculated the o diversity using Shannon index, Simpson index,
Pielou index, and the number of viruses of each sample and
compared these indexes among different groups based on viral
composition.

Viral-Type Analysis Based on the Viral
Composition

Similar to the enterotypes for bacteria in the microbial
community, we proposed viral-types, which determined the
community type of sample based on the viral composition. In
this work, we analyzed and visualized the viral-type of the sample
using the R packages “BiotypeR” (version: 0.1.3) and “ade4”
(version: 1.7-10). Specifically, the viral-type of each fecal sample
was analyzed with the PAM method using the relative abundance
of viruses in each community (Arumugam et al,, 2011). We
calculated the Jensen-Shannon (JS) distance among samples
based on the viral composition of 196 fecal samples. Silhouette
index, as previously described, was applied to choose the optimal
number of clusters (Lim et al., 2014; Li et al., 2017).

Viral Biomarker Analysis

We manually checked and modified the viral taxonomy
annotations to remove redundant information, and we pre-
filtered the equivocal and high-level taxon. These high-quality
annotations of viruses were selected to identify the biomarkers
with Linear discriminate analysis (LDA) effect size (LEfSe).
Specifically, the relative abundance of viruses (334 viruses) was
imported into the LEfSe pipeline, and the parameters were set
as follows: the alpha value for the factorial Kruskal-Wallis test
(Breslow, 1970) among control, pHTN, and HTN were chosen
to be 0.05. The threshold for the logarithmic LDA score for
discriminative features was set at 2.0.

Identification of pHTN and HTN Samples
Based on Bacterial and Viral

Composition

To identify pHTN and HTN samples, a random forest classifier
was trained and tested using the random forest package (version:
4.6-12) and caret package (version: 6.0-78) in R based on
viral composition and bacterial profile. In order to avoid the
comparison of an uneven number of samples, we conducted
rarefaction analyses of the sample groups, so that the control and
pHTN groups had similar numbers of samples as the HTN group,
respectively. The samples were randomly divided into training
data (80%) and test data (20%). A random forest classifier was
trained on training data and tested on test data for identifying
pHTN and HTN patients from controls, respectively. We used a
10-fold cross-validation within the training data and the average
accuracy was calculated from the 50 random forest classifiers.
Finally, the performance of the model randomly selected from
the 50 classifiers was measured as Area Under the Curve (AUC)
when applied to test data using the pROC package (version:
1.10.0) in R.

Virus-Bacteria Co-occurrence Network
Analysis

To illustrate associations between bacteria and viruses among
healthy people, pre-hypertension people, and hypertension
patients, we selected the top 107 viruses and top 107 bacteria
based on their relative abundances (0.1 and 0.02% was set
to threshold for virus and bacteria, respectively), and focused
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on virus-bacteria linkages (virus-bacteria edge in the network,
which is the only edge for the virus). Their relative abundance
was used to calculate the associations between each bacteria
and each virus using the Spearman correlation coefficient
with the “cor” function in R. Likewise, all p-values of these
associations were corrected for multiple testing using the
Benjamini and Hochberg FDR-controlling procedure (Benjamini
et al, 2006). Subsequently, the cutoff of the correlation
and the FDR-corrected p-value were set at 0.5 and 0.05,
respectively. The igraph package (version: 1.1.2) in R was applied
to calculate the degree distribution and node betweenness,
as well as the network natural connectivity. The entropy
of each network was calculated based on the node degree
by the entropy package (version: 1.2.1) in R. Finally, the
significant associations were imported to Cytoscape (Cline et al.,
2007) to visualize the viruses-bacteria bipartite networks. The
nodes represent viruses and bacteria, and the edges represent
the positive and negative correlations between bacteria and
viruses.

RESULTS

Viral Diversity of Gut Microbial

Communities

Based on the metagenomic assembly, we obtained 525,986
contigs. Among these contigs, 2,707 contigs were identified as
viral sequences and were annotated by Kraken. Altogether, we
obtained 397 viral taxa and calculated the relative abundance
of these taxa. We performed the rarefaction analysis by
calculating the count of shared viral contigs/viruses and all
viral contigs/viruses between every two samples. The rarefaction
curves based on the number of viral contigs (Figure 1A)
and viruses (Figure 1B) have shown that viral contigs and
virus accumulation curves among all samples approached the
saturation plateau, indicating that the majority of viral contigs
and viruses can be detected. We calculated the o diversity
index of each sample and compared these indexes among these
three groups. Specifically, we calculated the Shannon index
and Simpson index based on the viral profile to compare the
results of o diversity indexes, which were calculated based on
bacterial genus profile in a previous study (Li et al, 2017).
Additionally, we calculated the Pielou index and the number
of viruses based on the viral profile, to evaluate the diversity
of viruses among these groups. Unexpectedly, we found that
these indexes have no significant differences among these groups
(Figures 2A-D, Wilcox test, all p > 0.05), which is a pattern
different from o diversity indexes calculated based on bacterial
genera profile (which were dissimilar among groups) (Li et al.,
2017).

Gut Viral-Types

We identified the viral-types to explore differences in viral
composition among the control, pHTN, and HTN groups.
We obtained two viral-types suggested by the silhouette
index, and the Principal Coordinate Analysis (PCoA) using
Jensen-Shannon distance was applied to cluster 196 samples

into two distinct viral-types (Figure 2E). We found that
the most enriched bacteriophage in viral-type 1 is Erwinia
phage phiEaH2 (Figure 2F), while the most enriched
bacteriophage in viral-type 2 is Lactococcus phage 1706. Li
et al. (2017) reported that Prevotella and Bacteroides were
the most enriched genera in enterotype 1 and enterotype 2,
respectively, based on the bacterial composition for the same
datasets.

We found that for samples belonging to different groups,
their proportions vary greatly across different viral-types and
enterotypes. Most of the samples from the control (80.49%),
pHTN (68.68%) and HTN groups (60.71%) were classified as
viral-type 1 (Figure 2G and Supplementary Table S1), while
control (73.17%), pHTN (51.88%) and HTN groups (54.55%)
were classified as enterotype 2 (Li et al., 2017). This indicated that
there are large differences in viral and bacterial profiles between
adjacent stages (control-pHTN, pHTN-HTN).

However, compared with the enterotype of each sample
identified by Li et al. (2017), we found that the enterotype
and viral-type for 37 individuals were not well-matched
(Supplementary Table S1), especially in pHTN (10 mismatches)
and HTN stages (22 mismatches). Moreover, we found that the
proportions of these mismatches in the HTN group (22.22%)
and pHTN groups (17.85%) were higher than that of the control
group (12.20%), indicating an increasing discrepancy between
enterotype and viral-type from control to pHTN to HTN stages.

Control, pHTN, and HTN-Enriched
Viruses in the Gut Microbial Community

and Biomarker Discovery

The enriched viruses were different in the control, pHTN,
and HTN groups compared to healthy individuals. It is worth
mentioning that 99 out of 397 taxa were differentially dominant
in control, pHTN, and HTN groups (Kruskal test, p < 0.05). We
selected the top 29 taxa based on the average relative abundance
(more than 0.7%) and performed a cluster analysis. The cluster
results suggested that the gut viral community structure of pHTN
group is similar to the HTN group, rather than control group
(Figure 3A). Moreover, we observed that the dominant viruses,
mainly focused on bacteriophages, were different. For example,
Streptococcus virus phiAbc2, Salmonella phage vB SemP Emek
and Mycobacterium phage Toto were enriched in control group,
and Cronobacter phage CR3 was dominant in the pHTN group,
whereas Cnaphalocrocis medinalis granulovirus was the major
contributor in the HTN group (Figure 3A) and the link between
C. medinalis granulovirus and hypertension remains unclear.

To better distinguish samples from control, pHTN, and HTN
groups, viral biomarkers were identified among the control,
pHTN, and HTN groups. We further selected 334 high-quality
annotations of viruses and conducted biomarkers analysis by
LEfSe using the control, pHTN, and HTN groups. As a result,
32 viruses were identified as biomarkers for these groups
(Figure 3B) and 22 biomarkers are bacteriophages. Specifically,
eight viruses were identified as biomarkers of the control group,
13 viruses for the pHTN group, and 11 viruses for the HTN

group.
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Comparison of the Discrimination Power
of Viruses and Bacteria for pHTN and
HTN Samples

Based on the viral composition and bacterial composition
of the control, pHTN, and HTN groups, we investigated
their discriminative power using random forest classifiers.
Our results showed that based on the viral composition
alone, the average accuracy for discriminating pHTN and
HTN from controls was 60.88% (30.77-87.5%) and 90.02%
(76.67-100%), respectively, and the average accuracy for
detecting pHTN and HTN samples was 81.55% (66.67-
96.67%, Figure 4A). While based on bacterial composition,
the average accuracy for discriminating pHTN and HTN from
controls was 75.14% (60.38-88.64%) and 81% (63.33-96.55%),
respectively, and the average accuracy for detecting pHTN and
HTN samples was 57.9% (30.77-80.43%, Figure 4B). These
data have shown the superiority of viral composition for
discrimination of samples from the pHTN, HTN, and control
groups.

Virus-Bacteria Co-occurrence Network
Indicated More Targeted Virus-Bacteria

Linkages in Hypertension Samples

Virus-bacteria co-occurrence network analysis was performed
to reveal associations between viruses and bacteria. As for the
associations of virus and bacteria within the different cohorts
(control, pHTN, and HTN), we focused on virus-bacteria linkage
(virus-bacteria edge in network, which is only edge for virus),

as such linkages might reveal stage-specific viruses from the
network perspective.

Several virus-bacteria linkages have exemplified their
pervasive patterns with biologically validated association. One
example: many previous works have reported that Firmicutes and
Bacteroidetes are the two most abundant phyla and profoundly
affect human health and disease in human gut microbiota (Qin
et al., 2010; Levin et al., 2017). In particular, the abundance
of Firmicutes and Bacteroidetes is associated with increased
blood pressure in several models of hypertension (Jose and Raj,
2015; Adnan et al., 2017). We found that three members of the
Bacteroidetes, including Bacteroides xylanisolvens, Bacteroides
uniformis, and Bacteroides thetaiotaomicron, had positive
correlations with Sanguinipes entomopoxvirus (the enriched
virus in control group, Figures 5A-C), which suggested that
Sanguinipes entomopoxvirus could infect these species. The
infection relationship was consistent with a previous study, which
reported that the production of ubb gene from the Bacteroides
genus could assist human cells to mark which proteins need
to be degraded (Patrick et al, 2011). More importantly,
the ubb gene of Bacteroides was obtained from Sanguinipes
entomopoxvirus by horizontal gene transfer (Patrick et al,
2011). We observed that the relative abundance of Sanguinipes
entomopoxvirus from controls (4.33% =+ 6.15%) was higher
than in the pHTN (1.94% =+ 3.4%) and HTN (2.72% =+ 4.26%)
groups. Hence, we speculated that Sanguinipes entomopoxvirus
might play a role in the development of hypertension. Another
example: we also observed that Prevotella copri were dominant
in pHTN and HTN groups, which was consistent with a
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previous study (Li et al., 2017), and a series of viruses, such as
Cercopithecine alphaherpesvirus 9, were positively associated
with it (Figures 5A-C) derived only from the data level.

As to the topological structure of these three virus-bacteria
co-occurrence networks, we found that the pHTN network
comprised 121 nodes and 181 edges (Figure 5C), while the
HTN network consisted of 112 nodes and 182 edges (Figure 5C)
and the control network covered 138 nodes and 225 edges
(Figure 5A). The density of the pHTN and HTN network was
0.0249 and 0.0293, respectively, and the density of the control
network was 0.0238. Degree distribution of the pHTN and HTN
network was similar (Figure 5D). Although the network of
controls comprised more nodes and edges, the network natural
connectivity of the control group was more fragile than the HTN
group (Figure 5E) with up to 20% nodes removed. Conversely,
the network natural connectivity of control was more stable than
HTN with more than 20% nodes removed (Figure 5E). Based
on the degree of nodes of network, we calculated the entropy of
each network, and we found that the entropy of control network
(6.56) was higher than that of pHTN (6.24) and HTN (6.15),
which indicated that the randomness of possible virus-bacteria
interaction decreases, yet there is an increase of linkage of virus
to bacteria. The number of virus-bacteria linkages (the number
of viruses that only have one virus-bacteria edge in the network)
increased from 16 in the control group, to 25 in the pHTN group,
and 21 in the HTN groups (Figure 5F), which indicated that
this linkage has become pervasive across form healthy people to
pre-hypertension people and to hypertension patients.

DISCUSSION

Is the alteration of gut virome associated with the development
of hypertension? To address this question, we studied the viral
composition of fecal samples using a cohort of 196 Chinese
individuals with metagenomic data, and linked the quantitative
alterations of viral compositions among healthy people, pre-
hypertension people and hypertension patients.

In this work, we identified 397 viral taxa, mainly consisted
of bacteriophages, using Kraken and calculated their relative
abundances in 196 fecal samples. The rarefaction accumulation
curves calculated for all samples approached the saturation
plateau, which confirmed that we have obtained most of viral
contigs and viruses from these fecal samples. As to the o diversity,
our results showed that the differences in richness of viruses
among the control, pHTN, and HTN groups were inconspicuous,
although previous work focused on the bacterial fraction of the
fecal microbiome, revealed that the richness of genes and genera
in the pHTN and HTN groups were reduced (Li et al., 2017).

Our results are in concordance with several previous
studies. For example, we identified the viral-types of samples
and compared it with enterotypes. We observed that 196
samples were divided into two viral-types and the dominated
bacteriophages in viral-type 1 and viral-type 2 are Erwinia phage
phiEaH2 and Lactococcus phage 1706, respectively. As to Erwinia
phage phiEaH2, a previous study has reported that its relative
abundance was ranked 12th among the marine viruses identified

in Goseong Bay (Hwang et al., 2016). Nevertheless, to date,
there are few studies on Erwinia phage phiEaH2, and without
mentioning the studies on relationship between it and diseases.
Although Lactococcus phage 1706 has been reported as the
most abundant phage in the human gut (Roux et al., 2014), its
actual role in human gut remains elusive. We found that the
proportion of hypertensive samples belonging to viral-type 1
decreased among the control, pHTN, and HTN groups, while
the proportions of mismatch between enterotypes and viral-types
in the HTN group and pHTN group were higher than that in
the control group. Hence, we speculated that the alterations of
gut viral composition, especially the abundance of Erwinia phage
phiEaH2 and Lactococcus phage 1706, might drive the changes
of viral-type and might be associated with the development of
hypertension.

A previous study has proposed that viral markers might be
used to diagnose diseases and to predict treatment responses
(Ludwig and Weinstein, 2005). In our work, we found that
several viruses have high percentages and great variations among
groups, such as Streptococcus virus phiAbc2, Cronobacter phage
CR3, and C. medinalis granulovirus. These viruses are the first
ones to be mentioned in connection with the development of
hypertension and their functions in gut microbiota are still
unknown. We speculate that these viruses might be involved in
regulating the composition of the microbial community, further
affecting the function of the microbiome, and finally influencing
the development of hypertension.

We found that the average accuracies for discriminating the
HTN samples from the control samples and pHTN samples
based on viral composition were higher than when using
bacterial composition, which suggested that viruses have a
superior resolution and discrimination power for identifying
HTN samples than bacteria. Although the links between viruses
and hypertension remain unclear, it does not prevent us from
selecting viruses as potential biomarkers for diagnosing the stages
of hypertension.

As to the virus-bacteria co-occurrence network, we found
that viral composition had undergone a significant change
across from healthy people to pre-hypertension people and
hypertension patients. Firstly, we noted an increase in the relative
abundance of a number of viruses, including Lactococcus phage
1706, which might drive the change of the viral-type of sample
(mainly changed from viral-type 1 to viral-type 2). Secondly,
and most importantly, alterations in the viral composition led
to changes in the topological structure of the virus-bacteria
co-occurrence network, rendering the virus-bacteria linkage
pervasive. Hence, we speculated that the alterations of gut virome
might be associated with hypertension.

We have to emphasize that there is still a large gap
between human gut virome and hypertension. Our study
was preliminarily focused on bacteriophages and interpreted
the alterations of gut virome with hypertension. One of the
key findings is that even from the same batch of whole
metagenome sequencing data, we have found that viruses
are more advantageous than bacteria for differentiation of
samples from healthy people, pre-hypertension people and
hypertension patients. This has provided us with a better
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understanding of the relationship of microbiome (including
virome) with hypertension. However, we still take it for granted
that both bacteria and virus have played important roles
in the development of hypertension. Thus, to fully address
the role of gut virome on this development process, further
study is required to completely fill the knowledge gap. For
example, the development of virome database would facilitate
more accurate identification and annotation of viruses from
microbiome samples. More cohort studies and more omics data
are needed to better understand the effects of the gut virome
and gut bacteria on the development of hypertension. Finally, a
series of experiments using mouse model are needed if we are
to confirm the linkage between the gut virome, gut bacteria and
hypertension.

CONCLUSION

In this work, we obtained 397 virus taxa from 196 fecal
samples and compared the viral composition among healthy
people, pre-hypertension and hypertension groups. Based on
viral composition, we found that there were two viral-types
among these fecal samples, and viruses could be selected as
biomarkers to distinguish the healthy people, pre-hypertension
people and hypertension patients. Furthermore, we found that
viruses have a superior resolution and better discrimination
power for identifying hypertension samples than bacteria. As
to the co-occurrence networks linking virus and bacteria, we
found increasingly pervasive virus-bacteria linkage patterns in
hypertension patients. Our results have shown ample evidence for
the association of alterations in the gut virome with hypertension.
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