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Filamentous fungi asymptomatically colonize the inner tissues of macroalgae, yet

their ecological roles remain largely underexplored. Here, we tested if metabolites

produced by fungal endophytes might protect their host against a phylogenetically

broad spectrum of protistan pathogens. Accordingly, the cultivable fungal endophytes

of four brown algal species were isolated and identified based on LSU and SSU

sequencing. The fungal metabolomes were tested for their ability to reduce the infection

by protistan pathogens in the algal model Ectocarpus siliculosus. The most active

metabolomes effective against the oomycetes Eurychasma dicksonii and Anisolpidium

ectocarpii, and the phytomixidMaullinia ectocarpii were further characterized chemically.

Several pyrenocines isolated from Phaeosphaeria sp. AN596H efficiently inhibited the

infection by all abovementioned pathogens. Strikingly, these compounds also inhibited

the infection of nori (Pyropia yezoensis) against its two most devastating oomycete

pathogens, Olpidiopsis pyropiae, and Pythium porphyrae. We thus demonstrate that

fungal endophytes associated with brown algae produce bioactive metabolites which

might confer protection against pathogen infection. These results highlight the potential

of metabolites to finely-tune the outcome of molecular interactions between algae,

their endophytes, and protistan pathogens. This also provide proof-of-concept toward

the applicability of such metabolites in marine aquaculture to control otherwise

untreatable diseases.

Keywords: fungal endophytes, macroalgae, protistan pathogens, secondary metabolites, metabolome, molecular

interactions, pyrenocines

INTRODUCTION

Macroalgae (seaweed) are important ecosystems engineers that contribute significantly to primary
production in cold and temperate coastal seas and drive essential functions in nutrient cycling
(Dayton, 1985). Macroalgae represent also a growing economic resource and their aquaculture
has increased over the last decades, in particular for the Asian food market. In the last 25 years,
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the production of Pyropia (nori, formerly called Porphyra), the
alga extensively used as sushi wrap in Asiatic cuisine, has more
than tripled, mostly due to a rapid expansion in China and
Korea. Accordingly, human consumption now represents 99% of
the global algal market which keeps growing at an annual rate
nearing 10% (Food and Agricultural Organization of the United
Nations (FAO), 2014).

Like most eukaryotes, macroalgae are colonized by widely
diverse microorganisms that interact with them throughout
their life cycle (Singh and Reddy, 2015). Bacterial communities
associated with seaweed have profound effects on their growth,
defense, development, and nutrition (Egan et al., 2013). Epiphytic
bacterial communities are essential to the morphological
development of certain green algae (Wichard et al., 2015) and
numerous studies demonstrated the contribution of bacteria to
nutrient acquisition or defense by the production of vitamins
(Wichard and Beemelmanns, 2018). These multiple interactions
led to define macroalgae and their associated microbiota as a
“superorganism,” called the holobiont (Egan et al., 2013).

Within this large microbial diversity, bacteria have been
extensively studied, yet macroalgae also harbor a large diversity
of fungi. The first report of an obligate mycophycobiosis
between the Fucales Ascophyllum nodosum, Pelvetia canaliculata,
and the fungal endosymbiont Stigmidium ascophylli (formerly
Mycosphaerella ascophylli) dates back from more than a century
(Cotton, 1907; Stanley, 1991), and it has been suggested that
the symbiont may protect the algae host from desiccation, while
obtaining nutrients in exchange (Garbary and Macdonald, 1995;
Decker andGarbary, 2005). In the same vein, the fungal symbiont
Turgidosculum ulvae colonizing the inner tissue of the green
alga Blidingia minima can induce dark spots that are never
consumed by the predatory gastropods of the host (Kohlmeyer
and Volkmann-Kohlmeyer, 2003).

Many filamentous fungi can also asymptomatically colonize
the algal inner tissues without causing any apparent damage or
disease (Porras-Alfaro and Bayman, 2011; Debbab et al., 2012).
These asymptomatic marine fungi remain mostly underexplored
and only few reports can be found in the literature (Fries,
1979; Zuccaro et al., 2003, 2008; Harvey and Goff, 2010; Loque
et al., 2010; Jones and Pang, 2012). However, thanks to recent
DNA sequencing efforts, fungal diversity in marine substrata has
been unraveled and now constitutes the second biggest known
marine reservoir of fungi after sponges (Rateb and Ebel, 2011).
This diversity encompasses mutualistic symbionts, opportunistic
pathogens, parasites, and saprophytes (Zuccaro and Mitchell,
2005; Jones and Pang, 2012; Richards et al., 2012; Rédou et al.,
2016). Recent studies related based on culture and molecular
methods showed that ascomycetes are dominant endophytes
of algae (Zuccaro et al., 2003, 2008; Flewelling et al., 2013a,b;
Godinho et al., 2013).

In terrestrial plants, some well-known rhizosphere bacteria
or root-colonizing fungi (i.e., Fusarium or Trichoderma) protect
plants against phytopathogenic fungi or oomycetes (Haas
and Defago, 2005; Terhonen et al., 2016). These mutualistic
symbionts are often closely related to pathogens, and the
beneficial nature of the interaction may depend on factors such
as nutrition (Hiruma et al., 2016), age (Swett et al., 2017), or

temperature (Tellenbach and Sieber, 2012). Similar examples are
known in the phyllosphere; for example, cocoa trees inoculated
with endophytes isolated from healthy leaves showed increased
resistance to a Phytophthora pathogen (Arnold et al., 2003).
The plant-endophyte coevolution hypothesis (Ji et al., 2009)
suggests that endophytes might benefit plants by producing
bioactive secondary metabolites. Indeed, endophytes isolated
from Pezicula were shown to produce fungicidal metabolites
toxic to the pathogens of their host (Arnold et al., 2003).
Conversely, some endophytes may be latent or opportunistic
pathogens when they exhibit virulence factors or produce toxic
metabolites. Hence, the asymptomatic fungal colonization of
plant organs would be the result of a balance between endophytic
virulence and defense responses, preventing the development of
disease (Schulz et al., 1999). In the phycosphere, endophytes are
also able to produce bioactive antimicrobial metabolites (Zhang
et al., 2009; Singh et al., 2015). It is thus plausible to assume
that some secondary metabolites may mediate a mutualistic
relationship, and may have a protective role toward other algae-
associated microbiotes such as pathogens.

Macroalgae, comparable with plants in this context, are indeed
subject to numerous biotic stressors (Gachon et al., 2010; Thomas
et al., 2014) such as viral, bacterial, fungal, oomycete, chytrid
pathogens, and algal colonization in the form of endo- or
epiphytes. In the seaweed industry, the oomycetes Olpidiopsis
porphyrae and Pythium porphyrae are the most destructive
pathogens of laver (Kim et al., 2014). As the industry quickly
develops and intensifies, pathogen outbreaks are becoming a
growing cause of concern. A recent Olpidiopsis outbreak in
Korea was estimated to have reduced sale volumes by a quarter,
notwithstanding the cost of disease management (Kim et al.,
2014; Gachon et al., 2017). Crop protection measures are at best
partially effective, and novel treatments are needed.

In brown algae, the obligate endobiotic oomycetes
Eurychasma dicksonii and Anisolpidium ectocarpii are frequently
found in the field (Sparrow, 1903) and able to infect more
than 45 and 28 brown algal species in laboratory cultures,
respectively (Gachon et al., 2010, 2017). They are amongst very
few eukaryotic pathogens of algae that can be cultivated under
laboratory conditions, including in the filamentous model brown
seaweed Ectocarpus siliculosus.

The parasite Maullinia ectocarpii belongs to the Phytomyxea,
a phylogenetically distant group of Rhizaria, can infect
four different algae orders, including the Ectocarpales and
Laminariales (Maier et al., 2000). This parasite is closely
related to Maullinia braseltonii, an economically significant
pathogen of bull kelp (Murúa et al., 2017). Therefore, these
model pathogens constitute a powerful tool to investigate the
responses of brown algae to infection, as their broad host
range suggests that successful infection involves the overcoming
core, conserved immune defenses. These pathogens can be co-
cultivated with their host and used as a pathosystem to perform
functional bioassays. Compared to the economically-important
kelp sporophytes, Ectocarpus is an excellent model organism, the
microbiota of which can be easily manipulated (Müller et al.,
2008; Tapia et al., 2016). As Ectocarpus is mostly composed of
thin filaments, the commonly found endosymbionts are bacteria.
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The availability of its genome sequence as well as the possible
powerful applications of genomics and genetics allow molecular
and functional investigations (Peters et al., 2004).

Here, we hypothesized that secondary metabolites produced
by endophytic fungi associated to brown algae may protect their
host against several protistan pathogens of seaweeds, i.e., E.
dicksonii, A. ectocarpii, and M. ectocarpii. We thus characterized
the fungal endophytic strains isolated from A. nodosum, P.
canaliculata, Laminaria digitata, and Saccharina latissima and
demonstrated that some of them are able to protect the algal
model E. siliculosus against pathogenic infection through the
production of fungal metabolites belonging to the pyrenocine
series (Figure S1). The pathosystem Eurychasma/Ectocarpus is
one of the very few in vivo bioassay available to test the effect
of substances against protistan pathogens of macroalgae. This
broad-spectrum protection effect of the pyrenocines expanded
to the most economically important oomycetes infecting the red
seaweed Pyropia,Olpidiopsis pyropiae, and P. porphyrae. Notably,
the pyrenocines are active against all tested pathogens but are
also algicidal for the host E. siliculosus at higher concentration.
These findings suggest for the first time that brown algae-derived
endophytes may shape the infection outcome of algal pathogens
by chemically protecting their host through the production of
small chemicals cues.

MATERIALS AND METHODS

Laminariales L. digitata (LD) and S. latissima (SL) and two
Fucales A. nodosum (AN) and Pelvetia caniculata (PC) according
to the sampling data (Table S1). Three individuals of each species
were collected during maxima low tide and processed within 2 h
of collection. Algae organs of 5 cm2 (receptacles, thalli, stipes,
fronds, and holdfasts) were excised and surface-sterilized by
sequential immersion in Ethanol 70% (30 s), in NaOCl 0.1%
(30 s), and washed three times (30 s) in sterilized sea water
(Kjer et al., 2010; Kientz et al., 2011). Algal segments were
plated in multiples onto 4,200 plates representing 10 solid
media (3% purified agar, pH 7.5, 80% sterilized sea water) with
the internal tissues in contact with the medium (about 200
segments per organ, 5,600 per individual, 16,800 per species-
host, 1,400 per medium type) and solidified with 20 g.L−1 of
purified agar (except for PDA). These media included Corn

Flour Agar (Cornflour, La Vie Claire©, 10 g.L−1), Biomalt Agar

1 (Biomalt, Villa Natura©, 1 g.L−1), Biomalt Agar 2 (Biomalt,

Villa Natura©, 20 g.L−1), Potato Dextrose Agar (Potato Dextrose

Agar, Conda©, 20 g.L−1), Yeast Extract Agar 1 (glucose
1 g.L−1, soymeal peptone 0.5 g.L−1, yeast extract 0.08 g.L−1),
Yeast Extract Agar 2 (glucose 0.1 g.L−1, soymeal peptone
0.05 g.L−1, yeast extract 0.01 g.L−1), Malt Extract Agar (malt
extract 20 g.L−1, glucose 20 g.L−1, peptone 1 g.L−1), Tubaki
Agar (glucose 30 g.L−1, yeast extract 1 g.L−1, peptone 1 g.L−1,
K2HPO4 1 g.L

−1, MgSO4 0.5 g.L
−1, FeSO4 0.01 g.L

−1), Provasoli
Agar (Na2 β-glycero PO4.5H2O 50 g.L−1, NaNO3 35 g.L

−1, Iron-
EDTA (Fe(NH4)2(SO4)2.6H2O 0.7 g.L−1, Na2EDTA 0.6 g.L−1),
Vitamin B12 0.01 g.L−1, Thiamine 0.5 g.L−1, Biotin 0.005 g.L−1,
PII trace metals (Na2EDTA 1 g.L−1, H3BO3 1.12 g.L−1,

MnSO4H2O 0.12 g.L−1, ZnSO4.7H2O 0.022 g.L−1, CoSO4.7H2O
0.005 g.L−1), Stigmidium Fries Agar (KNO3 0.72 g.L

−1, K2HPO4

1.2 g.L−1, vitamin solution 1mL (thiamin 100mg.mL−1, biotin
25mg.mL−1), MgSO4.7H2O 0.7 g.L−1, NaCl 10 g.L−1, glucose
20 g.L−1, traces element solution 1mL (CaCl2 100mg.mL−1,
ZnSO4.7H2O 4.43mg.mL−1, MnSO4.4H2O 4.03mg.mL−1,
Ferric citrate C6H5FeO7 4mg.mL−1). Plates were incubated
at 18◦C under ambient light and checked daily for endophytic
growth up to 3 months. The percentages of infection per algal
organ and per algal species were calculated by applying the
following formulae: number of isolates recovered / total number
of algal pieces deposited on agar medium.

Sequencing and Molecular Identification of
Algae-Associated Fungal Endophytes
Fungal genomic DNA was extracted from fresh mycelium grown
on different solid media. Extractions were performed using
dneasy Plant Mini Kit (QIAGEN, Ltd. Crawley, UK) following
the manufacturer’s instructions. Different sets of primers were
used to amplify different marker genes: LROR/LR6 primers
(Vilgalys and Hester, 1990; Vilgalys and Lin Sun, 1994) were used

to amplify a 600 base pair portion at the 5
′
end of the nuclear

ribosomal DNA large subunit, ITS4/ITS5 (White et al., 1990)
were used to amplify the internal transcribed spacer region of
the Ribosomal RNA operon, Bt2a/Bt2b (Glass and Donaldson,
1995) for a part of the 5’ end of the beta tubulin coding
gene when the ITS sequences were not informative enough to
discriminate species of Aspergillus, Penicillium, and Talaromyces.
PCR amplifications were performed according to previous
studies (Lopez-Villavicencio et al., 2010; Langenfeld et al., 2013).
PCR products were purified and sequenced using the dideoxy
termination (Sanger) reaction by Eurofins MWG Operon R© in
Germany. Sequences were assembled with CodonCode Aligner v.
3.7.1. (Codon Code Corporation), checked by visual inspection
of the chromatograms and edited if necessary. Molecular
operational taxonomic units (MOTU) were defined using an
arbitrary but commonly used threshold of 3% intra-specific
variability (Altschul et al., 1990; Nilsson et al., 2008; Tamura
et al., 2013). MOTU were identified using the Blastn alignment
tool (megablast algorithm optimized for highly similar sequences
and excluding uncultured/environmental sample sequences) at
http://blast.ncbi.nlm.nih.gov/Blast.cgi (Altschul et al., 1990). Best
hits were carefully examined and sequences from taxonomic
reference strains (AFTOL, CBS, DAOM, NRRL) were chosen
preferably to attribute species names (≥97% of sequence
similarities). Sequences were aligned using the ClustalW tool
available on MEGA version 6.0 software (Tamura et al., 2013).
The phylogenetic tree was build using the same software,
under a maximum likelihood framework. We used model test
(Posada and Crandall, 2001) to choose the best nucleotide
substitutionmodel, namely GTR+I+G. Support for the branches
was determined from bootstrap analysis of 1,000 resampled
datasets (Figure 1). Sequences were deposited in GenBank
under the accession numbers MH397587-MH397621 (28S) and
MH397623-MH397663 (ITS) (Alignments S1–S3).
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FIGURE 1 | Phylogenetic affinities based on LSU sequences of fungal endophytes isolates from the four brown algae sampled from French and Scottish sites. Isolate

code are indicated in bold and accession numbers from reference sequences are marked in gray. Scale bar indicates 10% estimated sequence divergence.

Frontiers in Microbiology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 3161

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Vallet et al. Microbial Interactions Within Seaweed Holobiont

Microorganisms, Fermentation, Extraction
From the 99 isolates obtained, 70 were able to yield enough
biomass for subsequent experiments. To build the extracts
library, these strains were inoculated in a 12 cm² Petri dish
containing 60mL (agar 1.5%) of their respective isolation
medium. The inoculation was made with spore suspension (100
µL, 104 spores.mL−1) or from crushed mycelial suspension (1
cm² in 2mL of sterile ASW) for non-sporulating fungi. After
incubation at 18◦C for 27 days under a 12 h light:12 h dark
photoperiod, whole fungal culture (mycelium and 60mL agar)
were cut in 1 cm² pieces and extracted by ethyl acetate (3 ×

200mL) for 3 × 1 h under sonication. The organic phases were
filtrated, dried over anhydrous MgSO4 and concentrated under
vacuum to yield crude extracts.

Pyrenocines Isolation and Identification
The fungi Phaeosphaeria sp. AN596H was grown in 5 L
Erlenmeyer flasks (5 × 600mL of TUA inoculated with 5mL
fungal suspension in sterile sterile deionized water) at 18◦C for
27 days under a 12 h light:12 h dark photoperiod. Extraction
was performed with ethyl acetate (analytical grade, 3 × 5 L)
under a mechanical agitation, organic phases were dried by
anhydrous MgSO4, filtered, and concentrated under low vacuum
to yield 2.3 g of a brown solid extract. The extract was
solubilized in methanol and subjected to Sephadex R© LH-
20 column chromatography (Sigma-Aldrich, Germany) with
a 100% methanol elution. The active fraction (82mg) was
further purified by preparative HPLC (Agilent PrepHT, column
Eclipse XDB-C18 21.2 × 150mm, 5µm) under a flow rate of
10mL.min−1 of analytical grade solvents buffer A: 95% water
5% Acetonitrile, B: 95% Acetonitrile 5% water. This lead to
the isolation of pyrenocines A (Rt: 13min, 7mg), B (Rt: 8min,
5.5mg), E (Rt: 14min, 1mg), and pyrenochaetic acid C (Rt:
23min, 1.8mg) along with the novel pyrenocine S (Rt 19min,
2mg). The infrared spectra were recorded on a Shimadzu FTIR-
8400S spectrophotometer. Mass spectra were acquired on an
API Q-STAR PULSAR mass spectrometer (Applied Biosystem,
Bruker). NMR experiments were performed with Bruker advance
III 400 and 600 MHz spectrometers (Wissenbourg, France).
Chemical shifts are expressed in δ (ppm) and were referred to
the residual non-deuterated solvent signal.

Disease Resistance Assays Using
Algae-Pathogen Pathosystems
Female gametophytes of Macrocystis pyrifera CCAP1323/1
infected with either E. dicksonii CCAP 4018/1 or CCAP 4018/3
were maintained in half-strength Provasoli medium at 15◦C
under daylight-type fluorescent lamps (10 µmol.m−2.s−1, 12 h
light:12 h dark photoperiod). Batches of fast-growing cultures
E. siliculosus CCAP 1310/4 were produced in 200mL flasks. E.
siliculosus was harvested in 70µm pore-size nylon mesh (Cell
strainer, Falcon) and equivalent amounts were co-incubated in
six-well polystyrene plates containing infectedM. pyrifera CCAP
1323/1 in 7mL of half-strength Provasoli liquid medium for
16–20 days. The infections with A. ectocarpi CCAP 4001/1 and
Maullinia ectocarpi CCAP1538/1 were performed with the same
hosts during 3 and 10 days of co-incubation, respectively. The

library of fungal extracts (1 µg.mL−1 in dimethyl sulfoxide
DMSO) was evaluated for their antipathogenic effect on the
different pathogens. In all experiments, three controls were
performed and consisted in incubating Ectocarpus alone (control
uninfected), with parasites (control infected), and with addition
of 1% DMSO (control infected + DMSO 1%). The activity
of purified compounds (0.1 µg.mL−1 in 1% DMSO) was
assessed with the same procedure. After samples anonymization,
filamentous E. siliculosus were delicately collected with extra thin
needles (size 10–15, Hemline R©) and briskly transferred in 100
µl of sterile seawater between slide and coverslip. Samples were
maintained in a moist chamber and analyzed in the following
hour. The infection of E. siliculosus filaments by protistan
parasitoids was assessed under a microscope Axiovert2plus Zeiss
(DIC, Plan Apochromat. 20 × 0.75) and pictures taken with
camera Axocam HRc were analyzed with AxioVisio software
(version 4.7). A scoring scale was defined by a (0) score if no
infected cell was observed and (1, 2, 3) scores, respectively, for
1–10, 11–100, or superior to 100 infected cells were observed.
The Ectocarpus samples were then frozen at −80◦C in RNAlater
stabilization reagent (QIAGEN). An identical protocol was used
to evaluate the toxic activity of the pyrenocines on the algae E.
siliculosus alone at 1 µg.mL−1 in 1% DMSO.

Evaluation Against Oomycete Pathogen
Olpidiopsis Pyropia
Gametophytic blades of Pyropia yezoensis infected with O.
pyropiae were maintained in half-strength Provasoli medium at
15◦C under daylight-type fluorescent lamps (10 µmol.m−2·s−1,
12 h photoperiod). The set up for the bioassay was exactly as
those for evaluation against pathogens of E. siliculosus in six-well
plates. The pyrenocines and pyrenochaetic acid C were added to
the culture at the final concentration of 1 µg.ml−1 (in DMSO
1%). Immediately after addition, infected area were observed for
10min with an Olympus BX53 microscope (Olympus, Tokyo,
Japan) and videos were recorded by a mounted Olympus DP72
camera.

Pathogen Quantification With qPCR
The relative abundance of the SSU rRNA for E. siliculosus and
for E. dicksonii was quantified by qPCR using the validated
primers pair (CG64/CG65) and (CG60/CG61), respectively
(Amagata et al., 1998), as described in Gachon et al. (2009).
PCR reactions were carried out in triplicate on a Quantica
thermocycler (Techne-Barloworld) or a LightCycler R© Roche
(version 96SW1.1). The PCR mix for 1 sample contained 10 µL
2x Mesagreen qPCR MasterMix Plus for SYBR R© Assay, 1 µL of
each primer (final concentration 300 nM), 8 µL DNA template
for 20 µL volume total. After a 10min denaturation step at
95◦C, samples were run for 45 cycles of 15 s at 95◦C and 1min
at 60◦C, followed by a dissociation curve. The disease scores
were calculated by subtracting the threshold value obtained in
the DNA amplification curve from the pathogen with that of
the algae amplification curve. The disease scores were compared
statistically by a one-way ANOVA with post-hoc Tukey HSD test.

Frontiers in Microbiology | www.frontiersin.org 5 December 2018 | Volume 9 | Article 3161

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Vallet et al. Microbial Interactions Within Seaweed Holobiont

RESULTS

Diversity and Phylogenetic Relationships
of Filamentous Fungi Associated With
Brown Macroalgae
The diversity of endophytes was evaluated as previously
described for endophytic isolation associated with macro-algae
(Zuccaro et al., 2008), using a stringent disinfection protocol to
avoid surface-associated microbial contamination. Concisely, 99
clonal isolates in total were purified from the 2,100 algae organs
segments (Table 1), of which 30 were isolated from L. digitata
(10 from Scotland and 20 from France), 17 from S. latissima in
Oban, 49 strains from A. nodosum (5 from Scotland and 44 from
France), and 3 from P. canaliculata. The frequency of colonies
retrieved was low, with 99 positive segments over 2,100 incubated
(4.7%), and was irregular, ranging from 0 to 29% per algae organ
and 1–14.6% per algae species (Table 1).

The receptacles were infected only in French A. nodosum
(29% of the segments), while no fungi was isolated from the
receptacles of Scottish Fucales. The most infected algae organs
were the thalli (35 isolates) and holdfasts (32 isolates) but
isolation success was irregular according to the algae species.
Each algal segment yielded only one fungal strain at most.
Among the 99 fungal isolates, 45MOTUwere identified, of which
35 were singletons (Table S2). An overview of phylogenetic
relationships of the algicolous fungal isolates with referent fungal
strains (Table S3) is summarized in a tree reconstructed based
on LSU rDNA sequences alignment (Figure 1). Eurotiomycetes
were further investigated by targeting the Tubuline marker
(SI. Alignment 2) while all the fungal isolates identity was
confirmed by sequencing the ITS region (SI. Alignment 3). The
taxonomic assemblages and prevalence of the fungal classes
recovered from the different host species and per algal organs
were summarized in a mosaic-plot representation (Figure 2).
Two MOTU were found to be predominant in this study,
i.e., an unknown marine ascomycete related to Moheitospora
sp. and the obligate marine fungus Paradendryphiella arenaria,
representing, respectively, 37.4 and 8.1% of the isolates. The
MOTU were phylogenetically diverse; most of them belong to
Ascomycota (93.3%) and very few to Basidiomycota (4.4%) and
Zygomycota (2.2%). The fungal community of the Ascomycota
was dominated by Dothideomycetes (37.8%), with Pleosporales
as the most abundant order, followed by Sordariomycetes
(35.6%), Eurotiomycetes (11.1%), and Leotiomycetes (6.7%)
(Figure 2). In the sequence analysis, the taxonomic diversity
was high but MOTU were mostly present as singletons (16
MOTU/17 isolates from S. latissima in Oban, 9 MOTU/10
isolates from L. digitata in Oban, 16 MOTU/20 isolates from
L. digitata in Roscoff). The exception was in A. nodosum
harvested in Roscoff where a lower diversity was observed
with 8 MOTU identified among 44 isolates. However, most
of the isolates (37 isolates: 14 in the thalli and 23 in the
receptacles) belonged to same MOTU (Table S2). According
to the sequence analysis, the fungi is related with 98–
99% of identity to several Sordariomycetes marine fungi,
Moheitospora fruticosae, Juncigena adarca, and M. chaetosa
previously described by Kohlmeyer (Abdel-Wahab et al., 2010) T
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or Jones (Singh and Reddy, 2015). Only one MOTU, the
obligate marine fungus P. arenaria, was present in all algae
species.

Screen of Fungal Metabolome Inhibiting
Infection by Oomycete and Phytomixid
Pathogens
To assess the functional role of the isolated fungi against
pathogens of seaweed, their extracts were tested against
the pathosystem Ectocarpus/parasites. The brown seaweed E.
siliculosus was thus infected by the oomycetes E. dicksonii, A.
ectocarpii, or the phytomixid M. ectocarpii in presence of the
fungal crude extracts. DMSO 1% was used as control and did not
display any effect on the parasites’ infection. This initial screening
allowed the identification of five fungal extracts (Penicillium
janczewskii LD68H, Phaeosphaeria sp. AN596H, Chaetomium
globosum LD13H, C. globosum SL469 T, and Phoma exigua
SL333T) which inhibit the infection by all the pathogens at 10
µg.mL−1 with a broad-range spectrum (Figure 3). However, the
P. arenaria PC359H extract displayed a specific activity only
against the two strains of E. dicksonii.

Molecular Quantification of Eurychasma

Dicksonii Infection
In order to corroborate the microscopy results, the infection
was also quantified by RT-qPCR for the experiments with E.
dicksonii strains CCAP4018/1 and CCAP4018/3. The relative
abundance of DNA from both host and pathogen was calculated
(Gachon et al., 2009). A low disease score (<20) corresponds
to a high infection while a high score (>20) indicate a lowly-
infected to uninfected algae. A linear regression analysis showed
a positive correlation (R2 = 0.715) between the results obtained
with the microscopy and qPCR evaluation methods (Figure S2).
The results showed that the six most potent extracts unveiled
by the microscopy assessment displayed high disease scores
(Figure 4), confirmed further by one-way ANOVA with post-hoc
Tukey HSD test (F = 10.97, p < 0.001). Hence, the inhibition
against tested algal pathogens by crude extracts obtained from
Phaeosphaeria sp. AN596H, P. janczewskii LD68H, P. arenaria
PC359H,C. globosum SL469T,C. globosum LD13H, and P. exigua
SL333T were confirmed by two independent quantification
methods.

Secondary Metabolites Produced by
Algicolous Fungi Phaeosphaeria sp.
AN596H
With respect to the potent antipathogenic activities, the identity
of active compounds was investigated by a bioassay-guided
fractionation method for the six fungal extracts. We succeed
to recover enough quantity of the active fraction for further
characterization only for the fungi Phaeosphaeria sp. AN596H.
The fungal extract was subjected to successive chromatographic
separation and yielded the pure compounds (1-5) (Figure S3).
These compounds were structurally characterized by spectral
comparison with the literature and belong to the pyrenocines
family (Sato et al., 1979, 1981a,b; Amagata et al., 1998).

Pyrenocines A and B were the predominant compounds isolated,
among the other minor pyrenocines E, C and pyrenochaetic acid
C. The assignment of the absolute configuration of pyrenocines
B and E relied on the comparison of the theoretically calculated
experimental values of optical rotations from the present study
(Figure S3). In the course of this work, a new minor compound
was also characterized and named pyrenocine S (Figure S3).
This compound with the molecular formula C11H15O4 was
deduced from themolecular peak atm/z 211.0942 [M+H]+ (calc.
211.0970) and m/z 233.0792 [M+Na]+ (calc. 233.0790) in high-
resolution mass spectrometry. The 1HNMR spectrum (Table S4,
Figure S4) of 1 showed signals for three methyl groups, including
a triplet at δH 0.95 (3H, J= 7.4Hz, H-10), a singlet at δH

2.20 (3H, H-12), and a methoxy at δH 3.91 (3H, H-11), two
methylene at δH 1.65 (2H, J = 7.4Hz, H-9), and 2.73 (2H,
J = 7.2Hz, H-8) and an ethylenic proton resonating at δH

5.64 (1H, H-3). 13C NMR spectrum of 1 (Table S4, Figure S5)
indicated the presence of five sp3 carbons: three methyls (δC
13.9, 18.2, and 57.4) and two methylenes (δC 18.4 and 47.6).
13C NMR spectrum of 1 also displayed one sp2 methine (δC
88.5, C-3) and five sp2 carbons (including two carbonyls at
δC 165.3 and 202.6, two oxygenated at δC 163.4, and 170.7
and a quaternary at δC 117.4). 1H-1H COSY spectrum was
indicative of a spin system between the both methylenes H-8,
H-9 and the methyl CH3-10 (Figure 5). The HMBC correlations
(Figure 5 and Figure S6) between the methine H-3 and C-4 (δC
170.7)/C-5 (δC 117.4)/C-2 (δC 165.3) as well as the correlations
between the methyl CH3-12 (δH 2.20) and C-6 (δC 163.4)/C-
5 (δC 117.4) suggested the presence of a methyl-pyran-2-one
moiety in the structure. Moreover, HMBC correlation between
methoxy (δH 3.91) and C-4 (δC 170.7) allowed to connect
the methoxy group on C-4. Finally, HMBC correlations of
methylenes CH2-8 and CH2-9 with the ketone C-7 at δC 202.6
ppm as well as the HMBC correlations between H-3 and C-
7 confirm the attachment of the aliphatic chain on C-5 of the
cycle. All these data revealed the structure is a new pyrenocine
for which the name pyrenocine S was proposed. All identified
compounds were thus further tested against the pathosystem
Ectocarpus/parasites.

Antiparasitic Activity of Pyrenocines and
Pyrenochaetic Acid C
To address the activity of the pyrenocines against protistan
pathogens of brown algae, we screened compounds 1-4 for their
potential inhibitory effect on the infection of E. siliculosus by
E. dicksonii, A. ectocarpii, and M. ectocarpii (Figure 6). The
pyrenocines A and B displayed a strong antipathogenic effect
at 0.1 µg.ml−1 (0.4µM) with a broad range spectrum in our
assessment, while the other minor compounds did not have any
effect except pyrenocines E and S active only against the strain E.
dicksonii CCAP 418/3 (Figure 6). These results were confirmed
by the qPCR evaluation for pyrenocine A (one-way ANOVA, F
= 11.91, p < 0.001). It is worth noting that in the course of our
investigation, the pyrenocines were also tested at 10-fold higher
concentration (4µM) and induced the death of algal host cells
(Figure S7).
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FIGURE 2 | Taxonomic assemblages of the fungal classes determined according to the different host-algae species and algal organs. Each class is displayed by a

different color. Height of the bars represents the % of each fungal class according to the host-algae species or the algal organs. Width of the bars represents the total

number of OTUs according to the host-algae species or the algal organs. Codes for host species and algal organs are SL, Saccharina latissima; PC, Pelvetia

canaliculata; LD, Laminaria digitata; AN, Ascophyllum nodosum; F, Frond; H, Holdfast; R, Receptacle; T, Thallus.

FIGURE 3 | Antipathogenic activities of the fungal extracts LD68H (Penicillium janczewskii), AN596H (Phaeosphaeria sp.), PC359H (Paradendryphiella arenaria),

LD13H (Chaetomium globosum), SL469T (Chaetomium globosum), and SL333T (Phoma exigua) assessed on the infection of Ectocarpus siliculosus by Eurychasma

dicksonii (CCAP 4018/1, CCAP 4018/3), Anisolpidium ectocarpii (CCAP 4001/1), and Maullinia ectocarpii (CCAP 1538/1). Controls consisted of algae alone (control

uninfected), algae with parasite treatment (control infected), algae with parasite treatment, and 1% DMSO (control infected + DMSO 1%). Mean microscopy score

values ± SE are displayed for biological triplicates.
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FIGURE 4 | Antipathogenic activities of the fungal extracts LD68H (Penicillium janczewskii), AN596H (Phaeosphaeria sp.), PC359H (Paradendryphiella arenaria),

LD13H (Chaetomium globosum), SL469T (Chaetomium globosum), and SL333T (Phoma exigua) assessed by qPCR quantification of the infection of Ectocarpus

siliculosus by Eurychasma dicksonii (CCAP 4018/1, CCAP 4018/3). Controls consisted of algae alone (control uninfected), algae with parasite treatment (control

infected), algae with parasite treatment and 1% DMSO (control infected + DMSO 1%). Mean disease score ± SE are displayed for biological triplicates.

FIGURE 5 | Key HMBC and COSY correlations of the new pyrenocine S.

FIGURE 6 | Antipathogenic activities of the isolated assessed on the infection of Ectocarpus siliculosus by the pathogens Eurychasma dicksonii (CCAP4018/1,

CCAP4018/3), Anisolpidium ectocarpii (CCAP 4001/1), and Maullinia ectocarpii (CCAP 1538/1). Controls consisted of algae alone (control uninfected), algae with

parasite treatment (control infected), algae with parasite treatment and 1% DMSO (control infected + DMSO 1%). Mean microscopy score values ± SE are displayed

for biological triplicates.

Protective Effect of Pyrenocines and
Pyrenochaceatic Acid Against Oomycete
Pathogens of Laver
The pyrenocines and pyrenochaetic acid C were tested against
the oomycetes O. pyropiae and P. porphyrae in the algae P.
yezoensis. Pyrenocine A yielded a total inhibition of the infection
of the host alga at 1 µg.ml−1 (48µM) while the pyrenochaetic

acid C stopped the growth of P. porphyrae mycelium and
induced its degeneration in 3 days. For instance, the collapse
of zoosporangia of O. pyropia could be clearly observed with
microscopy only few second after treatment with pyrenochaetic

acid C (SI. Movie 1). Altogether, none of the added compounds
induced any detectable changes in morphology, growth, and
reproduction of the seaweed host P. yezoensis. These results
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clearly demonstrated the broad range effect of pyrenocines
against protistan pathogens of seaweed.

DISCUSSION

This study highlighted a high phylogenetic diversity (45 MOTU)
among the cultivable fungal endophytic community associated
with the inner tissues of brown algae L. digitata, S. latissima,
A. nodosum, and P. caniculata. The fungal species belonged
to the Ascomycota, especially the Sordariomycetes and the
Dothideomycetes (Figure 1). The proportion of taxa recovered
within the main orders and classes were relatively similar to
the ones described for marine fungi associated to plants or
algae, in comparison with the public SSU rRNA reference
sequences (Panzer et al., 2015). The prevalence of cultivable
endophytes was very low (4.7% overall) in comparison to the
one commonly observed for terrestrial plants, as for example,
fungi were successfully isolated from 99% of the Cephalotaxus
harringtonia leaves tested (Langenfeld et al., 2013). The present
findings are also consistent with the few existing surveys of
cultivable endophytes associated with algae (Zuccaro et al., 2008;
Flewelling et al., 2013a), but perhaps also due to our stringent
surface disinfection protocol. However, only a few Penicillium
and Aspergillus strains were isolated in this study in contrast to
the fungal community associated with S. latissima harvested in
the Atlantic Coast of Canada (Flewelling et al., 2013b).

Additionally, the taxonomic diversity and abundance of
isolates differed between the algal organs tested, suggesting a
potential tissue, and host preference. This pattern of fungal
colonization may be explained by the differences in chemical
composition and defense in algal species and organs (Megan
et al., 2001; Cosse et al., 2009; Thomas et al., 2014). Notably,
none of the fungi isolated from the brown algae A. nodosum
was identified as Stigmidium ascophylli, despite its being a well-
documented Dothideomycetes mycophycobiont (Fries, 1979;
Garbary and Gautam, 1989; Garbary et al., 1991; Stanley, 1991;
Garbary and London, 1995; Garbary and Macdonald, 1995).
However, a predominant fungus forming pink colonies similar
to the cultivable one described by Fries (Fries, 1979) has been
recovered from this algae and was identified as a Sordariomycete
related to M. fruticosae, J. adarca, and Marinokulati chaetosa,
that were previously described by Kohlmeyer (Abdel-Wahab
et al., 2010) or Jones (Singh and Reddy, 2015). Our results
also suggest that a second endophytic fungus may occur
alongside Mycophycias ascophylli as a predominant colonizer of
A. nodosum. A thorough year-long sampling across the coasts
would certainly help in determining the natural prevalence of
these fungal endophytes in the macroalgal community.

Aside from the cosmopolitan P. arenaria, which occurred
in all four species investigated, few marine fungi sensu stricto
or unknown species have been isolated (Michaelis et al., 1987;
Cruz dela, 2006). Instead, most of the recovered strains are
closely related to terrestrial phytopathogens (37%), endophytes
(21%), or a miscellaneous group of lignivore, soil-borne, and air-
borne saprophytes (28%) according to previous in the literature.
Several genera, i.e., Acremonium, Coniothyrium, Botryotinia,

Phaeospharia, and Cordiceps have not been previously isolated
from marine algal hosts (Flewelling et al., 2013a; Godinho
et al., 2013,b). In particular, we retrieved sequences matching
the phytopathogens P. exigua and Botryotinia fuckeliana. One
hypothesis is therefore that these strains might be opportunistic
pathogens, perhaps able to colonize an otherwise compromised
alga. Nonetheless, known plant pathogens were found to live as
endophytes in the liverwort Marchantia polymorpha and were
able to confer growth benefits in a laboratory bioassay (Nelson
et al., 2018). Hence, further research is required to ascertain
the type of the interaction between these recovered fungi and
brown algae, which could either be mutualist or pathogen. It
should be borne in mind that these interactions may also depend
upon the host genetic background, as shown recently for bacterial
endosymbiont of insects (Cass et al., 2016).

Among the six fungal extracts that prevented or strongly
inhibited infection by all three protistan pathogens of brown
algae tested, the one obtained from Phaeosphaeria sp. AN596H
lead to the successful chemical characterization of the
active fraction. This fungal genus was found predominant
in endophytes recovered from cold-adapted marine macrophytes
(Zhang and Yao, 2015). Furthermore, a strain of Phaeosphaeria
spartinae was isolated from the red alga Ceramium sp. and
produced unusual polyketides and steroids (Elsebai et al., 2008;
Elsebai et al., 2013). However, the ecological role of the fungus
and its metabolites remain unknown.

Here, the fungal strain Phaeosphaeria sp AN596H was
recovered from A. nodosum and five polyketides from the
pyrenocine family were characterized. The pyrenocines A and B
inhibit the infection of E. siliculosus by the protistan pathogens
at the concentration of 0.1 µg.ml−1. Pyrenocine A was first
reported from the phytopathogen Pyrenochaeta terrestris (Sato
et al., 1981a,b) and recently from the sponge-derived endophyte
Penicillium paxilli (Toledo et al., 2014). The cytotoxic and
antimicrobial properties of the pyrenocines has been reported
in terrestrial ecosystems as, for example, pyrenocine A inhibits
phytopathogens, and gram-positive bacteria at micromolar
concentrations (Sparace et al., 1987; Rukachaisirikul et al., 2007;
Toledo et al., 2014). This compound also displayed algicidal
activity on E. siliculosus at 1 µg.ml−1, but not on the red
algae P. yezoensis at a similar concentration. Therefore, we
hypothesize that at low concentration, fungal pyrenocines may
confer protection to the alga against protistan pathogens, while
being toxic at higher concentrations to some seaweed. However,
the physiological concentrations at which pyrenocines were
produced within the host A. nodosum are unknown and will have
to be further investigated. The minor compounds pyrenocine E,
pyrenochaetic acid C, and the new natural product pyrenocine S
were also identified in the active extract, but did not displayed
a broad range activity against the different protistan parasites.
Pyrenocines E and S were found active against the strain E.
dicksonii CCAP 418/3 giving evidence for strain-specific effect.
Difference of activity for pyrenocines compounds could be also
explained by their structural difference on the lateral chain
suggesting structure-activity relationships.

Altogether, these results constitute the first example of a
possible chemical mediation involved in a molecular interaction
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within the algal microbiota. We suggest that the endophytic
continuum paradigm defined in plantamight also possibly occur
in brown algae (Schulz et al., 1999; Schulz and Boyle, 2005).
Pathosystem bioassays with the alga model E. siliculosus were
performed to identify fungal extracts and later the pyrenocines
which are bioactive against phylogenetically unrelated pathogens.
Importantly, these compounds also inhibit the infection of the
most widely cultivated cultivar of laver in Korea by its two
most important pathogens, the oomycetes O. pyropiae, and P.
porphyrae.

CONCLUSIONS

These results provide for the first time evidence of fungal
endophytes associated with brown macroalgae may protect
their host in vivo through the production of small molecules.
These data demonstrated that an active chemical defense
produced by the algal microbiota may drive the infection
success of pathogenic microbiotes in the phycosphere. Further
studies using a broader range of algae species should be
performed to evaluate the conservation of this chemical
defense amidst hosts. Hence, these findings provide a proof-
of-concept to pursue the detailed chemical characterization
of the other bioactive extracts identified, with the view to
identify novel molecules with application in seaweed crop
protection.
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