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Early detection and effective interventions for liver cirrhosis (LC) remain an urgent
unmet clinical need. Inspired from intestinal disorders in LC patients, we investigated
the associations between gut microbiome and disease progression based on a raw
metagenomic dataset of 47 healthy controls, 49 compensated, and 46 decompensated
LC patients from our previous study, and a metabolomic dataset of urine samples
from the same controls/patients using ultra-performance liquid chromatography/mass
spectrophotometry system. It was found that the combination and relative abundance
of gut microbiome, the inter-microbiome regulatory networks, and the microbiome-
host correlation patterns varied during disease progression. The significant reduction of
bacteria involved in fermentation of plant cell wall polysaccharides and resistant starch
(such as Alistipes sp. HG5, Clostridium thermocellum) contributed to the reduced supply
of energy sources, the disorganized self-feeding and cross-feeding networks and the
thriving of some opportunistic pathogens in genus Veillonella. The marked decrease
of butyrate-producing bacteria and increase of Ruminococcus gnavus implicated in
degradation of elements from the mucus layer provided an explanation for the impaired
intestinal barrier function and systematic inflammation in LC patients. Our results pave
the way for further developments in early detection and intervention of LC targeting on
gut microbiome.

Keywords: liver cirrhosis, progression, gut microbiome, metagenomics, metabolomics

INTRODUCTION

Cirrhosis is an advanced liver disease with high mortality and morbidity resulting from multiple
liver injuries. Determined as the 14th most common cause of death worldwide and fourth most
frequent in central Europe, the morbidity and mortality rates due to cirrhosis continue to increase
in more developed countries (Tsochatzis et al., 2014). Initially regarded as a single disease entity
leading to death, cirrhosis is now increasingly accepted as a dynamic process with the 1 year
mortality rate ranging from 1 to 57% for patients at distinct clinical prognostic stages (Tsochatzis
et al., 2014). Therefore, development of early interventions to stabilize disease progression and to
avoid or delay decompensation of patients is of vital importance. However, chronic liver disease is
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notoriously asymptomatic in most cases until the occurrence of
clinical decompensation. Moreover, few clinical examinations are
currently available for diagnosis of cirrhosis, except liver biopsy,
which is not applicable to all patients and can lead to various
complications in 2–3% patients (Schuppan and Afdhal, 2008).
Therefore, clarification of the mechanisms underlying disease
progression and identification of appropriate clinical factors that
could be utilized as targets for disease monitoring and treatment
remain an urgent medical requirement.

Increasing evidence supports the significant association of
gut dysbiosis with various kinds of diseases, such as diabetes
(Marino et al., 2017), obesity (Bouter et al., 2017), and colorectal
cancer (Yu et al., 2017). The liver receives most of its blood
supply from the intestine through portal vein and is therefore one
of the organs predominantly exposed to potential toxic factors
originating from the gut (Llorente and Schnabl, 2015). The gut
microbiome has been shown to be involved in the induction and
promotion of liver damage in early-stage liver disease (Yan et al.,
2011). Enteric dysbiosis, particularly translocation of bacteria
and their products through the gut epithelial barrier, plays an
important role in the progression and complications of end-
stage liver cirrhotic conditions (Lachar and Bajaj, 2016). Previous
metagenomic research by our group further confirmed significant
dysbiosis of the gut microbiome in LC patients (Qin et al.,
2014). Thus, gut microbiome presents a potential target for
manipulation to understand and monitor LC progression.

Obligate metabolic interactions exist in natural bacterial
communities (Pande and Kost, 2017). Bacteria commonly
release metabolites into the external environment, which form
an ecological niche benefiting auxotrophic cells that have
lost the ability to autonomously produce the corresponding
metabolites (Pande and Kost, 2017). The mammalian gut
microbiota interacts extensively with the host through metabolic
exchange and co-metabolism of substrates, which is implicated
in the etiology of many human diseases (Nicholson et al.,
2005). These findings indicate critical roles of low molecular
weight metabolites of gut microbiome in communicating
among bacteria and between bacteria and hosts. Therefore,
integrated metabolomic and metagenomic analyses could
provide significant advantages in delineating the dynamics
and mechanisms of gut microbiome in LC progression.
To date, meta-omics-based research has demonstrated
considerable benefits in various disease types, including
pediatric nonalcoholic fatty liver disease (Del Chierico et al.,
2017) and late-onset sepsis in preterm neonates (Stewart et al.,
2017).

Several investigations have confirmed dysbiosis of gut
microbiome in LC patients (Betrapally et al., 2016; Tilg
et al., 2016). However, the contributions of gut microbiome
in LC progression, and the feasibility of prevention and
early intervention targeting on gut microbiome remain to be
established. Based on the huge quantity of metagenomic data
already generated for a large number of healthy controls and
LC patients and the collection and deposition of urine samples
from the same controls/patients in our previous study (Qin et al.,
2014), we investigated the dynamics, cross-talk and roles of gut
microbiome during clinical progression of LC. The results of this

study should pave the way for further researches focusing on
monitoring and controlling LC targeting on gut microbiome.

MATERIALS AND METHODS

Study Design
A meta-omics-based study was conducted to investigate the
dynamics and roles of gut microbiome in clinical development
of LC. The study design was subdivided into four steps
(Figure 1A). First, appropriate sets of healthy controls and
LC patients with comparable ages were selected from the
populations included in our previous study (Qin et al., 2014).
Raw metagenomic sequencing data and urine samples from
the same healthy controls and/or patients were retrieved,
and metabolites in urine samples were analyzed via ultra-
performance liquid chromatography/mass spectrum (UPLC/MS)
technology. The resulting metabolomic and raw metagenomic
datasets generated previously were subsequently processed. Two
sets of differential taxa (sets 1 and 2) were obtained using
different protocols, as shown Figure 1A. The dynamics of
gut microbiome were then profiled from taxa set 1 using
a conventional protocol. Finally, differential taxa common in
two protocols were selected and used to investigate the inter-
microbiome and microbiome–metabolite cross-talk during LC
progression. Potential functions associated with the common
taxa were also evaluated.

Description of Samples and the
Metagenomic Sequencing Dataset
The raw dataset generated from our previous research (Qin
et al., 2014) (ERP005860) was used in this study, which
contained paired-end metagenomic sequencing reads for the
gut microbiome from fresh stool samples obtained from 123
patients with LC resulting from various kinds of liver injuries
and 114 healthy volunteers. In that study, the morning urine
samples from the same healthy controls or LC patients were
also obtained if available at the same day when stool samples
were collected, and were stored at -80◦C degrees immediately.
In this study, only the metagenomic sequencing reads of LC
patients and healthy volunteers with comparable ages were
selected. To remove potential confounding factors to the best
possible extent, samples with fewer than 11 M sequences
were removed. Cirrhotic patients were further classified as
“compensated” and “decompensated” according to previously
defined principles (Bajaj et al., 2012), resulting in a dataset
comprising 47 healthy counterparts (H), 49 compensated (C),
and 46 decompensated (D) cirrhotic patients with average ages of
45.34 ± 1.22, 47.69 ± 1.39, and 51.41 ± 1.60 years, respectively.
The age was further confirmed not to be a confounding factor
in comparisons between healthy controls and compensated
patients (HvsC, P = 0.21), and between compensated and
decompensated patients (CvsD, P = 0.08). Detailed information
for all participants is provided in a previous report (Qin et al.,
2014) and Supplementary Table S1, which also illustrates the
availability of urine samples. Our experiments were approved
by the Ethics Committee of the First Affiliated Hospital, School
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FIGURE 1 | Study design, and associations between gut microbiome and disease progression. (A) Schematic diagram of the study design. (B) Boxplot of microbial
gene richness in healthy controls, compensated and decompensated patients. (C) Boxplot of microbial richness in healthy controls, compensated and
decompensated patients. (D) Boxplot of the Shannon index in healthy controls, compensated and decompensated patients. (E) Correlations between microbial
richness and albumin. (F) Correlations between microbial richness and total bilirubin.
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of Medicine, Zhejiang University (Zhejiang, China). Informed
written consent was obtained from each patient prior to
enrollment.

Construction of a Nonredundant Gene
Catalog
Illumina raw paired-end sequencing reads were processed
with the MOCAT (Kultima et al., 2012) software package.
Briefly, raw sequencing reads were initially filtered using FastX
software1 with a quality cutoff of 20, and reads shorter
than 30 bp discarded. High-quality reads were subjected to
human contamination screening. Reads that passed screening
were assembled into scaftigs using SOAPdenovo v2.04 (Luo
et al., 2012). Genes were predicted from scaftigs longer than
500 bp using MetaGeneMark v3.38 (Besemer and Borodovsky,
1999; Zhu et al., 2010). Redundant genes were removed
using CD-HIT (Li and Godzik, 2006) with a cutoff of
90% overlap and 95% identity (no gaps allowed). Finally,
cluster representatives shorter than 100 bp were discarded,
resulting in 2,332,123 nonredundant genes as the reference gene
catalog.

Quantification of Reference Gene
Abundance
High-quality reads that passed human contamination screening
were mapped to the reference gene catalog using SOAPaligner
v2.21 packed in MOCAT (Kultima et al., 2012) with the following
options: –M 4 (find best hits), –l 30 (seed length), –r l (random
assignment of multiple hits) and –v 5 (maximum number of
mismatches). Mapped reads were subsequently filtered using
a cutoff of length 30 bp and 95% identity. The gene length-
normalized base counts were calculated using the soap.coverage
script2. For each sample, 11 M reads (Le Chatelier et al., 2013)
were randomly drawn (without replacement) and mapped to
the gene catalog to form a downsized depth or abundance
matrix.

Taxonomical Annotation and Abundance
Calculation
Catalog genes were assigned taxonomical annotations based on
sequence similarity to a database of predicted protein coding
genes from 8942 publicly available genomes in the National
Center for Biotechnology Information (NCBI, release 196) by
MyTaxa (Luo et al., 2014). A likelihood cutoff of 0.8 was applied
to determine the taxonomical annotation for the query sequence.
The relative abundance of a taxon was calculated as the total
relative abundance of genes annotated.

Construction of Co-abundant Gene
Groups and Calculation of Abundance
The canopy-based clustering (Le Chatelier et al., 2013) algorithm
with default settings was utilized to generate co-abundant gene
groups (CAG) from the reference gene abundance profile across

1http://hannonlab.cshl.edu/fastx_toolkit
2http://soap.genomics.org.cn/down/soap.coverage.tar.gz

all individuals. MyTaxa (Luo et al., 2014) with a likelihood cutoff
of 0.5 was used to determine the taxonomical annotations of
genes in each CAG. Only clusters containing more than 50 genes
annotated to the same species were retained for further analysis.
The abundance of retained CAG was calculated as the mean
abundance signal of all genes in each cluster.

α-Diversity and Gene Count
α-Diversity (within-sample diversity) was calculated from the
gene profile of each sample according to the Shannon index as
described previously (Qin et al., 2012). In a survey of gene counts,
only those with at least one mapped read were considered present
(Le Chatelier et al., 2013).

Gene Functional Classification and
Ortholog Group Abundance Profiling
Functional annotation for target genes was achieved with SUPER-
FOCUS (Silva et al., 2016). Default settings of parameters were
utilized, such as maximum E-value 1e−5, minimum 60% identity,
and minimum alignment length of 15 amino acids. For cases
where more than one best hit was found per query sequence,
subsystems for all the best hits were retained.

Urine Metabolomic Analysis and Data
Pre-processing
One hundred and seventeen urine samples from the healthy
volunteers (n = 42) and LC patients (39 compensated
and 36 decompensated patients) selected from the above
metagenomic analysis procedure were studied in this study.
All samples were thawed on ice, vortexed and centrifuged at
14,000 × g for 15 min at 4◦C. Equal volumes of supernatant
(10 µL) from all samples were pooled to obtain quality
control (QC) samples. The remaining clear supernatant was
placed in UPLC vials for chromatographic separation using
a Waters (Milford, MA, United States) ACQUITY UPLC
system equipped with an ACQUITY UPLC BEH C18 analytical
column. Mass spectrometry was performed on a Waters
Q-TOF Premier mass spectrometer in the negative ESI mode.
QC samples were injected every six samples throughout the
analytical process. The raw UPLC-MS data were processed
by MarkerLynx Applications Manager (version 4.1, Waters,
Milford, MA, United States), which detected, integrated and
normalized the intensities of the peaks to the sum of peaks
within the sample, and generated a multivariate dataset based
on the retention time, m/z value and signal intensities of
the peaks. After partial least squares discriminant analysis
(PLS-DA), the differential metabolites were firstly identified
by searching MS/MS spectra in the HMDB database3. The
metabolites that can be preliminarily identified would then be
confirmed by corresponding metabolic standards. The metabolite
standards methyladenosine, cinnamic acid, phenyllactic acid,
decenoylcarnitine, methyluric acid, and alpha-N-phenylacetyl-L-
glutamine were purchased from Sigma-Aldrich (St. Louis, MO,
United States).

3http://www.hmdb.ca/
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Statistical Analysis
Univariate clinical data are presented as means and standard
error of the mean (SEM), and compared between groups by
Welch’s t-test. Permutational multivariate analysis of variance
(PERMANOVA) (Bray–Curtis distance and 9999 permutations
for the hypothesis test) and principal co-ordinate analysis
(PCoA) based on Bray–Curtis distance were utilized to assess the
association between disease progression and gut microbiome.
Associations between microbial richness and continuous
variables measured clinically were evaluated based on Pearson
correlation coefficient. Differences in the relative abundance of
taxa and CAGs were identified using LefSe (Segata et al., 2011)
with P < 0.05 and log-score > 2. Principal component analysis
(PCA) and partial least squares discriminant analysis (PLS-DA)
of the metabolomics dataset was conducted using SIMCA-P+
12.0 (Umetrics AB, Sweden) software, and metabolites with
variable importance in the projection (VIP) value larger than
1.5 were considered significant. The co-occurrence networks
for significant correlations based on permutation analysis
(P < 0.01) were constructed using the SparCC algorithm
(Friedman and Alm, 2012), and visualized by Cytoscape 3.4.0
(Shannon et al., 2003). Differential functions with corrected P
values less than 0.01 were identified using two-tailed Wilcoxon
rank-sum test combined with Benjamini-Hochberg correction
(false discovery rate < 0.05). All statistical analyses were
conducted using R software (version 3.3.2) unless stated
otherwise.

RESULTS

Gut Microbial Dysbiosis Is Associated
With LC Progression
To delineate the gut microbiome variations associated with LC
progression, we retrieved 142 samples from the metagenomic
shotgun sequencing data obtained previously (Qin et al., 2014)
and acquired taxonomy information using MyTaxa with a
likelihood cutoff of 0.8. Microbial gene richness, microbial
richness and species diversity decreased significantly (P < 0.01)
in compensated patients compared to healthy volunteers, and
decreased further from compensation to decompensation
stages (Figures 1B–D). The number of genes and species,
Shannon index for each sample are specified in Supplementary
Table S2. PERMANOVA analysis further confirmed significant
dysbiosis of gut microbiota in compensated (P < 0.001)
and decompensated patients (P < 0.001) relative to healthy
controls, while the variation of gut microbiome during the
progression from compensated to decompensated stage was
not as marked (P = 0.117). A scatter plot on the first three axes
of PCoA based on all species (Supplementary Figure S1)
further confirmed these findings. Moreover, prominent
correlations were observed between microbial richness and
clinical indices (Supplementary Table S3), such as albumin
(ALB) and total bilirubin (TB) (Figures 1E,F). Our results
clearly indicate that gut microbial dysbiosis is related to disease
progression.

Alterations in the Gut Microbiome During
LC Progression
The relative abundance profiles at the phylum, genus and
species levels were further compared. Among the most abundant
phyla, Proteobacteria and Spirochaetes were enriched in
patients and controls, respectively, while these alterations in
abundance were not so apparent between compensation and
decompensation stages (Figure 2A). Twenty-two genera from
phyla Firmicutes, Bacteroidetes, Proteobacteria, and Spirochaetes
(Figure 2B), including Alistipes, Odoribacter, Eubacterium,
and Ruminococcus, were significantly downregulated, while
five (Veillonella, Streptococcus, Lactobacillus, Megasphaera
and Haemophilus) were upregulated in compensated and
decompensated patients, compared to healthy controls. It is
worth noting that the prominent downregulation of Tannerella
and Bilophila and upregulation of Veillonella continued during
disease progression from compensation to decompensation
stage.

Close inspection revealed that a total of 75 species from
phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria,
and Spirochaetes altered drastically during disease progression.
Among these, 46 species (Figure 2C) demonstrated similar
alterations with corresponding genus in both compensated
and decompensated patients, compared to healthy controls,
including 31 with decreased (such as Eubacterium rectale,
Alistipes putredinis, Alistipes shahii, and Coprococcus eutactus)
and 6 with increased (Haemophilus parainfuenzae, Streptococcus
salivarius, Lactobacillus salivarius, and Veillonella parvula)
abundance. Among the remaining 29 species (Figure 2D),
27 including Roseburia intestinalis, Clostridium sp. L2-50
and Bacteroides intestinalis decreased, while increased levels
of Ruminococcus gnavus and Bifidobacterium dentium were
observed in both compensated and decompensated patient
groups. During disease progression from compensation to
decompensation, Alistipes indistinctus, Bilophila wadsworthia,
Bilophila sp. 4_1_30, Ruminococcus champanellensis, Tannerella
sp. 6_1_58FAA_CT1, Clostridium botulinum, Clostridium
leptum, Clostridium methylpentosum and Clostridium sp. MSTE9
were further downregulated while Veillonella atypica, Veillonella
sp. ACP1, Veillonella dispar, and Veillonella sp. oral taxon 158
were further upregulated. These results support the theory that
alterations in the gut microbiome occur in association with liver
cirrhosis progression.

Alterations in Inter-Microbiome
Interactions During LC Progression
Inspired by the finding that gut microbiomes potentially act in
niche–specific relationships (Nakatsu et al., 2015), we further
evaluated inter-microbiome interactions during LC progression.
Considering the latent bias involved in library construction,
sequencing, and data processing procedures (Goodrich et al.,
2014), two protocols were combined to obtain a subset of
reliable differential species. Concisely, microbial genes were
clustered in to CAG clusters, and those containing more than
50 genes annotated as the same species were retained. The
resulting differential species overlapped with those obtained
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FIGURE 2 | Boxplots of differential gut microbiomes. (A) Relative abundance of differential phyla. (B) Relative abundance of differential genera. (C) Relative
abundance of species demonstrating similar alterations with the corresponding genus in both compensated and decompensated patients, compared to healthy
controls. (D) Relative abundance of species demonstrating different alterations with the corresponding genus in both compensated and decompensated patients,
compared to healthy controls. A combination of three characters, “u,” “d,” and “0,” represents the status of compensated and decompensated patients compared
to healthy controls and variations during sequential progression from the compensation to decompensation stage. “u,” “d,” and “0” signify significant upregulation
and downregulation and no significant variations, respectively.
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FIGURE 3 | Cross-talk of gut microbiome, score plots of urine metabolites in principal component analysis, and relative abundance of identified metabolites.
(A) Correlation networks of the gut microbiome in healthy controls, compensated and decompensated patients. Red and green lines represent positive and negative
regulatory networks. Nodes filled with gray, yellow, blue, and purple represent species from the phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria,
respectively. (B) Score plot of healthy controls, liver cirrhotic patients and quality control samples based on raw metabolomic data without filtering. (C) Score plot of
healthy controls, compensated and decompensated patients based on 75 differential metabolites. (D) Relative abundance of the six metabolites identified in healthy
controls, compensated and decompensated patients.

previously were selected for further analysis. Supplementary
Figures S2A,B illustrates the phylogenetic tree of the final 30
differential species and the relative abundance using the CAG-
based protocol. In total, 21 species, including E. rectale, A. shahii,

and R. intestinalis, were downregulated, while 9, including
Veillonella sp. ACP1, V. atypical, and V. dispar, were upregulated
in compensated and decompensated patients, compared to
healthy controls.
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FIGURE 4 | Heatmaps of correlations between the gut microbiome and urine metabolites in healthy controls, compensated and decompensated patients.

We next inferred all pairwise inter-microbiome correlations
in each group of samples. As shown in Figure 3A and
Supplementary Table S4, the interactions within the healthy
control group were the most extensive and evenly distributed.
Broad negative regulatory interactions (53 out of 114 edges) were
observed between control-enriched and LC-enriched species. The
number of connections was sharply decreased in compensated
patients (57 edges) as compared to healthy controls (114 edges).
The ratio of negative versus positive edges in compensated
patients (17/40) was also significantly lower than that of healthy
controls (53/61) (P < 0.05). On the other hand, the strength of
some interactions, especially the positive associations among LC-
enriched V. parvula, Veillonella sp. ACP1, V. atypica, V. dispar,
S. salivarius, B. dentium, and H. parainfluenzae, was drastically
enhanced in compensated patients (0.496 ± 0.034) as compared
to healthy controls (0.196 ± 0.018) (Supplementary Table S5,
P < 0.001). During the progression from compensation (57
edges) to decompensation (40 edges), a number of connections
were further weakened and/or lost. Most significantly, the
negative regulations associated with R. gnavus and L. salivarius
totally disappeared in decompensated patients. These results
collectively demonstrate that inter-microbiome interactions

altered markedly during disease progression. In conclusion, gut
microbial dysbiosis should be evaluated not only for diversity
and abundance of microbes but also for inter-microbiome
cross-talk.

Alterations in Microbiome-Metabolite
Correlations During LC Progression
The gut microbiome may share metabolites and regulate host
metabolism (Pande and Kost, 2017). Accordingly, we further
evaluated whether altered inter–microbiome interactions are
associated with metabolite exchange by examining the metabolic
states of healthy controls and LC patients. As shown in the
score plot of PCA based on a total of 10012 peaks (Figure 3B),
aggregation of QC samples confirmed the reliability of the
metabolomic dataset. After trimming peaks that were absent
in 30% samples, 75 metabolites with a VIP value > 1.5 were
selected by PLS-DA to be differed among healthy volunteers,
compensated and decompensated LC patients. The score plot
of PCA based on the 75 metabolites further illustrated that
the metabolic state of LC patients was distinct from that of
healthy controls while the difference between compensated and
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FIGURE 5 | Functions varied during liver cirrhosis progression at level 3.

decompensated patients was far less significant (Figure 3C). We
further identified and confirmed six metabolites by searching
MS/MS spectra in the HMDB database4 and comparing with
those of corresponding standards. The relative abundance
of the six metabolites is illustrated in Figure 3D. Detailed
information on retention time, molecular weight and VIP value
for each of the metabolites is provided in Supplementary
Table S6. MS/MS spectra of the six identified metabolites
in samples and standards are shown in Supplementary
Figure S3.

4http://www.hmdb.ca/

We further evaluated the interactions between gut
microbiome and urine metabolites in each sample group.
Extensive correlations were observed in healthy controls,
while the number of associations was markedly lower in
both compensated and decompensated patients (Figure 4).
Upon separation of the microbiome into control-enriched and
LC-enriched components that were down- and up-regulated,
respectively, in LC patients relative to healthy controls, several
interesting findings were obtained. Most surprisingly, most
correlations between control-enriched microbiome and urine
metabolites were negative for healthy controls, while nearly
all those for the LC-enriched microbiome were positive.
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During disease progression, different patterns were observed
for control- and LC-enriched species. For control-enriched
species, the number of connections decreased gradually,
especially members of the genus Alistipes, which only retained
minimal connections in decompensated patients. For LC-
enriched species, the pattern changed from most positive
correlations in healthy controls to most negative correlations
in decompensated patients in addition to a reduced number of
connections.

The extensive connections for healthy control-enriched
species conformed to high microbial diversity and indicated
sharing of metabolites, while the reduced number of connections
in compensated and decompensated patients may be associated
with downregulation of the corresponding species and thus
metabolic capability. The positive correlations observed for LC-
enriched species in healthy controls indicates the co-existence
of pathogenic species in low abundance in healthy state.
The patterns and strength of these connections altered in
compensated and decompensated patients probably due to the
newly formed niches resulting from microbial dysbiosis. Such
phenomenon may either be an underlying reason or result of
disordered intestinal microbiota. However, our results clearly
support the theory that microbiome–metabolite interactions are
altered in association with gut microbial dysbiosis during disease
progression.

Modified Functions of Gut Microbiome
During LC Progression
Functions of genes involved in the 30 differential species
were further evaluated based on the SEED database (Silva
et al., 2016). Significant variations were observed in multiple
functions at various levels during LC progression (Figure 5
and Supplementary Figure S4). The ability of microbiome
to degrade plant cell wall polysaccharides was reduced during
disease progression, as evident from the decreased function
cellulosome complexes, intricate multi-enzyme machines
designed by microorganisms for efficient degradation of
plant cell wall polysaccharides (Doi and Kosugi, 2004).
Meanwhile, tricarboxylate transporter and functions associated
with respiration, including respiratory complex I, anaerobic
respiratory reductases, ATP synthases and sodium ion-coupled

energetics, reduced during disease progression. Functions
associated with CO2 uptake and fixation and acetyl-CoA
fermentation to butyrate were additionally suppressed. With
regard to amino acids and derivatives, functions including
branched-chain amino acids synthesis, arginine biosynthesis
extended, alanine biosynthesis, and urea decomposition
decreased, whereas functions such as threonine and homoserine
biosynthesis and histidine biosynthesis increased in compensated
and decompensated LC patients. Downregulation was observed
for functions protein folding, inteins, bacterial translation
initiation and translation termination factors, bacterial ribosome
small subunit (SSU) and large subunit (LSU), and lipoprotein
biosynthesis. Moreover, functions associated with DNA
metabolism, such as replication and recombination, were
downregulated, while stress responses (including oxidative
stress, osmoregulation, periplasmic stress response and others)
were upregulated. Detailed information on functions is provided
in Supplementary Table S7.

DISCUSSION

We conducted a meta-omics-based study to evaluate the
dynamics and potential roles of gut microbiome in LC
progression. It is found that gut microbial gene richness,
microbial richness and species diversity decreased, and that
patterns of gut microbiome varied during disease progression.
Moreover, significant correlations were observed between
microbial richness and clinical indices ALB and TB (factors
associated with liver function). Thus, we propose that gut
microbiome is associated with LC progression.

Our results indicate impaired capability of biomass
fermentation in cirrhotic patients, from the gradual decrease of
multiple species that can ferment plant cell wall polysaccharides
and resistant starch (Xu et al., 2012), and of function cellulosome
(Doi and Kosugi, 2004; Figure 5). On the other hand, sugar
biomass can be fermented by bacteria with phenylalanine
ammonia lyase to phenylalanine as the intermediate and
further deaminated to cinnamic acid (Masuo et al., 2016)
or decarboxylated to phenylethylamine (Supplementary
Figure S5). Phenylethylamine is subsequently metabolized

FIGURE 6 | Schematic diagram showing the potential roles of gut microbiota constituents during liver cirrhosis progression.
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to phenylacetyl-CoA in liver and kidney and subsequently
conjugates with glutamine to form phenylacetylglutamine
(Aronov et al., 2011). Moreover, glucose, a sugar biomass
fermentation intermediate, can be fermented by bacteria
with D-phenyllactate reductase to phenylpyruvate and further
converted to cinnamic acid by specific species, such as
Clostridium sporogenes (Masuo et al., 2016). Thus, the
sequential decrease in the urine metabolites cinnamic acid,
phenylacetylglutamine, and phenyllactic acid (Figure 3D) further
confirmed impaired sugar biomass fermentation during LC
progression (Figure 6).

Cell-wall polysaccharide and resistant starch generate a variety
of metabolites by microbiome, such as glucose and short-chain
fatty acids (SCFA). Similar to glucose, SCFAs are also reported
to act as energy sources for hosts and play important roles in
intestinal homeostasis (Riviere et al., 2015). The gradual decrease
in respiration and tricarboxylate transporter-associated functions
during LC progression (Figures 5 and Supplementary Figure S4)
implied that the impaired sugar biomass fermentation in patients
contributed to the reduced supply of the above energy sources,
which further contributed to the disorganized self-feeding and
cross-feeding networks among microbiota (Figure 3A). The
continuous increase in urinary methyladenosine, a modified
nucleoside reflecting RNA degradation in the organism
(Scorrano et al., 2010), in compensated and decompensated
patients might be suggestive of breakdown of microbiota during
disease progression. Conversely, some opportunistic pathogens,
including V. atypica, V. dispar, V. parvula, and V. sp. ACP1,
thrived during LC progression, which may be explained by
reduced suppressive regulations by other dominant bacteria that
are downregulated in these patients (Figure 6).

Recent studies suggest that degradation and fermentation of
carbohydrates into SCFAs in cross–feeding relationships between
microbial groups determine the level of permeability (Chung
et al., 2016). Among the SCFAs produced in the human colon,
butyrate has drawn the most attention as it is an essential energy
source for colon epithelial cells and benefits intestinal barrier
function (Kelly et al., 2015). Data from this study showed that
butyrate-producing bacteria, such as E. rectale, C. eutacus, and
Anaerotruncus colihominis, as well as the function acetyl-CoA
fermentation to butyrate (Figure 5) are markedly downregulated
in LC patients, compared to healthy controls, while R. gnavus,
implicated in the degradation of elements from the mucus layer
(Graziani et al., 2016), is upregulated. Moreover, it is reported that
the gut microbiota resorts to host-secreted mucus glycoproteins
as a nutrient source during dietary fiber deficiency, leading to
erosion of the colonic mucus barrier (Desai et al., 2016). Thus,
reduced biomass fermentation may provide an explanation for
impaired intestinal barrier function in LC (Scarpellini et al., 2010;
Du Plessis et al., 2013). Under these circumstances, increased
infiltration of endotoxins and pathogens from the gut to the
peripheral circulation is always accompanied by systematic
inflammation (Arroyo et al., 2014). Another report showed that
butyrate regulates the proliferation and activation of regulatory T
cells in the colon and increases the capacity of regulatory T cells
to suppress proliferation of effector CD4+ cells in mice (Nylund
et al., 2015). Therefore, reduction of biomass fermentation and

the resulting reduced butyrate supply may also be responsible for
exacerbation of the infection.

In agreement with the reported increase in bacterial
translocation in cirrhotic patients, B. dentium, an opportunistic
pathogen that mainly inhabits the oral cavity (Xu et al.,
2012), and H. parainfluenzae residing primarily in the human
upper respiratory tract (Young and Hood, 2013) increased
during disease progression. Surprisingly, L. salivarius, and
S. salivarius levels also increased during disease progression
in the current study. Treatment with dead L. salivarius has
been shown to decrease intestinal permeability and endotoxin-
induced inflammation in diabetic patients (Chung et al.,
2016). S. salivarius affects immune responses by inhibiting
inflammatory pathways activated by pathogens (Kaci et al.,
2014), and low molecular-weight metabolites in the culture
supernatants of S. salivarius are reported to exert in vitro anti-
inflammatory activity in intestinal epithelial as well as immune
cells (Kaci et al., 2011). Therefore, the increase in these two
bacteria may indicate upregulated stress response in LC patients,
consistent with the upregulation of various functions associated
with stress response during disease progression (Figure 5 and
Supplementary Figure S4).

CONCLUSION

Our data implied a direct link between microbiome changes and
LC via metabolites. The metabolic capability of gut microbiome,
which played important roles in maintaining the homeostasis of
gut microbial system, the normal intestinal barrier function and
the immune homeostasis of host, contributed to LC progression.
However, due to the limitations of current sequencing and data
processing techniques, only partial roles of the gut microbiome
have been proposed. With the development of the above
techniques, future studies focusing on global microbial system
without pre-filtering may provide a more comprehensive picture
of roles of gut microbiome, such as the immune response
triggered by changes in the microbiota, in LC progression.
Detailed resolution of the communication network in gut
microbiome may aid in identifying key bacteria, which may be
manipulated to slow down and/or reverse the development of LC.
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FIGURE S1 | Scatter plot of healthy controls, compensated and decompensated
patients on the first three axes of PCoA analysis. (A) Scatter plot of healthy
controls and compensated patients. (B) Scatter plot of healthy controls and
decompensated patients. (C) Scatter plot of compensated and decompensated
patients. (D) Scatter plot of healthy controls, compensated and decompensated
patients.

FIGURE S2 | Illustration of the final 30 differential species. (A) Circular
representations of taxonomic and phylogenetic trees of the final 30 differential
species. (B) Relative abundance of the above 30 species in healthy controls,
compensated and decompensated patients based on co-abundant gene
clustering analysis.

FIGURE S3 | MS/MS spectra of six identified metabolites in samples (A) and
standards (B).

FIGURE S4 | Functions varied during liver cirrhosis progression at level 1 (A) and
level 2 (B).

FIGURE S5 | Schematic illustration of specific pathways in sugar biomass
fermentation.

TABLE S1 | Detailed clinical information for all patients and healthy volunteers.

TABLE S2 | Detailed information on microbial gene richness, gene richness, and
Shannon index for each sample.

TABLE S3 | Detailed information on the correlation analysis between microbial
richness and clinical indices.

TABLE S4 | Detailed information on edges of the inter-microbiome correlation
networks in each group.

TABLE S5 | Detailed information on some edges enhanced in compensated
patients as compared to healthy controls.

TABLE S6 | Detailed information on retention time, molecular weight and VIP
value for 75 differential metabolites.

TABLE S7 | Detailed information on functional annotations in various levels.
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