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Host-associated bacterial communities have received limited attention in polar habitats,
but are likely to represent distinct nutrient-rich niches compared to the surrounding
environment. Antarctic krill (Euphausia superba) are a super-abundant species with a
circumpolar distribution, and the krill microbiome may make a substantial contribution to
marine bacterial diversity in the Southern Ocean. We used high-throughput sequencing
of the bacterial 16S ribosomal RNA gene to characterize bacterial diversity in seawater
and krill tissue samples from four locations south of the Kerguelen Plateau, one
of the most productive regions in the Indian Sector of the Southern Ocean. Krill-
associated bacterial communities were distinct from those of the surrounding seawater,
with different communities inhabiting the moults, digestive tract and faecal pellets,
including several phyla not detected in the surrounding seawater. Digestive tissues
from many individuals contained a potential gut symbiont (order: Mycoplasmoidales)
shown to improve survival on a low quality diet in other crustaceans. Antarctic krill
swarms thus influence Southern Ocean microbial communities not only through top-
down grazing of eukaryotic cells and release of nutrients into the water column, but also
by transporting distinct microbial assemblages horizontally via migration and vertically
via sinking faecal pellets and moulted exuviae. Changes to Antarctic krill demographics
or distribution through fishing pressure or climate-induced range shifts will also influence
the composition and dispersal of Southern Ocean microbial communities.

Keywords: Antarctic krill, Euphausia superba, Southern Ocean, microbiome, high-throughput DNA sequencing,
16S rRNA

INTRODUCTION

Marine microbial assemblages play key roles in global biogeochemical cycling (Sunagawa et al.,
2015). However, the contribution of macro-organisms to marine microbial assemblages is often
overlooked (Tang et al., 2010; Troussellier et al., 2017). Macro-organisms represent nutrient-rich
and potentially low-oxygen environments compared to the surrounding water column, as well as
providing both internal and external surfaces for microbial colonization. The diversity of niches
provided by macro-organisms helps maintain marine microbial diversity and disseminate rare
microbes (Troussellier et al., 2017).
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Antarctic krill (Euphausia superba) is a keystone species
of Southern Ocean food webs (Croxall et al., 1999), with an
estimated biomass of 379 million tons (Atkinson et al., 2009).
Antarctic krill represent nutrient-rich microenvironments in the
Southern Ocean, supporting bacterial abundances several orders
of magnitude higher than the surrounding seawater (Donachie
and Zdanowski, 1998). Antarctic krill, like other zooplankton,
are likely to support distinct bacterial communities compared to
seawater (Tang et al., 2010; Troussellier et al., 2017). Given their
high abundance and circumpolar distribution, krill-associated
microbiota likely make a substantial contribution to Southern
Ocean microbial communities.

Antarctic krill-associated microbiota are also likely to vary
between tissue types due to the different environments they
represent. Krill moults are likely to be colonized by bacteria
with chitinase activity such as Colwellia, Alteromonas and Vibrio
sp. (Cottrell et al., 2000; LeCleir et al., 2004). Zooplankton
gastro-intestinal tissues and faecal pellets represent oxygen-
depleted environments able to support obligately anaerobic
bacteria (Marty, 1993; Proctor, 1997). Furthermore, tissue-
specific bacterial communities may be influenced by other factors
such as geographic location and developmental stage. Southern
Ocean bacterial communities are known to vary between water
masses (Wilkins et al., 2013), which will influence the bacteria
available to colonize internal and external surfaces. Changes
in diet with either location, season (and food availability) or
developmental stage (e.g., Schmidt et al., 2014) will alter both
the bacteria ingested and the nutrient environment within the
zooplankton gut.

We used high-throughput sequencing of the bacterial
16S rRNA gene to characterize seawater and krill-associated
bacteria from four locations in the Southern Indian Ocean.
We hypothesized that krill-associated microbiota would be
distinct from the surrounding seawater, and that different krill
microhabitats (moult, stomach, digestive gland and faeces) would
harbor distinct communities. We also tested whether geographic
location, developmental stage, or sex could explain the observed
variation in bacterial communities for each microhabitat.

MATERIALS AND METHODS

Sample Collection
Samples were collected on board the RSVAurora Australis during
cruise V3 between 31 January and 19 February 2016 as part of
the Kerguelen Axis voyage. The physical oceanographic context
for the voyage is described in Bestley et al. (2018). Antarctic
krill were sampled from four swarms in the Indian sector of
the Southern Ocean (Figure 1) using targeted trawls with a
Rectangular Mid-water Trawl 1+8 (RMT-1+8 m2) net. Trawl
depths ranged between 10–25 and 65–80 m (determined by
acoustically estimated depth of the swarm in the water column),
and the pairwise distance between trawls ranged from 260 to
1269 km. Immediately after each trawl, two liters of surface water
(4 ± 2 m depth) from the vessel’s uncontaminated seawater line
was filtered onto 0.22 µm Sterivex filters and stored at −80◦C to
compare seawater and krill bacterial community profiles.

FIGURE 1 | Trawl locations used in this study of krill-associated bacteria. The
distance between the closest trawls (T11 and T16) is 260 km and the furthest
trawls (T25 and T39) is 1269 km. Upper and lower blue lines show the
October and January sea ice extent, respectively. The mean locations of the
principal fronts (following Orsi et al., 1995) are shown as dotted lines. PF, polar
Front; SACCF, southern Antarctic circumpolar current front; SB, Southern
boundary of the ACC.

In order to isolate moult, faecal and tissue microbiomes, live
krill, immediately after capture, were transferred to 250 mL
jars (one krill per jar) which were ventilated with small holes
to allow seawater exchange as per Virtue et al. (2010). The
jars were incubated in large (1600 L) flow-through seawater
tanks close to ambient ocean temperature (approx. 1◦C) with
no additional food provided (Kawaguchi et al., 2006). Jars were
inspected for moults at 12 h intervals, with the first six animals to
moult from each trawl sampled for microbial community profiles
(all collected within 48 h). The animal, associated moult, and
any faecal material present were removed from the jar, rinsed
with 0.22 µm-filtered seawater and stored separately in liquid
nitrogen before being stored at −86◦C on return to Australia.
For one trawl (T16), seawater from the six individual jars was
filtered separately onto 0.22 µm Sterivex filters to test whether
moult and faecal bacterial community profiles differed from their
experimental environment.

On return to Australia, sampled krill were thawed and the
stomach and digestive gland dissected, and rinsed with 0.22 µm-
filtered seawater. Animals were staged/sexed and the length of
the uropod exopodites recorded as a proxy for animal size as per
Virtue et al. (2010) either on the ship or immediately prior to
dissection (Melvin et al., 2018).

DNA Extraction, PCR Amplification and
High-Throughput Sequencing
Tissue samples (moult, stomach, digestive gland, faeces), Sterivex
filters and two extraction controls (1 ml ethanol, 95 samples total)
were sent to the Australian Genome Research Facility (AGRF,
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Adelaide, Australia1) in ethanol on dry ice for DNA extraction
using the DNeasy PowerLyzer PowerSoil kit (QIAGEN). DNA
concentrations were quantified using a NanoDrop ND-8000
Spectrophotometer (ThermoFisher Scientific, Waltham, MA,
United States). PCR amplification, amplicon purification and
high-throughput sequencing of bacterial 16S V1-3 rDNA
(primers 519R: GWATTACCGCGGCKGCTG, Lane et al.,
1985; and 27F: AGAGTTTGATCMTGGCTCAG, Lane, 1991)
were carried out at the Ramaciotti Centre for Genomics
(Sydney, Australia) on an Illumina MiSeq (San Diego, CA,
United States) following the Australian Marine Microbes
protocol2.

Bioinformatics and Statistical Analysis
DNA sequence processing and taxonomic assignment followed
the Australian Marine Microbial Biodiversity Initiative workflow
(Brown et al., 2018), with data presented as amplicon sequence
variants, or zero-radius operational taxonomic units (zOTUs,
Edgar, 2016) to maximize potential phylogenetic resolution. In
brief, paired-end reads were merged, short sequences (<400 base
pair, bp) and sequences containing N’s or homopolymer runs
>8 bp were removed. Sequences were de-replicated and those
with <4 representatives removed. Chimeras were removed and
zOTUs identified using the unoise3 command (Edgar, 2016).
Quality-filtered sequences were mapped to the zOTUs to create
a sample-by-read abundance matrix. Taxonomy was assigned to
each zOTU based on the SILVA v132 database (Yilmaz et al.,
2014).

Extraction controls produced extremely faint PCR products,
and preliminary analysis showed these samples had lower OTU
richness than other samples (20 ± 1 and 44 ± 3 OTUs each
based on an OTU table rarefied to 8500 reads), but included krill-
associated bacteria, potentially due to cross-well contamination
during extraction or PCR amplification. Ordination plots based
on weighted UniFrac distance showed that the extraction
controls were most similar to other samples with DNA
extract concentrations < 0.2 ng/µl (mostly faecal and digestive
gland samples), but one control clustered with higher yield
samples based on unweighted UniFrac distance (Supplementary
Figure S1). This reflects presence of krill-associated zOTUs in
the control but in distinct proportions to actual krill tissue
samples, presumably due to cross-contamination. The effect of
contamination will be greatest in samples with low quantities of
endogenous DNA, as exemplified in this case by the extraction
controls. Hence, we conservatively excluded all samples with low
DNA concentrations (<0.2 ng/µl, n = 13 faecal, 5 digestive gland
and 1 stomach sample), although we note that removing these
samples had little effect on community profiles and characteristic
taxa identified for each sample type. Samples with less than
5000 reads were also removed. Lastly, OTUs present in only one
sample or with five reads or less across the dataset were removed.

We examined OTU richness (alpha-diversity) for each sample
type with rarefaction curves generated using the ‘iNEXT’ package
(Hsieh et al., 2016) in R version 3.4.2 (R Core Team , 2017).

1http://www.agrf.org.au
2http://www.bioplatforms.com/marine-microbes/

Relationships between OTU richness (based on an OTU table
rarefied to 8500 reads) and sample type were investigated
using negative binomial generalized linear models (GLMs) fitted
using the ‘glm.nb’ function in the ‘MASS’ R package. Pairwise-
comparisons of sample types were performed using the ‘glht’
function in the ‘multcomp’ R package (Hothorn et al., 2008), with
p-values adjusted for multiple comparisons using Tukey’s Honest
Significant Difference (HSD) procedure.

Differences in bacterial community composition between
sample types were explored using weighted and unweighted
UniFrac distances (Lozupone and Knight, 2005) in QIIME
v1.8.0 (beta_diversity_through_plots.py, Caporaso et al., 2010)
based on a rarefied OTU table (8500 reads). We tested
for homogeneity of multivariate dispersions between sample
types using PERMDISP in QIIME (compare_categories.py). The
strength of groupings was assessed using PERMANOVA allowing
for differences in dispersion as per Anderson et al. (2017),
with significance tested using a permutation approach. We also
used PERMANOVA to test whether sex, developmental stage
or trawl location (swarm) were significant factors determining
community similarity for three tissue types (moults, stomach and
digestive gland).

The Linear Discriminant Analysis (LDA) Effect Size (LEfSe,
Segata et al., 2011) method was used to identify taxa that showed
different abundances between three sets of sample classes: habitat
(seawater and jar water); moults; and gastro-intestinal (digestive
gland, stomach, and faeces). Default settings were used except the
LDA threshold was increased to 4.0 and the α-value was reduced
to 0.01 to highlight the most significant taxa discriminating
between sample types.

RESULTS

Alpha-Diversity
The final dataset (excluding extraction blanks and samples
with low DNA yield) included 3.32 million reads from 73

FIGURE 2 | Number of bacterial OTUs observed at different sequencing
depths in Southern Ocean and krill tissue samples. Data are means ± SD for
each sample type at each rarefaction level, plotted to the minimum
sequencing depth for each sample type.
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samples (mean ± SD = 45464 ± 22262 reads per sample,
range = 8543–138951), representing 2271 OTUs. Of these, 758
(33.4%) were exclusively associated with krill tissue or faeces, i.e.,
not present in either seawater or jar water samples. This is likely
a conservative estimate of krill-specific OTUs as faecal and moult
OTUs were likely to be present in jar water, indeed 1424 OTUs
(62.7%) were exclusively associated with krill tissue, faeces or jar
water.

Based on the rarefied OTU table, moult, seawater and jar
water all contained a similar number of OTUs per sample
(moult: 490 ± 79, seawater: 426 ± 64, jar water: 568 ± 56,
P > 0.05). Stomach and faecal samples were less diverse
(stomach: 137 ± 96, faecal: 196 ± 77), with digestive gland
communities showing lower OTU richness than any other sample
type (45 ± 25, P < 0.001). Moult communities could contain
more OTUs than other tissue samples due to contamination
from diverse sea (or jar) water communities. However, moult
samples still had significantly higher OTU richness than stomach,
digestive gland and faecal samples when all 1513 OTUs
present in sea and jar water were excluded from the analysis
(P < 0.001). Rarefaction curves show that OTU diversity is
saturated for stomach, digestive gland and faecal samples with
8500 reads, whereas greater sequencing depths are required
to accurately estimate diversity for moult and water samples
(Figure 2).

TABLE 1 | Results of pairwise tests using PERMANOVA allowing for differences in
dispersion comparing bacterial communities between krill-associated and
environmental sample types.

Unweighted UniFrac Weighted UniFrac

Sample
type 1

Sample
type 2

t P t P

Seawater Jar water 1.83 0.011∗ 2.13 0.024∗

Seawater Moult 2.54 0.0003∗∗ 3.15 0.0056∗∗

Seawater Stomach 2.52 0.0003∗∗ 2.78 0.0024∗∗

Seawater Digestive
gland

3.03 0.0018∗∗ 3.89 0.0011∗∗

Seawater Faeces 1.85 0.10 1.46 0.19

Jar water Moult 2.72 0.0001∗∗ 4.41 0.0001∗∗

Jar water Stomach 3.50 0.0001∗∗ 4.29 0.0001∗∗

Jar water Digestive
gland

4.38 0.0001∗∗ 5.68 0.0001∗∗

Jar water Faeces 2.08 0.012∗ 1.35 0.12

Moult Stomach 3.96 0.0001∗∗ 4.13 0.0001∗∗

Moult Digestive
gland

5.20 0.0001∗∗ 5.59 0.0001∗∗

Moult Faeces 2.05 0.0003∗∗ 1.07 0.36

Stomach Digestive
gland

1.96 0.0003∗∗ 2.41 0.0002∗∗

Stomach Faeces 1.47 0.025∗ 1.54 0.088

Digestive
gland

Faeces 1.80 0.0024∗∗ 1.94 0.013∗

Dissimilarities between communities were estimated using weighted and
unweighted UniFrac distance. P-values are based on a permutation approach.
∗P < 0.05, ∗∗P < 0.01.

Differentiation Between Sample Types
(Beta-Diversity)
PERMDISP indicated significant differences in dispersion
between sample types for both weighted and unweighted
UniFrac distances (weighted UniFrac: F5,67 = 10.99, unweighted
UniFrac: F5,67 = 34.64, P < 0.001 for both). PERMANOVA
allowing for differences in dispersion showed sample types
supported distinct bacterial communities (weighted UniFrac:
F5,67 = 10.72, R2 = 0.416, P < 0.001, unweighted UniFrac:
F5,67 = 10.01, R2 = 0.402, P < 0.001, Figure 3). Pairwise
comparisons of sea and jar water communities with krill moult,
stomach and digestive gland communities were significant for
both weighted and unweighted UniFrac distances (P < 0.01,
Table 1), whereas faecal samples were only statistically distinct
from jar water samples based on unweighted UniFrac distance
(P = 0.01). Similarly, pairwise comparisons of the four krill
sample types showed each one supported a distinct community
(P < 0.05), with the exception of faecal versus stomach
and moult communities using weighted UniFrac distance
(P > 0.05).

Proteobacteria were >50% of reads on average across all
sample types (Figure 4, see Supplementary Figure S2 for
class and order level plots). Bacteroidetes were present in
all samples, but showed the highest mean relative abundance
in seawater (23.1%) and moult samples (21.8%). Tenericutes
and Firmicutes were largely restricted to tissue samples,
whereas the mean contribution of Actinobacteria was 1.7–
19.0% in the three digestive tract sample types (stomach,
digestive gland and faeces), but less than 1% in other
samples.

Two of the three most abundant OTUs in the study
were from the order Mycoplasmoidales (phylum Tenericutes,
Gupta et al., 2018), and most closely related to ‘Candidatus
Hepatoplasma,’ a genus associated with arthropod midgut
(hepatopancreas) communities, known to show host-specificity
and associated with survivorship of (terrestrial) isopods on
low quality food (Fraune and Zimmer, 2008). Mean relative
abundances were highest in digestive gland and stomach
tissue (20 ± 29% and 12 ± 28%, respectively), but were
highly stochastic, being absent from four stomach and two
digestive gland samples, but greater than 20% of reads in
13 samples (3 stomachs, 5 digestive glands, 5 moults), and
greater than 75% in two stomach and two digestive gland
samples. Presence was not related to sex, developmental
stage, or trawl, with all swarms including individuals where
Mycoplasmoidales represented <0.5% and >10% of digestive
gland reads.

LEfSe Results
LEfSe analysis showed 46 taxa displayed different abundances
between habitat (seawater and jar water), moult and gastro-
intestinal (GI, including digestive gland, stomach, and faeces)
bacterial communities (P < 0.01, LDA > 4.0). Similar numbers
of taxa were enriched in each of the three groups (habitat –
18, GI – 16, moults – 12). All five orders enriched in seawater
or jar water were Proteobacteria (SAR11 and SAR86 clades,
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FIGURE 3 | Non-metric multidimensional scaling (nMDS) plot of bacterial communities from different sample and Euphausia superba microhabitats using weighted
(A) or unweighted UniFrac distance (B).
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Rickettsiales, Cellvibrionales, and Oceanospirillales). SAR11
in particular had a mean relative abundance of 19 ± 4% in
sea and jar water (Figure 5). Orders enriched in the krill-
associated samples included members of the Campylobacterota
(Campylobacterales, moults), Bacteroidetes (unclassified
Bacteroidia, moults), Actinobacteria (Propionibacteriales,
GI) and Firmicutes (Bacillales, GI). The mean relative
abundance of Colwellia (Alteromonadales) was more than
40% across moult samples, but less than 10% in stomach,
digestive gland and seawater samples (seawater – 4.0%,
digestive gland – 3.0%, stomach – 6.0%). The genus Pelomonas
(Betaproteobacteriales) had a mean relative abundance of
9.8 ± 9.5% in digestive gland samples, 1.5 ± 2.5% in stomach,
but <0.1% in moult and water samples. The mean relative
abundance of Arcobacter (Campylobacterales) in moult samples
was ten-fold higher than any other sample type (2.3% vs.
<0.2%).

Factors Driving Krill-Associated
Microbiomes
We performed three-way PERMANOVAs to test whether
trawl location (swarm membership), developmental stage or
sex were significant factors determining bacterial community
similarity for three tissue types (moults, stomach and digestive
gland). Trawl location explained the greatest proportion of
variance and had the lowest P-value for each of the three
tissue types (moult: F3,15 = 11.88, R2 = 0.579, P < 0.001,
stomach: F3,12 = 1.90, R2 = 0.271, P = 0.06, digestive gland:
F3,8 = 2.18, R2 = 0.336, P = 0.04, Figure 6 and Supplementary
Table S1). Developmental stage was also marginally significant
(P = 0.036) for moult communities, with a significant interaction
between trawl and sex (P < 0.01). However, the four trawls
did not have a balanced number of developmental stages
or sexes (males, females, and juveniles), but tended to be
dominated by females or juveniles that we could not sex,
with only four males in the 24 samples. Hence, this particular
experiment was not the ideal design to test whether sex or
developmental stage is a key determinant of krill-associated
microbiomes, especially in light of the strong effect of swarm
membership.

DISCUSSION

In this study, we show Antarctic krill support distinct bacterial
communities compared to the surrounding seawater, with each
tissue representing distinct microhabitats with their own bacterial
assemblages. Between 33 and 63% of the OTUs from this study
represent exclusively krill-associated bacteria, suggesting krill
are a major source of Southern Ocean microbial diversity. Krill
also supported distinct phyla to those found in the surface
seawater samples, including Actinobacteria, Campylobacterota,
Firmicutes, and Tenericutes. Although Actinobacteria can
represent a substantial proportion of the bacterial community
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FIGURE 5 | Examples of taxa displaying differential abundance between sample classes (habitat, moult or gastro-intestinal). Sample type-specific mean relative
abundances are shown with a solid horizontal line, and medians with a dashed line where possible. JW, jar water; SW, seawater; DG, digestive gland.
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FIGURE 6 | Non-metric multidimensional scaling (nMDS) plot of bacterial communities from different trawls (T11, T16, T25, and T39, see Figure 1) for moult (A),
stomach (B), and digestive gland samples (C) using weighted UniFrac distance.

in circumpolar deep water, the other three phyla do not
reach relative abundances > 1% in any Southern Ocean water
mass (Wilkins et al., 2013; Sow et al., unpublished data).
Different tissues host distinct bacterial communities (Figures 3–
5), as per the human and other microbiomes (The Human
Microbiome Project Consortium et al., 2012; Llewellyn et al.,
2014; Dittmer et al., 2016). Our results vastly extend the
known diversity of krill-associated bacteria based on culture-
dependent techniques (e.g., Donachie and Zdanowski, 1998;
Gómez-Gutiérrez and Morales-Ávila, 2016), and by looking at
multiple tissues from krill collected across different locations,
provides the first insight into factors influencing the krill
microbiota.

The Antarctic krill moult and gut microbiota show similarities
to other marine microbiomes. High relative abundances of
moult-associated Colwelliaceae were also found in Calanus
copepods (Moisander et al., 2015). Some Colwellia species
are chitinolytic (Deming et al., 1988), which may allow them
to exploit the estimated 15 million tons of chitin produced
in krill moults per annum (Nicol and Hosie, 1993). We
found Oceanospirillales were enriched in sea and jar water
compared to krill-associated communities, but were also present
in all moult samples (Figure 5), as in the copepod-associated
microbiome (Shoemaker and Moisander, 2015). The moult-
associated Arcobacter OTU showed 96% identity to a Southern
Ocean yeti crab episymbiont (Kiwa sp., Zwirglmaier et al.,
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2015), suggesting conservation, to some degree, of epibionts
between benthic and pelagic Southern Ocean taxa. Enrichment
of Burkholderiaceae in krill gastro-intestinal tissue, largely driven
by Pelomonas, has also been observed in the copepod-associated
microbiome (Shoemaker and Moisander, 2015). Pelomonas is
also found in other marine and terrestrial arthropods (Shelomi
et al., 2013; Gorokhova et al., 2015), and some Hydra-associated
species have antifungal properties (Fraune et al., 2015).

Our results suggest some, but not all, Antarctic krill
harbor a bacterial gut symbiont. Two of the most abundant
OTUs in this study were from the order Mycoplasmoidales,
with 83% sequence identity to Candidatus Hepatoplasma
crinochetorum, a bacterium known to improve survival of
terrestrial isopods on low quality food (Fraune and Zimmer,
2008). However, the greater similarity of the krill-associated
‘Candidatus Hepatoplasma’ 16S sequence to bacteria isolated
from marine compared to terrestrial crustaceans (93–95% vs.
83%) suggests the marine taxa may represent a distinct clade
within the order Mycoplasmoidales. If Mycoplasmoidales has
a similar role in Antarctic krill, its presence could assist with
survival over-winter or the transition from the euphotic to the
benthic zone. The stochastic occurrence and abundance could be
related to the periodic loss of the stomach during moulting, or the
need to acquire the bacterium from the environment as observed
for terrestrial isopods (Wang et al., 2007). Metagenomic studies
could resolve whether krill gastro-intestinal tissues colonized
by Mycoplasmoidales have a distinct functional profile to other
krill. The most closely related sequences in GenBank have 95%
identity to a bacterium from Norwegian lobster, and 93% identity
to a hydrothermal vent shrimp (Chorocaris chacei) bacterium,
raising the possibility that many marine crustaceans host species-
specific Mycoplasmoidales symbionts. Future research should
test whether Southern Ocean euphausiids that co-occur with
Antarctic krill also host Mycoplasmoidales, and whether they are
host-specific.

We found moult communities had similar richness to
seawater, whereas gastro-intestinal samples had much lower
diversity (Figure 2). Oriental river prawn gut microbiomes were
also less diverse than corresponding lake or river water bacterial
diversity (Chen et al., 2017), whereas the diversity of crayfish
carapace communities were similar to and correlated with their
environment (Skelton et al., 2016). Moult communities were
collected within 12 h of being shed and could include bacteria
that colonized after moulting, but this method has the benefit
of sampling all bacteria associated with the carapace versus
only surface-associated bacteria retrieved by swabbing, and that
all krill are sampled at the same point in the moult cycle.
Quantifying absolute microbial abundance by qPCR or flow
cytometry (e.g., Vandeputte et al., 2017) would show whether low
gastro-intestinal diversity is a result of low bacterial biomass, and
potentially elucidate the importance of post-moult colonization.

The observed variation in moult and gastro-intestinal
microbiota between trawls increases the contribution of krill-
associated bacteria to total Southern Ocean microbial diversity, as
each swarm supports distinct assemblages. It would be interesting
in future studies to test whether diversity of moult communities
in particular is driven by the ambient environment as per

Skelton et al. (2016), ensuring adequate sequencing depth to
reliably estimate richness of seawater communities (Figure 2).
Surface samples were used to assess seawater communities,
whereas the three trawls with matched surface water samples
had minimum and maximum depths of 10–30 and 25–35 m,
respectively. Although Southern Ocean surface waters can have
distinct bacterial communities to those observed at ∼30 m
depth (Signori et al., 2014), several lines of evidence suggest
the surface water was representative of the krill environment
and that krill support distinct bacterial communities compared
to the surrounding environment. Firstly, the surface mixed
layer depth near these three trawls was similar to or below
the relevant maximum trawl depth (25–52 m, Bestley et al.,
2018), suggesting the bacterial community should be similar at
the surface and the depth of the krill swarm. Secondly, in the
austral summer Antarctic krill migrate to the surface during diel
vertical migration (Siegel, 2005; Taki et al., 2005), hence will
be immersed in the surface water bacterial community for at
least part of each day. Thirdly, the ubiquitous marine bacterial
SAR11 clade represented approximately 20% of reads in all water
samples, but was near-absent from all krill-associated bacterial
communities (Figure 5), supporting the distinct nature of the
krill microbiome.

Stomach and digestive glands potentially contained transient
food-associated bacteria not permanently associated with krill,
and could explain the greater dispersion among GI samples
compared to other sample types (Figure 3). However, the
consistent presence of taxa in GI tissue across four locations
suggests permanent associations. Future research could examine
gastro-intestinal bacterial communities for starved krill to
confirm stable associations (e.g., Moisander et al., 2015).

CONCLUSION

Antarctic krill represent a key microbial habitat in the
Southern Ocean. As well as representing a phylogenetically
distinct community, it is possible that specialized krill-associated
assemblages contribute a distinct suite of functional traits
in terms of biogeochemical cycling. Krill swarms influence
Southern Ocean microbial communities not only through
grazing of eukaryotic cells and release of nutrients into the
water column (Arístegui et al., 2014), but also by providing
distinct habitats and a means to transport microbial assemblages
both horizontally and vertically. Krill swarms have been
observed to migrate 215 km in 16.5 days (Kanda et al., 1982),
with routine diel vertical migrations up to 200 m (Siegel,
2005; Taki et al., 2005), and quite possibly much greater.
The majority of Antarctic krill biomass is found within the
epipelagic zone throughout the year (0–200 m, Siegel and
Watkins, 2016), but adult krill have been observed at depths
up to 3500 m (Clarke and Tyler, 2008; Kawaguchi et al.,
2011). Vertical migration, as well as sinking faecal pellets and
moults, are likely to contribute to dispersal of krill-associated
bacteria throughout the water column. Changes to Antarctic
krill demographics or distribution through fishing pressure
or climate-induced range shifts (Meyer et al., 2017) will also
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influence the composition and dispersal of Southern Ocean
microbial communities. The results of this study will pave
the way for future research into krill biology and ecology,
bacterial symbioses, and Southern Ocean microbiology and
biogeochemical cycling.
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