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Varicella zoster virus (VZV) is a neurotropic alphaherpesvirus and the causative agent of
varicella (chickenpox) in humans. Following primary infection, VZV establishes latency
in the sensory ganglia and can reactivate to cause herpes zoster, more commonly
known as shingles, which causes significant morbidity, and on rare occasions mortality,
in the elderly. Because VZV infection is highly restricted to humans, the development
of a reliable animal model has been challenging, and our understanding of VZV
pathogenesis remains incomplete. As an alternative, infection of rhesus macaques
with the homologous simian varicella virus (SVV) recapitulates the hallmarks of VZV
infection and thus constitutes a robust animal model to provide critical insights into
VZV pathogenesis and the host antiviral response. In this model, SVV infection results in
the development of varicella during primary infection, generation of an adaptive immune
response, establishment of latency in the sensory ganglia, and viral reactivation upon
immune suppression. In this review, we discuss our current knowledge about host and
viral factors involved in the establishment of SVV latency and reactivation as well as the
important role played by T cells in SVV pathogenesis and antiviral immunity.

Keywords: herpesvirus, viral latency, varicella zoster virus, simian varicella virus, non-human primates, viral
reactivation, shingles

INTRODUCTION AND KNOWLEDGE GAPS

Varicella zoster virus (VZV) is one of the nine human herpesviruses. Primary VZV infection
results in varicella (also known as chickenpox), a disease characterized by a vesicular rash, fever,
headache, and loss of appetite (Heininger and Seward, 2006). Like other alphaherpesviruses, VZV
exhibits neurotropism and establishes latency in sensory ganglia neurons. VZV transmission is
thought to occur through either inhalation of saliva droplets containing infectious particles and
by direct contact with virus in varicella or zoster skin lesions (Leclair et al., 1980; Sawyer et al.,
1994; Suzuki et al., 2004). Subsequently, VZV is presumed to undergo initial replication in the
upper respiratory tract and tonsillar lymph nodes before viremia and dissemination to the skin
leading to the development of varicella (Zerboni et al., 2014). Although primary VZV infection in
immunocompetent individuals usually results in a benign disease, serious complications can occur
in immune compromised individuals, including pneumonia, secondary bacterial infection, and
stroke (Gnann, 2002; Chiner et al., 2010; Wiegering et al., 2011). Two hypotheses are proposed to
explain how VZV reaches the ganglia: (Heininger and Seward, 2006) VZV infects sensory neurons
via retrograde axonal transport from the infected skin, and (Suzuki et al., 2004) VZV is carried by
infected T cells to the ganglia through the hematogenous route (Depledge et al., 2018b). During
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reactivation, VZV travels from the ganglia to the skin via
anterograde axonal transport to cause herpes zoster (HZ, also
known as shingles), a painful and debilitating disease that
primarily affects the elderly and immunocompromised. HZ is
characterized by severe prodromal pain followed by a rash
restricted to the dermatome innervated by the ganglia from which
the virus reactivated (Wareham and Breuer, 2007). The incidence
of HZ is estimated to be 3 per 1000 adults between the age of
40 and 50 years old and increases to 11 cases per 1000 adults
above the age of 80 years old (Keating, 2016). VZV reactivation
can also cause other complications such as HZ ophthalmicus,
vasculitis, stroke, as well as pain without development of a rash,
referred as zoster sine herpete (Dayan and Peleg, 2017). Routine
vaccination of children against chickenpox was implemented
in several countries including Japan (1988), the United States
(1995), and Canada (1999) using the live attenuated VZV vaccine
that was derived from the Oka strain (Gershon, 2017). There are
currently two available vaccines to prevent HZ in the elderly: a
live-attenuated (Zostavax R©, licensed 2005,∼55% efficacious) and
a recombinant (Shingrix R©, licensed 2018, 97% efficacious) vaccine
(Arnold and Messaoudi, 2017a; James et al., 2018).

Despite extensive studies, our understanding of VZV
pathogenesis remains incomplete. First, the mechanisms by
which VZV disseminates from the initial site of infection to
the skin and ganglia are poorly understood. The prevailing
model proposes that VZV initially replicates within mucosal
epithelial cells at the sites of entry, followed by spread to tonsils
and other regional lymphoid tissues, where VZV gains access
to T cells that deliver the virus to cutaneous sites of replication
and sensory ganglia (Zerboni et al., 2014). However, this model
was constructed primarily using data obtained from in vitro
studies carried out using the attenuated Oka vaccine strain and
in vivo studies utilizing a severe-combined immunodeficient
(SCID) mouse model implanted with human fetal tissues (SCID-
hu) (Moffat et al., 1995; Ku et al., 2004). Moreover, the exact
timeline as well as the mechanisms through which the latency
is established and maintained following primary infection still
remains unclear. In order to address these questions, a reliable
animal model that recapitulates the key hallmarks of VZV
infection is necessary.

SIMIAN VARICELLA VIRUS INFECTION:
AN IN VIVO MODEL TO STUDY
VARICELLA ZOSTER VIRUS
PATHOGENESIS

Numerous attempts have been made to develop a reliable
animal model that recapitulates the hallmarks of VZV infection.
However, the success of these models remains limited due to the
strict human specificity of VZV. Although seroconversion was
observed following VZV inoculation in different rodent models
including guinea pigs, mice, and rats; no virus was detected in
circulation in these models (Haberthur and Messaoudi, 2013).
Infection of guinea pigs was rendered possible through the
derivation of a guinea pig-adapted VZV strain (by passaging

the virus multiple times in fetal guinea pig cells) and injection
of peripheral blood mononuclear cells (PBMCs) that are first
infected in vitro (Gan et al., 2014). Although VZV was shown
to establish latency in enteric neurons in vivo, the inconsistent
development of both viremia and rash in addition to the inability
to induce VZV reactivation in vivo limits the use of this small
animal model (Haberthur and Messaoudi, 2013). Reactivation
can be induced in vitro through overexpression of VZV ORF61
in latently infected guinea pigs enteric neurons (Gershon et al.,
2008). Subcutaneous injection of VZV-infected cells in rats was
reported to lead to establishment of a latency-like quiescent state
in sensory ganglia although the virus was not shown to be able
to reactivate (Annunziato et al., 1998; Sadzot-Delvaux et al.,
1990). In addition, footpad inoculation of VZV-infected cells in
the rat model has been used to study post-herpetic neuralgia
(PHN), long-term chronic pain associated with zoster (Dalziel
et al., 2004). Inoculation of non-human primates with VZV also
resulted in latency and the development of immunity in the
absence of viremia or varicella, suggestive of abortive infection
(Felsenfeld and Schmidt, 1979; Meyer et al., 2015a; Myers et al.,
1987, Provost et al., 1987; Cohen et al., 1996; Willer et al., 2012).
Intradermal inoculation of chimpanzees resulted in a local rash,
however, several restrictions have been placed on the use of apes
for biomedical research (Myers et al., 1987; Cohen et al., 1996).

In order to overcome the host specificity restriction of
VZV, a humanized SCID mouse model was developed using
human tissue xenografts. The engraftment of different human
fetal tissues (thymus/liver, skin, ganglia, and lung) in this
model allowed direct inoculation of VZV and resulted in
several important insights into VZV pathogenesis (Moffat et al.,
1995; Ku et al., 2004; Zerboni et al., 2005; Reichelt et al.,
2008; Wang et al., 2017). However, this model also presents
several limitations including: (1) direct inoculation into the
human xenografts tissues does not mimic natural route of
transmission; (2) the lack of adaptive immunity, which is
critical to control viral infection; and (3) the possibility that the
strict human host specificity of VZV may alter virus behavior
in this model; (4) the use of the attenuated Oka vaccine
strain in some of these studies, which compared to the parent
wild type strain contains numerous nucleotide substitutions
found in multiple open reading frames (ORFs) and may
therefore not accurately model the behavior of wild type virus
strains (Jones and Arvin, 2003; Yamanishi, 2008; Sen et al.,
2015).

To overcome these limitations an alternative animal model
was developed where non-human primates are inoculated with
Simian varicella virus (SVV), an alphaherpesvirus that causes a
vesicular rash in Old World monkeys. SVV and VZV virions
have a diameter of 170–200 nm and 80–120 nm, respectively,
and are composed of a nucleocapsid of icosahedral symmetry
surrounded by a viral envelope (Gray, 2010). The nucleocapsid
of both SVV and VZV contains a linear double-stranded DNA
genome of 124,138 and 124,884 bp, respectively. The viral
genomes of SVV and VZV include a unique long sequence
of 104.1 and 104.8 kb, respectively, and a unique short region
that comprises a 4.9 and 5.2 kb sequence for SVV and VZV,
respectively, as well as internal repeat and terminal repeat

Frontiers in Microbiology | www.frontiersin.org 2 December 2018 | Volume 9 | Article 3170

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-03170 December 19, 2018 Time: 16:7 # 3

Sorel and Messaoudi Varicella Virus-Host Interactions: Lessons From SVV

regions (Clarke et al., 1992). SVV and VZV genomes share
70–75% DNA homology (Gray and Oakes, 1984) and an
amino acid identity ranging from 27 to 75% (Gray et al.,
2001). Both VZV and SVV encode 74 ORFs of which 71 are
distinct and 3 (ORFs 69, 70, and 71) are duplicated within
the repeat regions (Mahalingam and Gilden, 2007; Zerboni
et al., 2014). Despite exhibiting co-linearity with respect to gene
organization, SVV ORFA is absent in VZV genome while SVV
does not include a gene homolog of VZV ORF2 (Gray et al.,
2001).

The first outbreak of a varicella-like disease in non-human
primates was reported in 1967 followed by several epizootics in
primates facilities worldwide (Clarkson et al., 1967; Gray, 2008).
Depending on the non-human species, SVV infection can cause
disease that ranges from a mild varicella (in rhesus macaques
also called Macaca mulata) to a severe and life-threatening
disease associated with high morbidity and mortality rates
[cynomolgus monkeys (Macaca fascicularis) and African green
monkeys (Chlorocebus sabaeus)] (Gray, 2008). This spectrum
of disease outcomes is a hallmark of herpesvirus infection in
species that are closely related to the natural host, e.g., Macacine
herpesvirus 1 (also known as herpes simian B virus) infection in
humans (Elmore and Eberle, 2008), Elephant endotheliotropic
herpesvirus infection in Asian elephants (Long et al., 2016),
and Alcelaphine herpesvirus 1 in cattle (Sorel et al., 2017).
Moreover, SVV infection in cynomolgus monkeys and African
green monkeys results in persistent viremia which limits the
use of these models to study the adaptive immune response
against SVV (White et al., 2002; Mahalingam et al., 2007). In
contrast, intra-bronchial inoculation of rhesus macaques with
SVV faithfully recapitulates the hallmarks of VZV pathogenesis
including: viremia, development of varicella, generation of
robust cellular and humoral immune responses, establishment of
latency in the sensory ganglia, and viral reactivation following
immune suppression (Messaoudi et al., 2009; Meyer et al.,
2011; Haberthur et al., 2013, 2014; Arnold et al., 2017;
Figure 1).

ROLE OF T CELLS IN SVV TRAFFICKING

Data from several studies carried out using the hu-SCID
mouse model strongly suggest a critical role for T cells in
VZV dissemination. First, direct inoculation of VZV-infected
fibroblasts into human fetal thymus and liver xenografts placed
under the kidney capsule of SCID mice revealed that T cells
support VZV replication (Moffat et al., 1995). Furthermore,
injection of VZV-infected T cells into human skin xenografts
implanted in the SCID model demonstrated the importance of
the type I interferon response in restricting VZV replication
in the skin (Ku et al., 2004). More importantly, intravenous
injection of VZV-infected T cells but not fibroblasts resulted in
vesicular rash of human skin implants suggesting that T cells can
traffic the virus to the skin (Ku et al., 2004). These observations
gave rise to the current model which stipulates that VZV gains
access to T cells that deliver the virus to cutaneous sites of
replication (Zerboni et al., 2014). However, given the limitations

of this mouse model, findings from these studies cannot be
extrapolated to decisively uncover the mechanisms by which
VZV hijacks T cells to disseminate to the ganglia in the human
host in vivo.

In both rhesus macaques and African green monkeys,
different subsets of immune cells, including T cells, were shown
to reach the ganglia as early as 3 days post intrabronchial
inoculation (dpi) during acute infection (Ouwendijk et al.,
2013b; Arnold et al., 2016a), prior to the detection of anti-
SVV specific T cell immunity, these results suggest that T cells
play an important role in SVV dissemination to sensory ganglia.
Interestingly, CD8 memory T cells were the most abundant
subset of immune cells infiltrating the ganglia of SVV-infected
African green monkeys and rhesus macaques (Arnold et al.,
2016a; Ouwendijk et al., 2016). In support of the potential
role of T cells as Trojan horse for SVV, T cells isolated from
bronchial alveolar lavage (BAL) samples during primary infection
supported viral replication (Arnold et al., 2016a). Similarly, T
cells infiltrate the enteric nervous system during acute SVV
infection in African green monkeys (Ouwendijk et al., 2018).
These results obtained in the SVV infection model along with
the studies reporting that VZV infected T cells can traffic the
virus to human xenografts in the SCID-hu mouse model further
emphasize the importance played by T cells in varicella viruses
dissemination and pathogenesis (Ku et al., 2004; Zerboni et al.,
2005).

In order to improve our understanding of the mechanisms
by which SVV alters T cells migratory behavior and to in SVV
trafficking, a recent study analyzed the transcriptional profile
of T cells in BAL samples following SVV infection in rhesus
macaques (Arnold and Messaoudi, 2017b). This study reported
that multiple cellular processes were dysregulated in T cells upon
SVV infection, including genes involved in chromatin assembly,
immune response, cell cycle, and cellular metabolism. These
results suggest that SVV might alter T cell functions in order to
achieve efficient viral replication and allow the virus to spread
in the host while evading the immune system. Interestingly, in
line with this hypothesis, previous in vitro studies using single-
cell mass-spectrometry analysis (CyTOF) have reported that VZV
infection of human tonsil T cells leads to upregulation of several
immune genes including components of the TCR signaling
machinery (Sen et al., 2014, 2015).

SVV LATENCY PATTERN IN THE
RHESUS MACAQUE MODEL

Transcriptomic analysis of BAL cells collected from
rhesus macaques during SVV primary infection showed
that all ORFs were expressed between 3 and 7 dpi
with increasing intensity that correlated with viremia
(Meyer et al., 2011). The most highly expressed SVV
ORFs detected at 3 dpi in BAL samples were ORF 57
(unknown function), ORF 41 (capsid protein), ORF 55
(component of the DNA helicase-primase complex), and
ORF 63 (transactional activator) (Meyer et al., 2011).
At 7 dpi, ORF63, ORF41 as well as ORF49 (structural
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FIGURE 1 | Model of Simian Varicella Virus (SVV) pathogenesis in rhesus macaques following intrabronchial inoculation. Intrabronchial inoculation of rhesus
macaques with SVV results in primary infection associated with viral replication in the lung, T cell viremia and the development of varicella. SVV reaches sensory
ganglia as early as 3 days post infection. Initial viral replication is followed by the establishment of latency in the sensory ganglia. SVV can reactivate upon immune
suppression. Both primary infection and viral reactivation induce robust cellular and humoral immune responses.

protein) were the most abundant transcripts expressed
in BAL cells (Meyer et al., 2011). Parallel analysis of
the viral transcriptome profiles of PBMCs derived from
rhesus macaques infected with SVV revealed that only
18 SVV ORFs were expressed at 10 dpi in these samples,
consistent with significantly lower viremia (Meyer et al., 2011).
However, similarly to the BAL samples, the most highly

expressed viral genes included ORFs 23, 41, and 63
(Meyer et al., 2011).

Latency is a state that is characterized by a restricted
viral gene expression pattern. In line with that expectation,
only 12 SVV ORFs were detected sporadically during SVV
latent infection in the sensory ganglia. Importantly, ORF61
was the most abundant and consistently detected transcript in
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the ganglia during latent infection (Meyer et al., 2011). More
specifically, the antisense transcript of ORF61 was found to be
5–9 times more abundant than sense transcripts (Messaoudi
et al., 2009). Similar findings were reported for latently infected
ganglia collected from Vervet and African green monkeys (Ou
et al., 2007; Ouwendijk et al., 2013a). Recently, the presence
of an ORF61 anti-sense transcript was reported for VZV latent
infection (Depledge et al., 2018a). Although multiple isoforms
of VZV ORF61 antisense transcripts were detected during
lytic infection, only one isoform was predominant during
latency and was shown to suppress VZV ORF61 expression
(Depledge et al., 2018a). Taken together, these results suggest
that cessation of ORF61 expression by the anti-sense transcript
may be critical in the establishment and maintenance of
latency. Interestingly, establishment of latency was not impaired
in animals infected with an SVV mutant deleted of ORF61
(SVV1ORF61) (Meyer et al., 2013c). Since ORF61 is thought
to be shut off by the anti-sense transcript in order to prevent
reactivation during latency, the lack of the ORF61 anti-sense
transcript following infection with SVV1ORF61 would explain
why establishment and maintenance of latency are not affected
by the deletion.

SVV ORF61 is an immediate early gene that encodes a protein
with a RING finger motif at the amino terminus, which is
important for potential E3 ubiquitin ligase activity as well as
a nuclear localization signal at the N terminus (Gray et al.,
2007). Previous in vitro studies showed that ORF61 protein can
transactivate its own promoter as well as promoters of SVV
genes of all kinetic classes (Gray et al., 2007). Although SVV
ORF61 is non-essential for SVV lytic cycle in vitro, SVV1ORF61
replicates 2- to 5-fold less efficiently compared to the wild-type
(WT) virus (Gray et al., 2007). Similarly, in vivo infection with
SVV1ORF61 was associated to a decreased expression of all viral
transcripts and decreased viral loads in rhesus macaques (Meyer
et al., 2013c). Infection with SVV1ORF61 also led to increased
infiltration of plasmacytoid dendritic cells (pDC) into the lungs
and expression of interferon stimulated genes in vivo suggesting
a potential role of ORF61 in evasion of the host innate immune
response (Meyer et al., 2013c). Indeed, both SVV and VZV
ORF61 were shown to interfere with NF-κB signaling in vitro
(Whitmer et al., 2015).

THE IMPORTANT ROLE OF T CELLS IN
THE ESTABLISHMENT AND
MAINTENANCE OF LATENCY

Intrabronchial infection of rhesus macaques with SVV results in
the development of both innate and adaptive immune responses
in the lungs concomitant with a decrease in the SVV viral
loads observed (Arnold et al., 2016b). The mucosal innate
immune response is characterized by a significant production
of pro-inflammatory cytokines, chemokines (including T cell
chemoattractants) and IFNα into the alveolar space that
correlates with increased frequency of pDCs (Haberthur et al.,
2014; Arnold et al., 2016b). This initial response is followed
by a robust proliferation and infiltration of B and T cells in

the lungs (Haberthur et al., 2014). Although CD8 T cells were
found to be more abundant, a higher proportion of CD4 T
cells were specific to SVV in the BAL (Haberthur et al., 2014).
This observation is in line with several studies that reported a
critical role for CD4 T cells in controlling both SVV and VZV
acute infection (Haberthur et al., 2011; Duncan and Hambleton,
2015; Sen et al., 2015; Sen and Arvin, 2016). Indeed, whereas
depletion of B cells and CD8 T cells showed no or limited
effect on disease severity, CD4 depletion led to higher viral
loads, prolonged viremia, and disseminated varicella (Haberthur
et al., 2011). These results explain why children with T cell
deficiencies are more prone to developing serious complications
following VZV infection whereas children with B cell deficiencies
have uncomplicated disease (Arvin et al., 1978; Wilson et al.,
1992; Nader et al., 1995; Redman et al., 1997; Zerboni et al.,
1998).

The anti-SVV T cell responses during acute infection in rhesus
macaques is broad with CD8 T cell responses directed mainly
against immediate-early (IE) and early (E) viral proteins whereas
CD4 T cell responses were mostly specific to late (L) proteins
(Haberthur et al., 2013). During latency, the magnitude of the T
cell response decreases dramatically and becomes more restricted
(Haberthur et al., 2013). Specifically, T cell responses directed
against only 5 ORFs (ORF 4, 11, 19, 31, and 37) were maintained
during latency whereas specific T cell responses to ORFs 10,
20, 29, 31, 62, 63, 68 showed a significant decrease compared
to primary infection (Haberthur et al., 2013). Amongst these
viral antigens, ORF68 (gE) is the most abundant glycoprotein,
a critical determinant of VZV pathogenesis (Moffat et al., 2004;
Berarducci et al., 2009; Zerboni et al., 2011), and a highly
immunogenic viral antigen (Vizoso Pinto et al., 2010). These
data suggest that boosting T cell responses against these viral
antigens that are highly immunogenic during acute infection but
poorly recognized during latency may be a promising direction
for HZ vaccine. Indeed, the highly efficacious new recombinant
subunit HZ vaccine (Shingrix R©) contains an adjuvanted form
of VZV gE that was shown to elicit a robust humoral and
cell-mediated immunity (Mo et al., 2002; James et al., 2018;
Syed, 2018). In contrast, ZostavaxTM induces a lower VZV-
specific cell-mediated immunity including a reduced gE-specific
memory T cell responses compared to Shingrix R©(Levin et al.,
2018; Weinberg et al., 2018).

The importance of T cell responses during acute infection
in the establishment of latency is evidenced by the detection of
high level of viral transcription in ganglia of animals depleted
of CD4 T cells during acute infection (Meyer et al., 2013b). It
should be noted that at the time of ganglia analysis, the animals
were no longer viremic. These results strongly suggest that loss
of CD4 T cell immunity during acute infection impaired the
establishment of a latency in sensory ganglia of infected macaques
(Meyer et al., 2013b). In accordance with this observation, SVV
infection of aged rhesus macaques was also characterized by
dampened T cell responses and high levels of viral transcription
inconsistent with latent infection (Meyer et al., 2013b). More
recently, direct inoculation of VZV-infected fibroblasts into
human fetal dorsal root ganglia (DRG) implanted under the
kidney capsule as well as intravenous transfer of VZV-infected
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CD4 T cells showed persistent viral replication in the ganglia
tissue followed eventually by latency (Zerboni et al., 2005;
Reichelt et al., 2008). These data from the hu-SCID mouse suggest
that adaptive immune responses may not be critical for the
establishment of latency. However, the CD4 T cells were most
likely obtained from VZV-seropositive individuals and therefore
the fact that they may harbor VZV-specific T cells cannot be
dismissed. Similarly to VZV, stress and immune suppression
can induce SVV reactivation leading to anterograde axonal
transport of virions to the skin causing HZ lesions (Soike et al.,
1984; Mahalingam et al., 2007, 2010; Traina-Dorge et al., 2014).
Because T cells were shown to be critical in the establishment
of latency, a recent study investigated the specific role of T cell
immunity in preventing SVV reactivation (Arnold et al., 2017).
This study showed that depletion of either CD4 or CD8 T cells in
latently infected animals led to subclinical reactivation (defined as
viremia detected in the absence of zoster rash) and an increase in
the viral loads in the ganglia (Arnold et al., 2017). Moreover, large
transcriptional changes of genes involved in inflammation and
neuronal functions were reported in the ganglia obtained from
animals that experienced subclinical reactivation (Arnold et al.,
2017). Taken together, these results support the critical role of T
cell immunity in maintaining SVV latency.

IMMUNOLOGICAL OUTCOMES
FOLLOWING REACTIVATION

Other studies have attempted to induce reactivation in SVV-
latently infected rhesus macaques using a combination of
total body irradiation (2–8 Gy) and immune suppressant
regimens (cyclosporine and tacrolimus). In some of these
studies, cynomolgus and rhesus macaques were irradiated
before receiving tacrolimus and prednisone, resulting in clinical
reactivation in 25 and 100% of animals, respectively (Mahalingam
et al., 2007; Traina-Dorge et al., 2014). In another study,
treatment with only immune suppressants resulted in 75%
reactivation (Ouwendijk et al., 2013a). The incidence of HZ
obtained following these experimental treatments is significantly
higher than the reactivation rate reported in humans. Another
perplexing outcome of these studies includes the very high
incidence of reactivation in the non-treated controls which
is often ∼100%. Other groups failed to reproduce these
findings using the same approaches (Meyer et al., 2015b),
potentially due to a higher level of stress induced by a longer
transportation to the irradiation site for the animals in the
compared to those housed in the Oregon National Primate
Center.

Following reactivation, SVV antigens were detected in
multiple tissues, including skin and lymph nodes in rhesus
macaques despite the lack of viremia at the time of HZ
(Traina-Dorge et al., 2015). In skin tissues, SVV antigens
were found mainly in sweat glands, whereas in lymph nodes,
they were detected in macrophages, dendritic cells (DCs),
and T cells. It is possible that DCs containing SVV antigens
are activating T cells in the peripheral lymph nodes or that

infected DCs are transferring SVV to T cells as previously
described for VZV (Abendroth et al., 2001). Additionally,
SVV reactivation in rhesus macaques induces the development
of a strong systemic pro-inflammatory response (Traina-
Dorge et al., 2014) associated with an overall increased in
the number of total T cells compared to latency (James
et al., 2014). T cell infiltration was detected in the sensory
ganglia of cynomolgus macaques experiencing reactivation where
neurons were found to be surrounded mainly by CD8 rather
than CD4 T cells (Ouwendijk et al., 2013a). Moreover, as
previously reported for post-mortem human sensory ganglia
derived from patients who suffered from HZ at the time
of death (Steain et al., 2011), the authors detected elevated
levels of CXCL10, a chemokine involved in T cell migration
(Ouwendijk et al., 2013a). Taken together these results suggest
that the pro-inflammatory response play an important role
in initiating T cell recruitment to the site of SVV/VZV
reactivation. However, the high reactivation rates in the control
animals raises concerns about the clinical significance of these
findings.

CONCLUSION AND FUTURE
PERSPECTIVES

Although studies over the last few decades have led to significant
advances in our understanding of VZV pathogenesis, several
questions remain unanswered. Specifically, although it is now
well established that that T cells play a critical in the pathogenesis
of both VZV and SVV, the exact mechanisms by which VZV/SVV
modulate T cell functions to alter their migratory properties
and confer ability to access into the central nervous system
are not known. Furthermore, the viral and cellular factors that
control establishment and maintenance of SVV/VZV latency in
sensory ganglia remain poorly understood. Notably, the role of
the ORF61 anti-sense transcript during the transition from lytic
to latent phases has yet to be investigated. Similarly, the role of
epigenetic modifications (such as histone/DNA methylation or
histone acetylation) in the maintenance of latency remains to be
studied. Future studies should uncover the impact of persistent
transcriptional changes within the ganglia on neuronal function.
SVV infection in rhesus macaques provides a model well-suited
to further our knowledge of varicella viruses’ pathogenesis. The
availability of this model together with a versatile bacterial
artificial chromosome (Gray et al., 2011; Meyer et al., 2013a) that
facilitates manipulation of the viral genome will play a critical role
in addressing these remaining gaps in our knowledge.
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