
fmicb-09-03243 December 27, 2018 Time: 17:39 # 1

ORIGINAL RESEARCH
published: 08 January 2019

doi: 10.3389/fmicb.2018.03243

Edited by:
Samuel Cirés,

Universidad Autónoma de Madrid,
Spain

Reviewed by:
Clare Helen Robinson,

University of Manchester,
United Kingdom
Minna Männistö,

Natural Resources Institute Finland
(Luke), Finland

*Correspondence:
Magdalena Wutkowska

magdalena.wutkowska@unis.no;
magda.wutkowska@gmail.com

Specialty section:
This article was submitted to

Extreme Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 16 October 2018
Accepted: 13 December 2018

Published: 08 January 2019

Citation:
Wutkowska M, Vader A,

Mundra S, Cooper EJ and
Eidesen PB (2019) Dead or Alive; or

Does It Really Matter? Level
of Congruency Between Trophic

Modes in Total and Active Fungal
Communities in High Arctic Soil.

Front. Microbiol. 9:3243.
doi: 10.3389/fmicb.2018.03243

Dead or Alive; or Does It Really
Matter? Level of Congruency
Between Trophic Modes in Total and
Active Fungal Communities in High
Arctic Soil
Magdalena Wutkowska1,2* , Anna Vader1, Sunil Mundra3, Elisabeth J. Cooper2 and
Pernille B. Eidesen1

1 Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway, 2 Department of Arctic
and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø,
Norway, 3 Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo,
Norway

Describing dynamics of belowground organisms, such as fungi, can be challenging.
Results of studies based on environmental DNA (eDNA) may be biased as the
template does not discriminate between metabolically active cells and dead biomass.
We analyzed ribosomal DNA (rDNA) and ribosomal RNA (rRNA) coextracted from 48
soil samples collected from a manipulated snow depth experiment in two distinct
vegetation types in Svalbard, in the High Arctic. Our main goal was to compare
if the rDNA and rRNA metabarcoding templates produced congruent results that
would lead to consistent ecological interpretation. Data derived from both rDNA and
rRNA clustered according to vegetation types. Different sets of environmental variables
explained the community composition based on the metabarcoding template. rDNA
and rRNA-derived community composition of symbiotrophs and saprotrophs, unlike
pathotrophs, clustered together in a similar way as when the community composition
was analyzed using all OTUs in the study. Mean OTU richness was higher for rRNA,
especially in symbiotrophs. The metabarcoding template was more important than
vegetation type in explaining differences in richness. The proportion of symbiotrophic,
saprotrophic and functionally unassigned reads differed between rDNA and rRNA, but
showed similar trends. There was no evidence for increased snow depth influence on
fungal community composition or richness. Our findings suggest that template choice
may be especially important for estimating biodiversity, such as richness and relative
abundances, especially in Helotiales and Agaricales, but not for inferring community
composition. Differences in study results originating from rDNA or rRNA may directly
impact the ecological conclusions of one’s study, which could potentially lead to false
conclusions on the dynamics of microbial communities in a rapidly changing Arctic.

Keywords: below-ground processes, fungal trophic mode, fungal functional group, snow regime, arctic
vegetation, snow fences
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INTRODUCTION

Species loss is a major concern in ecosystem functioning
(Cardinale et al., 2012). Amplicon sequencing of DNA extracted
from environmental samples has become a common tool for
species detection (Bohmann et al., 2014; Bass et al., 2015; Barnes
and Turner, 2016). Since only a small fraction of microbes,
including fungi, can be cultured in the laboratory, monitoring of
these species relies heavily on analysis environmental ribosomal
DNA (rDNA) (Creer et al., 2016). Microbes are embedded
in multi-species assemblages that closely interact with each
other on small spatial scales; genomic methods based on
rDNA used to describe their characteristics, such as taxonomic
diversity (Konopka, 2009). Despite tremendous advancements
in molecular methods, estimating biodiversity and community
composition in many groups of organisms, such as fungi, remains
challenging (Costello, 2015; Hawksworth and Lücking, 2017).

Critical assessment of results, recommendations and best
practices for rDNA metabarcoding is still debated (Goldberg
et al., 2016; Shelton et al., 2016). Methodological biases may
heavily influence fungal study outcomes; this includes bypassing
detection of certain taxonomic groups by choosing particular
marker genes (Schoch et al., 2012) or even marker gene regions
(Blaalid et al., 2013). In spite of these methodological limitations,
a growing body of evidence suggests that the choice between
nucleic acid template, namely rDNA, and its transcribed product
rRNA, may provide inconsistencies. This is due to the fact that
rDNA does not have to correspond with the presence of living
cells in the environment (Anderson and Parkin, 2007; Pedersen
et al., 2015; Carini et al., 2016). Physicochemical properties
of the environment, such as cold temperatures or soil particle
adsorption properties, can enhance preservation of DNA from
dead organisms (Ogram et al., 1988; Saeki and Kunito, 2010; Saeki
et al., 2011). It was recently shown that using rRNA as sequencing
template was superior to rDNA in detecting live bacterial cells in
water (Li et al., 2017). The turnover rate of DNA is expected to
be much slower in soil than in water (Thomsen and Willerslev,
2015). Thus, rDNA metabarcoding of soil samples has a high risk
of being biased by dead material.

Risk of bias in biodiversity assessment from dead material is
particularly high in samples of soil dwelling organisms from cold
climate regions, In the Arctic, lower temperatures slow down the
rate of microbial decomposition and cells or extracellular DNA
may freeze within permafrost (Gilichinsky et al., 1995; Soina
et al., 1995). Old organic material can later intermix through
physical processes in the soil, such as cryoturbation, which
enables soil from deeper depths to be raised to the top exposing
biological material frozen many years ago (Kaiser et al., 2007).
To circumvent these problems, an alternative is to use rRNA
as a metabarcoding template. RNA degrades rapidly when it is
no longer needed in the cell, and therefore gives information
about the metabolically active cells that contribute to microbial
processes (Blazewicz et al., 2013).

Species can play redundant roles in an ecosystem, therefore
recent ecological studies stress targeting functional diversity in
ecosystems, as opposed to biodiversity only (Louca et al., 2016;
Cernansky, 2017). Many fungal species play redundant roles in

ecosystem functioning by exploiting or altering the distribution
of the same resources (Moore et al., 2011). In recent years some
fungal studies focused on parsing operational taxonomic units
(OTUs) into ecologically meaningful groups that play the same
function in the ecosystem, such as trophic modes, represented
by symbiotrophs, saprotrophs and pathotrophs (Nguyen et al.,
2016). All of these trophic modes are important in arctic
ecosystems. Saprotrophic fungi acquire their organic carbon
through decomposition of dead biomass, and are important for
carbon- and nutrient cycling in arctic soils (Buckeridge and
Grogan, 2008; Kohler et al., 2015). Symbiotrophic fungi acquire
their organic carbon through mutualistic partnerships, especially
with plants. This group includes mycorrhizal fungi that play an
important ecological role by supporting plant uptake of nutrients
and water, notably important in arctic tundra where especially
nitrogen may be heavily depleted (Gardes and Dahlberg, 1996;
Timling and Taylor, 2012). Pathotrophic fungi that obtain organic
carbon by harming host cells play a role in controlling other
trophic levels in the ecosystem (Fodor, 2011). Previous studies
have suggested that altered climate can change soil carbon
balance, affecting vegetation composition through the influence
of pathotrophic fungi (Olofsson et al., 2011).

Fungi play important ecological roles in Arctic terrestrial
ecosystems and current knowledge on how Arctic fungal
biodiversity is shaped by climate changes remains scattered
(Timling and Taylor, 2012). Investigating these fungal responses
is clearly at risk of being affected by both methodological bias
and bias induced by extracellular rDNA, which was estimated
to contribute up to 40% of all sequences in soil samples,
thus escalating observed richness and misleading conclusions
about prokaryotic and fungal communities (Carini et al., 2016).
Response of fungal communities to some manifestations of these
changes in the Arctic, such as increased winter precipitation,
were studied using only rDNA (Morgado et al., 2016; Mundra
et al., 2016b; Semenova et al., 2016). Thus, none of these studies
discriminated between metabolically active cells, dead matter,
spores or relict rDNA.

In this case study we assess how the choice of metabarcoding
template (rDNA vs. rRNA) influences the fungal soil community
retrieved from soil samples under different environmental
conditions. We sampled soil in an experimental setting of snow
fences mimicking increased winter precipitation in two distinct
vegetation types: heath and meadow (Morgner et al., 2010).
Then we sequenced ITS2, analyzing rDNA and rRNA-based
metabarcoding data separately. Our main aim was to determine
whether results and ecological conclusions based on rDNA and
rRNA metabarcoding templates were congruent. We analyzed
the data in relation to fungal trophic modes, here defined
as symbiotrophs, saprotrophs and pathotrophs (Nguyen et al.,
2016). We also compared rDNA and rRNA results in relation to
community composition (1) and OTU richness (2). Finally, we
looked into how various edaphic variables influenced community
composition as well as OTU richness for different fungal trophic
modes. Incongruent results between the two metabarcoding
templates at any of these levels may potentially point toward
types of analyses that can create a misleading picture of the
ecosystem.
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MATERIALS AND METHODS

Sampling Site, Experimental Setup, and
Sample Collection
Snow fences established in Adventdalen, Svalbard (78◦10 N,
16◦02-16◦05 E), altered snow regime since winter 2006/2007,
creating approximately 1 m deeper snow in treatment plots
compared to controls (Morgner et al., 2010; Supplements 1 and
1a). Deep snow regime altered annual patterns of two important
physical variables for soil dwelling microorganisms: soil moisture
content and temperature (Cooper et al., 2011). Fences were
established in blocks of 3 fences with 2 blocks per vegetation type:
heath and meadow. Deep snow regime generally had higher soil
nutrients (NO3

−N, NH4
+N, and K) than ambient (Semenchuk

et al., 2015; Mundra et al., 2016b).
Sampling took place on 28 and 30 of August 2012,

simultaneously with a study focusing on Bistorta vivipara
root associated communities from the same sites (Eidesen,
unpublished data). After an individual B. vivipara plant with
its whole root system had been excavated using a small shovel,
two soil samples were collected, filling 2 ml cryo-tubes, from
opposite sides of the resulting hole. The soil samples, procured
from 5 to 10 cm depth with a sterile spatula, were immediately
frozen in liquid nitrogen. In total 96 samples were collected;
2 holes × 2 soil samples × 2 snow regimes × 3 fences × 2
blocks × 2 vegetation types. Edaphic parameters were measured
according to protocols described in Mundra et al. (2015b). To
minimize the effect of small-scale spatial variability the two
primary samples from the same hole were combined prior
to analyses, resulting in 48 true samples (referred to in the
remaining text).

Obtaining rDNA and rRNA Sequences
rRNA and rDNA was co-extracted from 1 to 2 g of frozen
soil using the PowerSoil Total RNA Isolation Kit (MO BIO
Laboratories, United States) and PowerSoil DNA Elution
Accessory Kit (MO BIO Laboratories, United States), both
according to manufacturer’s instructions. Complementary DNA
(cDNA) was synthesized using the Maxima First Strand
cDNA Synthesis Kit for RT-qPCR, with dsDNase (Thermo
Fisher Scientific, United States) following the manufacturers’
instructions, except that a 5 min incubation step was used for
DNase treatment. After DNase treatment, a 1 µl subsample was
used as a no-RT control during subsequent PCR amplification.
All no-RT controls were negative, showing that DNase treatment
had been successful and that cDNA amplification during RT-PCR
was due to rRNA template.

PCRs and library preparations was carried out for rDNA and
cDNA as described in Mundra et al. (2016b), using the primers
fITS7a (Ihrmark et al., 2012) and ITS4 (White et al., 1990) to
amplify the internal transcribed spacer 2 (ITS2) region of the
nuclear ribosomal DNA, using 1 µl of DNA/cDNA as templates.
The protocol for library preparation is described in Mundra et al.
(2016b). The multiplexed samples were paired-end sequenced
(2 × 300 bp) on an Illumina MiSeq sequencer at ACGT Inc,
Wheeling, United States.

Bioinformatic Analysis of Sequencing
Data
The bioinformatic analysis of Illumina sequences followed
the pipeline described by Bálint et al. (2014) with minor
modifications. A total of 8,413,098 paired-end sequenced
reads were filtered using a perl script (supplemented in
Bálint et al., 2014). The remaining 7,779,879 high quality
paired-end sequenced reads (high quality score > 26) were
assembled in PANDAseq 2.6 (Masella et al., 2012). After
quality filtering and assembly, 23 rDNA and 19 rRNA samples
were retained in the analyses. Sequences with primer artifacts
were removed with a python script (supplemented in Bálint
et al., 2014), prior to reorientation using fqgrep 0.4.41 and the
fastx_reverse_compliment function from Fastx Toolkit 0.0.142 to
reverse sequences identified as oriented in the 3′–5′ direction
containing 7,028,992 reads. To demultiplex sequences with
variable length barcodes we used the split_library.py script in
Qiime 1.9.1 (Caporaso et al., 2010), retaining sequences of
200–500 bp, allowing for 1bp primer mismatch, and maximum
length of homopolymer run equal to 8.

5,184,214 demultiplexed sequences were then sorted by length
in a range and dereplicated, before sorting groups by size,
excluding those containing less than five sequences (Nguyen
et al., 2015) in Vsearch 2.7.1 (Rognes et al., 2016). Using
0.97 sequence similarity threshold, 2185 operational taxonomic
units (OTUs) were picked by the cluster_otus function (usearch
8.1.1861; Edgar, 2010) and then 232 putative chimera sequences
were removed in reference based chimera check with uchime2
(Edgar, 2016) against fungal database UNITE+INSD (Kõljalg
et al., 2013; version: UNITE_public_01.12.2017). To retain
only ITS2 fragments of fungal origin, sequences were filtered
through ITSx v. 1.1b (Bengtsson-Palme et al., 2013), leaving
1473 representative sequences. To further exclude non-fungal
sequences we used local blast search (blast+ 2.6.0) against the
nucleotide NCBI database (updated 13.12.2017) and parsed these
results in MEGAN Community Edition 6.5.10 (Huson et al.,
2016) as described in Bálint et al. (2014). Unclustered sequences
were mapped against representative sequences identified as
fungal in MEGAN to obtain an OTU abundance table, which then
was rarefied to 42,488 reads per sample with single_rarefaction.py
in Qiime 1.9.1 (Caporaso et al., 2010). The level of rarefaction was
set based on output from the demultiplexing step. Several samples
with very low read numbers (0–2870 reads), were removed
during this step, based on the assumption that these samples had
failed during the sequencing reaction. The distribution of failed
samples was random, and although leading to a lower number
of total samples in the study and hence lower statistical power,
should not affect the conclusions of our study.

The final OTU table with rDNA and rRNA samples contained
837 OTUs. Since correct identification of species determines
more precise functional assignment, the final taxonomy was
assigned by querying representative sequences against the curated
fungal database UNITE. In cases where we did not get a blast
hit, taxonomy was assigned using the NCBI-NT database. Eight

1https://github.com/indraniel/fqgrep
2http://hannonlab.cshl.edu/fastx_toolkit/
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OTUs were assigned as Rhizaria (all as unidentified class of
Cercozoa). We decided to keep these due to the fact that
they remained in the dataset through two steps of removing
non-fungal OTUs (see above). OTUs were categorized into
trophic modes: symbiotrophs, saprotrophs and pathotrophs
(Supplement 1) using FUNGuild (Nguyen et al., 2016). OTUs
assigned to multiple trophic modes, as well as OTUs with
taxonomic assignment that precluded accurate assignment to a
trophic mode, were marked as “unassigned.” The OTU table was
divided into separate matrices for rDNA and rRNA, which were
analyzed separately for the rest of the study.

Statistical Analysis
Statistical analysis was performed in R v3.4.4 (R Core Team,
2018). All described statistical analyses were performed in parallel
for both rDNA and rRNA.

Community Composition
Global non-metric multidimensional scaling (GNMDS; Kruskal,
1964) was used to analyze dissimilarity matrixes within
rDNA- and rRNA-based community compositions of the
samples containing all OTUs, symbiotrophs, saprotrophs and
pathotrophs separately, on presence-absence OTU tables using
the Jaccard dissimilarity index. In ordination analyses we
used presence-absence data to avoid biases associated with
possible differences in RNA copy number. The ordination
analyses were performed following Liu et al. (2008). Loss of
data during sample preparation and data processing allowed a
direct comparison of only nine extracted pairs of rDNA and
rRNA samples, which was tested by Mantel’s test with 9999
replications (ade4 package 1.7-11, Chessel et al., 2004). Possible
relationships among community composition, edaphic variables
and experimental factors were investigated. The envfit function
in vegan package (v. 2.5-2; Oksanen et al., 2018) was used for
multiple regressions of edaphic variables and vegetation type.
Permutational multivariate analysis of variance (PERMANOVA)
implemented as adonis function in vegan package were used
to assess the effect of vegetation type, snow regime, and their
possible interaction. In the PERMANOVA, we accounted for
spatial variability observed in earlier studies (Mundra et al.,
2015a, 2016a,b) by selecting blocks of fences as a random source
of variation. Strength of relationships between GNMDS axis,
edaphic variables and experimental factors were assessed based
on R2 coefficients of determinations and P-values.

OTU Richness
OTU richness, as number of OTUs per sample, was calculated
using specnumber function in vegan package. We used linear
mixed effects models (lmer function in lme4 package; Bates et al.,
2015) to test if there were any effects of experimental factors
(nucleic acid, snow regime and vegetation type) on richness of all
fungi, symbiotrophs and saprotrophs. Random effects reflected
the experimental design where blocks of fences and fences are
nested in the design. P-values were calculated in Anova function
from car package (v. 3.0-0; Fox and Weisberg, 2011). In some
cases, components of random variance collapsed to 0, meaning
that our data were not sufficient to support a model with this

level of complexity. A linear model without fitting random factors
gave the same estimations, but slightly increased the values of
statistical significance of the results.

RESULTS

Assigned OTUs
In our analysis we retained 42 samples (23 rDNA and 19rRNA).
The rDNA and rRNA combined OTU table contained 837
OTUs which included 288 symbiotrophs, 105 saprotrophs, 34
pathotrophs, and 410 unassigned OTUs (Supplement 3). The
number of OTUs assigned to each trophic mode was similar in
rDNA and rRNA (Supplement 3). However, symbiotrophs, the
dominant trophic mode, were relatively less represented in rRNA
than rDNA reads. Both saprotrophs and unassigned reads were
twice as abundant in rRNA than in rDNA.

Snow regime showed no clear influence on either community
composition or richness (Table 3, Supplements 4, 5, other data
not shown). The "deep snow” and "control" samples within each
vegetation type were therefore pooled in the presented analyses.

Community Composition
GNMDS based on the matrix of all OTUs showed a similar
overall trend of community composition for rDNA and rRNA
(Figure 1). Direct comparison of rDNA and rRNA-derived
dissimilarity matrices obtained from 9 co-extracted samples
showed a strong correlation between the two (Mantel test
observed value: 0.73, p< 0.001). Fungal community composition
based on all OTUs was primarily divided according to vegetation
types: heath and meadow, both for rDNA and rRNA (Figure 1).
Separate GNMDS analyses of rDNA and rRNA for symbiotrophs
and saprotrophs showed the same overall trends, with vegetation
type as the main driver in shaping their community compositions
(r2 = 0.27–0.66 with p = 0.004 or less).

The two vegetation types, heath and meadow, differed in
edaphic parameters (Supplement 2). These edaphic variables
fitted onto GNMDS (all OTUs) revealed pH as a significant
explanatory variable (Table 1), but with different explanatory
value depending on template (rDNA or rRNA) and trophic mode.
While pH had the highest and dominant explanatory value in
all analyses based on rDNA (from r2 = 0.77 in all OTUs and
symbiotrophs; Table 1), other variables tended to explain as
much variability in the rRNA dataset (especially organic matter
content, as well as the connected nitrogen and carbon contents).
Carbon/nitrogen ratio was an important edaphic variable for
explaining rDNA-derived community composition (r2 = 0.27–
0.39), but not at all for rRNA (r2 = 0.03–0.06).

Community composition of pathotrophs showed distinct
trends in regards to clustering in GNMDS and response to
edaphic variable, when rDNA and rRNA were compared,
while patterns observed in symbiotrophs and saprotrophs were
more similar to each other. The 95% confidence intervals
on GNMDS plots showed partial (in rDNA) or total (in
rRNA) overlap in meadow and heath. Furthermore, no edaphic
variables could explain pathotrophic community composition
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FIGURE 1 | Global non-dimensional scaling of all 42 samples plotted based on presence-absence table that included 837 OTUs (A) and according to template (B,
rDNA – 23 samples; C, rRNA – 19 samples) and vegetation type (H, heath; M, meadow).

TABLE 1 | Edaphic variables and vegetation type as a factor fitted into global
non-dimensional scaling of all 23 rDNA samples and 19 rRNA samples (plotted
based on presence-absence matrixes that included all OTUs, symbiotrophs,
saprotrophs, and pathotrophs).

rDNA rRNA r2

r2 Pr( > r) r2 Pr( > r)

All_OTUs

pH 0.77 0.001∗∗∗ 0.67 0.001∗∗∗

Moisture 0.12 0.245 0.16 0.248

Conductivity 0.22 0.062. 0.36 0.028∗

Organic matter 0.12 0.256 0.69 0.001∗∗∗

Total nitrogen 0.17 0.144 0.61 0.001∗∗

Carbon 0.13 0.239 0.64 0.001∗∗

Carbon/nitrogen ratio 0.39 0.011∗ 0.03 0.789

Symbiotrophs

pH 0.77 0.001∗∗∗ 0.63 0.002∗∗

Moisture 0.12 0.277 0.13 0.326

Conductivity 0.22 0.073. 0.36 0.022∗

Organic matter 0.12 0.246 0.65 0.001∗∗∗

Total nitrogen 0.17 0.131 0.50 0.005∗∗

Carbon 0.13 0.214 0.49 0.007∗∗

Carbon/nitrogen ratio 0.39 0.007∗∗ 0.06 0.599

Saprotrophs

pH 0.58 0.001∗∗∗ 0.60 0.002∗∗

Moisture 0.10 0.332 0.17 0.242

Conductivity 0.10 0.340 0.11 0.356

Organic matter 0.10 0.337 0.58 0.001∗∗∗

Total nitrogen 0.25 0.052. 0.43 0.015∗

Carbon 0.19 0.115 0.54 0.002∗∗

Carbon/nitrogen ratio 0.27 0.048∗ 0.06 0.630

Pathotroph

pH 0.14 0.224 0.03 0.807

Moisture 0.07 0.457 0.01 0.931

Conductivity 0.01 0.916 0.08 0.500

Organic matter 0.01 0.940 0.04 0.715

Total nitrogen 0.01 0.957 0.04 0.757

Carbon 0.01 0.902 0.03 0.786

Carbon/nitrogen ratio 0.03 0.735 0.01 0.918

Signif. codes: “∗∗∗” 0.001 “∗∗” 0.01 “∗” 0.05 “.” 0.1 “ ” 1.

(r2DNA = 0.01–0.14 and r2RNA = 0.01–0.08) with statistical
significance (p> 0.224).

OTU Richness
Since richness analyses are sensitive to outliers, after initial
plotting of these values for all samples, we decided to remove
the two highest values (one from each metabarcoding template)
that were abnormally high (177 OTUs in rDNA and 159 OTUs
in rRNA). Mean richness was higher in rRNA, especially in heath
(Figure 2 and Table 2). The same trend was seen in symbiotrophs
and unassigned reads, but neither in saprotrophs or pathotrophs
(Figure 2 and Tables 2, 4).

Taking into consideration experimental (metabarcoding
template choice and vegetation type) and random factors, the
differences in overall OTU richness were driven by the choice of
metabarcoding template, rather than by vegetation type (Table 4;
rDNA < rRNA, model estimation = 16.5, SE = 7.9, p = 0.034
for the template vs. model estimation for vegetation type -
2.5, SE = 8.2, p = 0.591). However, based on OTU richness
for 9 pairs of co-extracted samples, we saw that the effect
of metabarcoding template is important, but not statistically
significant (rDNA < rRNA, model estimation = 12.3, SE = 8.1,
p = 0.149 for the template).

Overall, out of 827 OTUs, there were 199 OTUs present only
in rDNA- and 188 only in rRNA-derived samples. In a subset of
9 co-extracted samples 528 OTUs were detected, from which 135
OTUs were only present in rDNA- and 81 OTUs only in rRNA-
based results.

Relative Abundance of Reads
Based on cumulative relative abundances of sequences,
symbiotrophs were the dominant group in every combination of
factors (metabarcoding template and vegetation type; Figure 3).
The dominance in relative abundance of symbiotrophic reads
was more pronounced in rDNA than rRNA, regardless of
vegetation type (by 6.6% of the reads in the meadow and by
15.4% in the heath). Saprotrophs were more abundant in rRNA
(by 6% of the reads in heath and 3.3% in meadow). rRNA
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FIGURE 2 | Richness of detected fungal OTUs in meadow and heath (without 2 outliers). Red lines connect mean values.

TABLE 2 | Richness of detected fungal OTUs in a snow fence experimental setup.

n µall ± Sd µSymbio ± Sd µsapro ± Sd µpatho ± Sd µunassign±Sd

DNA_H 11 100.1 ± 17.1 39.4 ± 9.8 12.6 ± 2.5 4.8 ± 1.3 42.3 ± 9.4

RNA_H 11 115.5 ± 14.6 45.1 ± 10.2 13.6 ± 3.0 5.5 ± 2.4 50.4 ± 7.5

DNA_M 12 104.1 ± 30.2 31.4 ± 6.6 15.2 ± 6.9 6.3 ± 3.8 50.3 ± 18.0

RNA_M 8 115.1 ± 27.8 41.2 ± 9.9 16.9 ± 5.5 4.3 ± 2.1 51.8 ± 13.6

DNA_M (no outliers) 11 97.5 ± 20.6 30.8 ± 6.6 13.6 ± 4.6 5.5 ± 2.7 46.5 ± 13.2

RNA_M (no outliers) 7 108.9 ± 23.1 38.6 ± 7.8 16.0 ± 5.3 4.0 ± 2.1 49.0 ± 12.0

n, number of samples; H, heath; M, meadow; µ, mean richness for all (µall), symbiotrophic (µsymbio), saprotrophic (µsapro), pathotrophic (µpatho), and unnasigned OTUs
(µunassign); sd, standard deviation.

harbored significantly more functionally unassigned sequences
than rDNA, especially in heath where the difference was the
highest (10.6% of reads). Similarly to saprotrophs, reads not
assigned to any trophic mode, were twice as abundant in rRNA
than rDNA-based results. We observed that an increase in
relative number of reads from saprotrophic and unassigned
trophic modes originated from overall higher richness, as well as
highly expressed rRNA in a particular OTU (Figure 4).

Taxonomic Groups
Although fungi in each trophic mode are functionally similar
in the ecosystem, species can belong to distantly related fungal
orders. For combination of trophic modes and vegetation
types we detected taxonomic groups that might contribute in
varying degree to a bias between rDNA and rRNA-derived

results. Within each taxonomic group OTUs responded in
different ways: some showed overexpressed rRNA, some were
more abundant in rDNA and other OTUs did not change
their abundance when rDNA and rRNA-derived results were
compared. The most consistent overrepresentation of any
taxonomic order in rDNA-results was observed in Agaricales
in every combination of trophic mode and vegetation type,
except saprotrophs in heath (Figure 4). There the numbers of
Agaricales reads did not differ between rDNA and rRNA-derived
results. Symbiotrophic reads overrepresented in rRNA belonged
to Russulales and Thelephorales regardless of vegetation type,
whereas overrepresentation of rRNA-derived sequences from
Pezizales occurred in the heath. Saprotrophic reads that appeared
more often in rRNA in both vegetation types were Helotiales,
and additionally – only in the heath: Mortierellales and only
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TABLE 3 | Permutational multivariate analysis of variance (PERMANOVA, adonis
function in vegan package) based on rDNA and rRNA presence-absence matrixes
of all, symbiotrophic, saprotrophic and pathotrophic OTUs.

Vegetation

Vegetation type Snow regime X Snow

r2 p r2 p r2 p

All OTUs rDNA 0.16 0.133 0.04 0.247 0.04 0.102

All OTUs rRNA 0.14 0.047∗ 0.06 0.011∗ 0.05 0.374

Symbiotrophs rDNA 0.15 0.505 0.04 0.617 0.04 0.391

Symbiotrophs rRNA 0.06 0.512 0.05 0.737 0.06 0.247

Saprotrophs rDNA 0.13 0.023∗ 0.06 0.024∗ 0.05 0.047∗

Saprotrophs rRNA 0.10 0.435 0.07 0.113 0.04 0.897

Pathotrophs rDNA 0.12 0.045∗ 0.06 0.081. 0.06 0.114

Pathotrophs rRNA 0.08 0.424 0.05 0.402 0.06 0.459

Vegetation type and snow regime factors were first tested in forward selection
before testing for interaction. Signif. codes: 0.01 “∗” 0.05 “.” 0.1 “ ” 1.

in meadow: Tremellodendropsidales, whereas Sordariales and
Hypocreales reads were more numerous in rDNA in the heath
than in the meadow. Functionally unassigned reads in rRNA
pool were predominantly unassigned taxonomically to order or
higher rank in both vegetation types, whereas Sebacinales were
found overexpressed only in the heath and Helotiales only in the
meadow.

DISCUSSION

Similarities between rDNA and rRNA metabarcoding of
microbial or cryptic species has received little attention in cold
terrestrial environments. Low temperatures, often below 0◦C,
can slow microbial processes, including the decomposition of
dead biomass. These cells remain in the soil and contribute to a
pool of relic rDNA. Our case study contributes to understanding
which types of analyses of sequences parsed in ecologically
meaningful units may result in most discrepancy between the
two metabarcoding templates. Moreover, we made an attempt
to link both fungal functions and diversity, to pinpoint possible
sources of differences in rDNA and rRNA-derived results from
cold environments.

Our comparison between rDNA and rRNA metabarcoding
templates unveiled no or little divergence in community
composition, also when the sequences were divided into fungal
trophic modes. The clustering according to vegetation type
agrees with former studies, supporting the importance of a
long-lasting interaction between fungal community structure
and vegetation type (Chu et al., 2011; Shi et al., 2015). This
general trend was also consistent for community composition
of symbiotrophs and saprotrophs, demonstrating the fine-
tuning of these functional groups with the vegetation type.
Ordinations based on pathotrophs, the least represented group,
both in number of OTUs and number of reads, did not
show clear differences between vegetation types (as other
trophic modes); this pattern may be due to their stochastic
distribution in the soil (Bahram et al., 2016). We speculate TA

B
LE

4
|R

es
ul

ts
of

lin
ea

r
m

ix
ed

m
od

el
s

ex
pl

ai
ni

ng
ric

hn
es

s
of

al
lO

TU
s,

sy
m

bi
ot

ro
ph

s,
sa

pr
ot

ro
ph

s
an

d
sa

pr
ot

ro
ph

s.

R
es

p
o

ns
e

Fi
xe

d
ef

fe
ct

s
In

te
ra

ct
io

n
R

an
d

o
m

ef
fe

ct
s

R
ic

hn
es

s
In

te
rc

ep
t
±

1S
E

Te
m

p
la

te
±

1S
E

p
Ve

g
et

at
io

nl
±

S
E

p
Te

m
p

la
te

x
ve

g
et

at
io

n
ty

p
e±

1S
E

P
Fe

nc
e:

b
lo

ck
±

S
D

B
lo

ck
±

S
D

A
ll

O
TU

s
99
.7
±

5.
8

16
.5
±

7.
9

0.
03

4
−

2.
5
±

8.
2

0.
59

1
−

4.
7
±

12
.0

0.
72

9
13

.9
4
±

3.
7

0

S
ym

bi
ot

ro
ph

s
39
.0
±

3.
1

6.
2
±

3.
7

0.
03

1
−

8.
2
±

4.
3

0.
20

0
1.

8
±

5.
7

0.
77

5
0

5.
2
±

2.
3

S
ap

ro
tr

op
hs

(Im
)

12
.3
±

1.
0

1.
0
±

1.
6

0.
54

8
1.

0
±

1.
6

0.
54

8
1.

4
±

2.
5

0.
58

8

P
at

ho
tr

op
hs

(Im
)

4.
8
±

0.
7

0.
6
±

0.
9

0.
50

3
0.

6
±

0.
9

0.
50

3
−

2.
1
±

1.
4

0.
01

5

U
na

ss
ig

ne
d

41
.8
±

3.
4

9.
2
±

4.
4

0.
08

0
4.

4
±

4.
8

0.
91

6
−

6.
2
±

6.
7

0.
41

0
11

.3
6
±

3.
4

0

In
ca

se
s

w
ith

al
lO

TU
s,

sa
pr

ot
ro

ph
s

an
d

fu
nc

tio
na

lly
un

as
si

gn
ed

re
ad

s
va

ria
nc

e
of

ra
nd

om
ef

fe
ct

s,
bo

th
ne

st
ed

(fe
nc

e:
bl

oc
k)

an
d

m
ai

n
(b

lo
ck

)c
ou

ld
no

tb
e

es
tim

at
ed

(v
al

ue
s

=
0)

,s
o

in
th

es
e

ca
se

s
w

e
us

ed
lin

ea
rm

od
el

(lm
)i

ns
te

ad
.T

ab
le

in
cl

ud
es

al
lt

he
da

ta
,e

xc
lu

di
ng

2
ou

tli
er

sa
m

pl
es

.

Frontiers in Microbiology | www.frontiersin.org 7 January 2019 | Volume 9 | Article 3243

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-03243 December 27, 2018 Time: 17:39 # 8

Wutkowska et al. rDNA vs. rRNA

FIGURE 3 | Relative abundances of all reads divided into trophic modes
(saprotrophs, symbiotrophs, pathotrophs and functionally unassigned OTUs).

that the strong impact of vegetation type can partly mask
effects of other factors, such as metabarcoding template and
snow fence treatment (Supplements 4, 5). Our findings suggest
that a possible bias introduced by rDNA-based metabarcoding
does not influence the main conclusions regarding community
composition.

Symbiotrophs are usually the dominating fungal functional
group in soils, also in the Arctic (Gardes and Dahlberg, 1996;
Clemmensen et al., 2006; Mundra et al., 2016b), a trend
supported by our study. Both the highest number of OTUs and
the largest proportion of sequences belonged to symbiotrophs,
especially Agaricales. Although dominating in both templates,
a higher proportion of symbiotrophic reads that belong to
Agaricales were detected in rDNA than in rRNA regardless
of vegetation type. This may suggest that relatively more
symbiotrophic rDNA originate from dead cells or extracellular
rDNA (Carini et al., 2016). It is plausible that more symbiotrophic
rDNA is retained in soil because Agaricales are simply more
abundant than other fungi. On the other hand, symbiotrophic
Thelephorales, Pezizales or Russulales might be overestimated
when rRNA is used as an estimator for abundance. The observed
higher proportions of saprotrophic reads in rRNA samples than
in rDNA, suggest that saprotrophic OTUs produce relatively

more rRNA, especially in Helotiales, hence are more active
than the rDNA data would suggest. As we sampled only on
one date it is not possible to tell whether data would be
similar throughout the year or if there would be taxonomically
specific responses to temporal dynamics within the tundra
soil.

Fungi with functionally unassigned sequences comprised a
substantial proportion of all heath sequences, based on rRNA.
Unassigned sequences in this study originated mainly from
novel organisms without any database matches but also from
unresolved/ambiguous functions that change throughout fungal
life cycle or due to changes in the environmental conditions
(Figure 4). We argue that the taxonomically unresolved
component of the fungal community contributes substantially
to active fungal community and recommend looking into these
unknown OTUs with unknown functions.

Differences in the explanatory power of environmental
variables between rDNA and rRNA-based community
compositions have been reported only in a few studies
comparing outcomes from both metabarcoding templates
(i.e., Barnard et al., 2013; Zhang et al., 2014; Lüneberg et al.,
2018). Yet it seems important to understand which parameters
are crucial for shaping the community composition. Our
study confirmed that pH is an important edaphic variable
(Bååth and Anderson, 2003; Rousk et al., 2010; Mundra
et al., 2016a), which explained both rDNA and rRNA-derived
community composition. However, the similarities between
explanatory power of the most important edaphic variables
between the two templates end here. Langenheder and Prosser
(2008) found that resource availability (such as organic matter,
nitrogen and carbon concentration) explained most variability
within rRNA-based results from heterotrophic soil bacteria.
Fungi are also heterotrophic organisms that rely on resource
availability. Both bacteria and fungi enhance their growth rate
and cellular capacity for protein synthesis when metabolically
available nitrogen and carbon levels increase (for more on
regulation: Broach, 2012; You et al., 2013). Effectively, this
means that cells transcribe more rRNA in order to produce more
ribosomes for protein synthesis, to use available resources more
efficiently.

The level of expressed rRNA is not always equivalent to the
level of growing and dividing cells. Instead, the increased number
of rRNA may rather be a stress response for handling multiple
stressors and in order to do so, cells transcribe more ribosomes
than they would for growth without these stressors (Blazewicz
et al., 2013). Contrary to some microbial dormant stages, such as
bacterial spores, basidiospores of five species of fungi were shown
not to contain rRNA (Van der Linde and Haller, 2013), implying
that by using rRNA in our study we eliminate the contribution of
not only dead cells, but also dormant stages of fungi. However,
just before germination when the spores swell, the amount of
rRNA increases rapidly and not proportionally to normal cellular
growth (Moore et al., 2011), possibly influencing our results to
some extent.

The relationship between the number of sequences originating
from rDNA and rRNA is complex. The number of rDNA copies
in a genome differs between organisms, also between fungal
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FIGURE 4 | Correlation of rDNA- and rRNA-derived abundances of OTUs grouped in higher taxonomic rank (order) and divided into assigned trophic modes.
Abundance data come from 9 pairs of coresponding rDNA and rRNA samples; data were log transformed. Data points above the line show orders which contributed
more to rRNA than rDNA pool; and vice versa, data points beneath the line point out orders that contributed more to rDNA than rRNA pool.
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species (Torres-Machorro et al., 2010; Black et al., 2013; Das
and Deb, 2015; Johnson et al., 2015). Copy numbers of rRNA
(ribosomes) can differ depending on conditions and is a result
of the synthesis and degradation rates (Blazewicz et al., 2013).
However, by targeting the ITS fragments in this study, we
eliminated the influence of ribosome degradation rates, since
ITS is removed from the rRNA precursor prior to ribosome
formation (Schoch et al., 2012). While relationships between
cellular growth and rRNA can be measured for cultured
organisms in carefully controlled laboratory conditions, it is not
known how this ratio is maintained in a complex environment
full of interactions and stressors. It is, however, clear that rDNA
copy numbers vary less over time or in different conditions
than the number of rRNA per cell, making rDNA a rather
poor predictor of growth or approximation of biomass content
(Blazewicz et al., 2013).

Changes of environmental and edaphic parameters can cause
shifts in fungal community compositions or in fungal richness.
Strong seasonality in environments, such as in the Arctic
tundra, lead to temporal dynamics within fungal communities
(Mundra et al., 2015a), which can respond differently to
changing conditions depending on their function in the
ecosystem (Mundra et al., 2016b). At the same time, cold
conditions may delay decomposition or favor preservation of
dead biomass (Conant et al., 2011; Ejarque and Abakumov,
2016). In these circumstances, microbial communities monitored
only with rDNA-based marker genes reflect not only currently
thriving microbes, but also these active in the past, even
in a multidecade time frame (Yoccoz et al., 2012). Our
study explored differences of tundra soil between total and
active fungal communities at only one time point. A study
of the temporal dynamics of rDNA and rRNA across all
seasons would profoundly enhance our understanding of
the possible seasonal differences in microbial community
composition, especially after major changes in environmental
conditions.
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