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After primary infection, herpesviruses persist for life in their hosts in a latent stage (Adler et al.,
2017). Different subfamilies of herpesviruses establish latency in specific and different sets of cells
(Pellett and Roizman, 2013; Lieberman, 2016). The latent stage can be interrupted by periods of
lytic replication, termed reactivation. Reactivation is important for viral spread to new hosts or
for the maintenance of the viral reservoir in the host. Usually, reactivation is not associated with
disease but under certain circumstances, it may be accompanied by clinical symptoms. The stimuli
and the precise molecular mechanisms that lead to reactivation from the latent state are not fully
understood and can differ from one herpesvirus to another.

HERPESVIRUS REACTIVATION IN THE HUMAN HOST BY
“CLASSICAL” TRIGGERS

A number of stimuli that trigger reactivation in humans are known for a long time – we
term them as “classical” triggers of herpesvirus reactivation (Figure 1): (i) Alphaherpesviruses,
e.g., latent HSV-1 in neurons of various ganglia, are for example reactivated by local injury
to tissues innervated by latently infected neurons or by systemic physical or emotional stress,
fever and microbial co-infection as well as UV-exposure or hormonal imbalance (Roizman
and Whitley, 2013; Roizman et al., 2013). (ii) Reactivation of betaherpesviruses, for example
CMV, is observed commonly in the setting of immunosuppression, particularly where allogeneic
stimulation and pro-inflammatory cytokines are present and stimulate cellular differentiation to
macrophages or dendritic cells (Stinski and Meier, 2007; Liu et al., 2013; Dupont and Reeves,
2016; Lieberman, 2016). (iii) Stimuli that induce reactivation of gammaherpesviruses, for example
EBV, are differentiation of B cells into plasma cells through antigen stimulation of the B-cell
receptor. In vitro, and potentially likewise in vivo, also cytokines including TGF-beta can induce
B-cell activation and thus result in lytic EBV infection. Additionally, host cell stress, induced for
example by chemotherapy or body irradiation, can reactivate latent EBV. In cell culture, EBV
reactivation can also be triggered by phorbol ester 12-0-tetradecanoyl phorbol-13-acetate (TPA),
sodium butyrate or calcium ionophores (Kenney, 2007; Murata, 2014). Many of these reactivation
triggers activate classical signal transduction pathways, including protein kinase C, p38 kinase, c-
Jun N-terminal kinase (JNK), ERK kinase and PI3 kinase. In conclusion, there are many settings of
a specific herpesvirus, a specific host cell and a specific stimulus, determining the transition from
latency to lytic cycle (Kenney, 2007; Murata, 2014; Dupont and Reeves, 2016; Cliffe and Wilson,
2017).

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.03207
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.03207&domain=pdf&date_stamp=2019-01-07
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tobias.stoeger@helmholtz-muenchen.de
mailto:tobias.stoeger@helmholtz-muenchen.de
mailto:h.adler@helmholtz-muenchen.de
https://doi.org/10.3389/fmicb.2018.03207
https://www.frontiersin.org/articles/10.3389/fmicb.2018.03207/full
http://loop.frontiersin.org/people/142454/overview
http://loop.frontiersin.org/people/541020/overview


Stoeger and Adler “Novel” Triggers of Herpesvirus Reactivation

FIGURE 1 | “Classical” and “novel” triggers of herpesvirus reactivation. Both types of triggers are able to induce reactivation of latent herpesviruses. The respective

signal transduction pathways that are activated may be shared, or may vary depending on the stimulus, the cell type and the virus. Although reactivation is usually not

associated with disease, it may be accompanied by clinical symptoms under certain circumstances.
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“NOVEL” TRIGGERS OF HERPESVIRUS
REACTIVATION

Beside the above described “classical” triggers of herpesvirus
reactivation, we propose the existence of additional, so far
unappreciated “novel” triggers of herpesvirus reactivation
(Figure 1). This proposal is based on recent findings by
us and by others. Reese et al. found that helminth co-
infection reactivated murine gammaherpesvirus 68 (MHV-68)
in vivo in an IL-4/Stat6-dependent manner (Reese et al., 2014;
Reese, 2016). We demonstrated that cells persistently infected
with murine or human gammaherpesviruses responded to
nanoparticle (NP) exposure by reactivation of latent virus and
by restoring a molecular signature found during productive
infection (Sattler et al., 2017). In our study, we exposed cells
or mice latently infected with MHV-68 to different NP. In
vitro, NP-exposure resulted in expression of lytic viral genes
and virus production. In vivo, an increase in lytic viral proteins
and gene expression was observed in lungs and cells from
bronchoalveolar lavage. The patterns of gene and metabolite
expression in whole lung tissue were strikingly similar to acute
virus infection. In human cells latently infected with EBV,
NP-exposure also induced virus production. The carbonaceous
NPs used in our study were (i) carbon black like surrogates
of environmental NPs, derived for example from combustion
or mass production, as well as (ii) carbon nanotubes (CNTs)
as examples for promising new materials in technology and
biomedicine. Thus, it is well-conceivable that other types of
NPs, derived from different materials, might also be able
to induce herpesvirus reactivation. Furthermore, a variety of
additional factors, present in the environment but so far not
considered to be triggers of herpesvirus reactivation, might be
relevant too.

POTENTIAL HEALTH RELEVANCE OF
“NOVEL” INDUCERS OF HERPESVIRUS
REACTIVATION

The finding, that helminth co-infection wakes up dormant
gammaherpesviruses might have major implications for human
health. This has already been discussed by Maizels and Gause
(Maizels and Gause, 2014). Equally, our discovery that exposure
to NP is able to activate gammaherpesviruses that are dormant
in the lung may have consequences for human health in an
environment with an increasing exposure to NP. Both innate
and adaptive immune responses are modulated by NP, leading
for example to immunosuppression or hypersensitivity (Pallardy
et al., 2017). Exposure to ambient respirable particles such as
man-made mineral fibers or vehicle exhaust emissions have been
associated with various adverse health effects (Seaton et al.,
2010). When inhaled, NP deposit efficiently and persistently
in the alveolar region of the respiratory tract. Their pro-
inflammatory properties shape chronic lung diseases like asthma,
chronic obstructive pulmonary disease (COPD), pulmonary

fibrosis or cancer (Byrne and Baugh, 2008; Morgenstern et al.,
2008; Bonner, 2010; Sese et al., 2018; Siroux and Crestani,
2018). The rapid expansion of nanotechnology bears the risk
of increasing the incidences of these diseases. Herpesvirus
infections may also contribute to the development of chronic
pulmonary diseases (Meneghin and Hogaboam, 2007; Vannella
and Moore, 2008; Naik and Moore, 2010; Kropski et al., 2012).
However, potentiation by a combined exposure to both triggers
has not been investigated.We propose that repeated NP exposure
and concomitant herpesvirus reactivation result in chronic
inflammatory and remodeling processes in the lung, for example
by permanently stimulating an aberrant immune response,
finally leading to immunopathology and disease development.
It is tempting to speculate that inhaled NP might also be
among the unknown triggers suspected to enable propagation of
additional resident viruses of the airway virome, thereby causing
exacerbations of various lung diseases (Marsland and Gollwitzer,
2014).

Following exposure via various routes including inhalation,
NP are not only found in the lung but also deposited in numerous
organs including the central nervous system (Hong et al., 2017;
You et al., 2018). Inhaled nanoparticles can translocate into the
systemic circulation and have been shown to accumulate at sites
of vascular inflammation and disease (Miller et al., 2017). There
is a long term controversy with regard to the contribution of
herpesviruses to other chronic diseases beyond the lung: For
example, CMV has been associated with coronary heart disease
(atherosclerosis) (Du et al., 2018), and EBV, HHV-6 and VZV
with multiple sclerosis (Geginat et al., 2017). We propose that
also in these disease entities, an interaction of NP with latent
herpesviruses may result in reactivation with subsequent chronic
inflammation and disease development.

Taken together, future studies on effects of NP-
induced herpesvirus reactivation on human health,
possible treatments and potential regulatory measures are
warranted.
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