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The term “virosphere” describes both the space where viruses are found and the space

they influence, and can extend to their impact on the environment, highlighting the

complexity of the interactions involved. Studying the biology of viruses and the etiology

of virus disease is crucial to the prevention of viral disease, efficient and reliable virus

diagnosis, and virus control. Electron microscopy (EM) is an essential tool in the detection

and analysis of virus replication. New EM methods and ongoing technical improvements

offer a broad spectrum of applications, allowing in-depth investigation of viral impact on

not only the host but also the environment. Indeed, using the most up-to-date electron

cryomicroscopy methods, such investigations are now close to atomic resolution. In

combination with bioinformatics, the transition from 2D imaging to 3D remodeling allows

structural and functional analyses that extend and augment our knowledge of the

astonishing diversity in virus structure and lifestyle. In combination with confocal laser

scanning microscopy, EM enables live imaging of cells and tissues with high-resolution

analysis. Here, we describe the pivotal role played by EM in the study of viruses, from

structural analysis to the biological relevance of the viral metagenome (virome).

Keywords: electron microscopy, virus diagnosis, cryo electron microscopy, correlative microscopy, scanning

electron microscopy, virus replication

INTRODUCTION

Since the recognition of viruses as the causative agents of disease in the last decades of the
nineteenth century (reviewed in Mettenleiter, 2017), scientists have striven to elucidate their
structure (Figure 1). The high resolving power of electron microscopy (EM) permits studies
at nanometer scale, providing direct images of viruses for diagnosis and research. The term
“Anthropocene” indicates the enormous impact of humankind on geology and ecology (Crutzen,
2002), and this holds true also for the virosphere and its impact. EM explores and validates
new concepts in virology in the Anthropocene age. This is underlined by the emergence of
new taxonomic groups comprising giant viruses and “virophages” (Koonin et al., 2015) and the
generation of new scientific terms such as virosphere, virome, synthetic virology, or bionic viruses
(Suttle, 2007; Guenther et al., 2014; Koch et al., 2016).

Humans act directly or indirectly as virus vectors or dead-end hosts. Climate change, global
trade, and travel open virus highways, leading to high dynamics in virus spread and virus evolution.

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.03255
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.03255&domain=pdf&date_stamp=2019-01-07
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:katja.richert-poeggeler@julius-kuehn.de
mailto:katja.richert-poeggeler@julius-kuehn.de
https://doi.org/10.3389/fmicb.2018.03255
https://www.frontiersin.org/articles/10.3389/fmicb.2018.03255/full
http://loop.frontiersin.org/people/507226/overview
http://loop.frontiersin.org/people/635513/overview
http://loop.frontiersin.org/people/650613/overview
http://loop.frontiersin.org/people/657809/overview


Richert-Pöggeler et al. High-Resolution Analysis of Virosphere

FIGURE 1 | Milestones in EM. Below timeline: achievements in technology, above timeline: applications for biology. TEM, Transmission electron microscopy; SEM,

scanning electron microcopy.

This challenges routine diagnostics based on ELISA or PCR
technologies; the strength of EM lies in its ability to image
the whole spectrum of interactions, including resistance and
non-reactions in the case of new virus isolates or species. EM
can determine functional features of viruses and underlying
mechanisms of interactions relevant in nature as well as in
synthetic virology (see Figures 1, 2).

This review describes the versatility of EM as a universal
means of virus detection, and describes its development from
descriptive tool to the most powerful technique available to
virologists today.

ROUTINE DIAGNOSIS

A change seen in host phenotype can be a first indication of viral
presence, but further analysis is often needed to confirm a virus
infection. In plants, viral symptoms can vary in mixed infections,
in different environmental or growing conditions, and depending
on species or cultivar.

If available, transmission electronmicroscopy (TEM) is a good
initial step in virus diagnosis for several reasons (Huger, 1967,
1974; Koenig and Lesemann, 2001; Gentile and Gelderblom,
2014). The method of choice for direct detection—provided
tissue preservation is not an issue—is tissue homogenization
followed by negative staining (NS). NS has been established as
a fast, robust and universal EM technique for over 60 years
(Brenner and Horne, 1959) and still plays an essential role in
this field (De Carlo and Harris, 2011). Such dip preparations
work equally well on fresh, aged, partly degenerated, or dried
specimens. NS can be applied universally to all biological tissues,
organs, and cell cultures, as well as to soil and aquatic samples,
e.g., from streams, irrigation, sewage outlets, lakes, oceans, etc.

The hallmark of TEM is its “open view” nature, since it
provides an immediate overview of actual status, discerning
amount and shape of virus(es) present, including the unexpected
(Gentile and Gelderblom, 2014; Gelderblom andMadeley, 2018).
As a first step in pathogen recognition, it requires only minute
amounts of samples carrying high virus loads. TEM is unbiased
against RNA or DNA genomes since it targets proteins, the viral
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FIGURE 2 | Decision tree for routine diagnosis using TEM. Red triangle indicates terminal node. IEM, Immuno-electron microscopy; NS, negative staining.

capsid or ribonucleoprotein (RNP) complexes as input (King
et al., 2012). In most cases, the observed morphology allows
immediate preliminary classification to family level based on
particle structure, size, and stability. Thus, TEM serves as a
decisive tool to determine which of the available methods (e.g.,
bioassays, serological, or molecular biology approaches) should
subsequently be used to further identify virus genus and species
(Figure 2).

Immuno-electron microscopy (IEM) is based on the same
serological principles as ELISA, and can be used for further virus
identification during routine TEM diagnosis (Figure 2). IEM
has the advantage that it works directly with raw serum, so no
further purification of immunoglobulins or conjugation steps are
required. Due to the small reaction volumes required, antibody
consumption is low. Most TEM laboratories keep comprehensive
collections of antisera specific to a broad spectrum of virus
species and isolates. Antisera can be stored long term at 4◦C
in the presence of 0.05% sodium azide without significant loss
of activity. Depending on the composition of antigens, as well
as the epitopes present in the original virus purification used
for immunization, polyclonal antisera can be heterogeneous in
their reaction. Therefore, antisera can serve different objectives
during routine diagnosis (Griffiths and Lucocq, 2014). Some
antisera are suitable for capturing multiple viruses within a
genus using IEM, whereas serological relationships will become
visible through strength of antibody attachment in the decoration
step. A homologous reaction displays the virion tightly packed
with antibodies, whereas heterogonous viruses or emerging
isolates will have only a weak antibody coating (Richert-Pöggeler
et al., 2015). If available, monoclonal antibodies targeting single
epitopes provide highest specificity and reproducibility for
distinguishing different virus isolates (Griffiths and Lucocq,
2014).

Based on its ability to recognize contaminations, rapid
application of TEM is essential for quality control of reference
material or of virus preparations used for antibody production
or directly for vaccination. Prompt production of reliable and
comparable results is essential for efficient diagnostics during
unexpected regional virus outbreaks or epidemics, making
TEM an integral part of the protocols followed by national
reference laboratories. Laue andMöller (2016) recently generated
a publicly available database of EM images. Expansion of such
archives will facilitate recognition of newly emerging as well
as unexpected viruses. For instance, plant viruses can serve
as indicators to predict contamination of irrigation water with
pathogenic human viruses (Shrestha et al., 2018).

Due to the potentially serious consequences of viral outbreaks,
rigorous, and universally recognized training of personnel
dealing with virus identification is crucial.

Training in Diagnostic ElectronMicroscopy (DEM) of human
and veterinary infectious diseases can be obtained in an annual
External Quality Assurance (EQA) scheme prepared by the
Robert Koch Institute.

ANALYSIS OF VIRUS FUNCTIONS BY
LABELING OF STRUCTURAL ELEMENTS

Comprehensive studies of virus biology and host responses
require a combination ofmolecular biology, biochemical analyses
and EM (Ni et al., 2014; Klupp et al., 2017; Garcia-Ruiz et al.,
2018). The simultaneous discovery of viruses as novel infectious
entities in both the plant and animal kingdom (Figure 1) revealed
that viruses follow the same basic principles, modified according
to host cell and environment (Ahlquist, 2006; Richert-Pöggeler
and Minarovits, 2014). Various input materials can be used
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for functional analysis with distinct objectives. Homogenized
tissues with high virus concentrations, as well as purified virus
preparations, are suitable for determination of particle size. If
suitable antibodies are available, low virus titer in the original
material can be enriched by pre-incubation of the grid. For
unknown viruses, data gained from virion measurements and
morphology provides information on genome organization and
genome length as well as particle stability. This is also applicable
to validation of artificially generated virus genomes, infectious
full-length clones or derived virus mutants (Laufer et al.,
2018). Particle length distribution discloses valuable data on the
multi-component nature of a virus and the encapsidation of
subgenomic or satellite sequences (Lin and Hsu, 1994; King et al.,
2012; Ni et al., 2014). IEM was seminal in demonstrating the
bipolar structure of some helical viruses (Torrance et al., 2006;
Menzel et al., 2009).

When using embedded material, EM facilitates single cell
analyses as well as direct comparison of adjacent cells from
distinct tissues, e.g., leaf parenchyma with vasculature (Palani
et al., 2009). Modified organelles, membranes as well as
generated structures harboring viral replication complexes can
be correlated with the infection process (Fernández de Castro
et al., 2013; Tilsner et al., 2013; Gómez-Aix et al., 2015).
The ultrastructural localization, function and interaction of
viral proteins as well as dsRNA molecules with the host
have been investigated in artificial expression systems (Kleinow
et al., 2009; Tilsner et al., 2013; Kovalev et al., 2016). These
methods were also applied to study systemic spread in the
host including intracellular and intercellular movement with
cell-to-cell movement and long distance movement. Recent
studies have revealed the function of host susceptibility factors
comprising membrane-acting ESCRT and SNARE proteins
during replication of tombusviruses and production of budded
baculovirions, respectively (Kovalev et al., 2016; Guo et al., 2017;
Garcia-Ruiz et al., 2018). A process akin to autophagy was shown
to be beneficial for replication of coccolithoviruses in algae
(Schatz et al., 2014).

Immunogold labeling enhances imaging of antibody binding
(Palani et al., 2009; Pacesa et al., 2017); furthermore, as well
as facilitating localization and quantification, it enables multiple
labeling on the same object by using gold particles of different
size (Palani et al., 2009; Griffiths and Lucocq, 2014; Erokhina
et al., 2017). In metal-tagging TEM (METTEM) viral proteins
are fused with metallothionein, which, after incubation with gold
salts, leads to the production of electron-dense gold nanoclusters
(Fernández de Castro et al., 2014). This technology has been
used in combination with immunogold labeling and for three-
dimensional (3D) imaging of the interaction of viral replicase
with viral RNA (Kovalev et al., 2016; Fernández de Castro et al.,
2017).

Accuracy in virus quantification can be improved by using
a scanning transmission electron microscopy detector (STEM,
Hartel et al., 1996) in a scanning electron microscope (SEM)
(Blancett et al., 2017).

Combined use of TEM and SEM improves characterization
of larger objects like baculovirus occlusion bodies (Gencer
et al., 2018). TEM enables high resolution of virion structure,

localization, and measurement of particles and ultrastructural
details within embedded occlusion body preparations. On the
other hand, SEM analyses are ideal for high throughput screening
of samples, quality control of preparations, and measurements
for comparison of different isolates (Gencer et al., 2018).

Incorporation of pressure-limiting apertures and gaseous
detection devices allows direct investigation of hydrated
biological samples using SEM (Figure 1). Variable pressure
can be adjusted to object sensitivity (Griffin, 2007). This
technique enables high-throughput screening of material for
virus-transmitting arthropod vectors. Furthermore, live imaging
of developmental stages and vector interaction with the host
surface is now possible.

The use of back scattered electron detectors in field emission
SEM permits an enlarged field of view. Thus, large cellular
volumes embedded in resin sections can be visualized at high
resolution (Rizzo et al., 2016).

SEM works well in direct combination with light microscopy,
and datasets for 3D reconstruction can be obtained easily (Rizzo
et al., 2016; Clarke and Royle, 2018). The correlation of light
and electron microscopy (CLEM) combines the advantages of
both methods—the ability to simultaneously locate the target in
a comparatively large volume and determine its ultrastructure
(Fernández de Castro et al., 2014; Madela et al., 2014; Fonta
and Humbel, 2015; Rizzo et al., 2016). With the increasing
speed of developments in the field of microscopy, CLEM offers
a broad spectrum of applications depending on the specific
question. Good knowledge of viral replication is mandatory for
designing antiviral strategies and therapies. Here, by employing
fluorescent-tagged molecules, CLEM can be very helpful in
finding cells of interest within layers of tissue from living samples
or derived cultures (Fonta and Humbel, 2015; Hellström et al.,
2015).

CRYO-ELECTRON MICROSCOPY

The introduction of direct electron detectors (DEDs) and
advances in image processing have extended the resolution
limit of electron cryo-microscopy (cryo-EM) into the atomic
range (Kühlbrandt, 2014), allowing ab initio atomic model
building. Cryo-EM is ideally suited to exploring the 3D structure
of macromolecular assemblies, and elucidation of the 3D
arrangement of such complexes helps understand their function
in living cells. These technological developments have always
involved analyses of viruses, particularly plant viruses, because
their symmetrical capsids, as well as the availability of highly pure
samples, greatly facilitates reconstruction. Tobacco mosaic virus
(TMV)—one of the very first objects to be seen in an electron
microscope (Kausche et al., 1939)—has been used to evaluate 3D
reconstructions from data recorded on different DEDs (Fromm
et al., 2015), illustrating improvements in resolution into the 3 Å
range compared to the 4–5 Å obtained with CCD cameras (Clare
and Orlova, 2010) under optimal conditions.

Encapsidation of the viral genome is an essential step of virus
particle assembly and, more generally, of the viral life cycle.
Cryo-EM now paves the way to elucidating mechanisms
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of capsid assembly and genome encapsidation, and to
understanding the mechanisms that ensure only the viral
genome is specifically packaged from among a background of
myriad host DNAs/RNAs. Cowpea mosaic virus (CPMV)—a
positive-sense, single-stranded RNA plant virus—and other
members of the order Picornavirales have been investigated
intensively in recent decades. Very recently, high-resolution
cryo-EM structures of wild type and empty virus-like particles
have been determined, implicating the C-terminal region of
the small coat protein (CP) subunit as being required for
virus assembly (Hesketh et al., 2015). The wild-type structure
reveals the dense nature of the RNA inside the capsid shell,
with an arrangement suggesting extensive base-pairing during
encapsidation. The resolution was high enough to identify
amino acid side-chains of the CP that interact directly with
the encapsidated RNA. The circular single-stranded DNA
genomes of geminiviruses—major plant pathogens in crop plants
worldwide—are encapsidated in characteristic D5-symmetric
twin particles formed by two incomplete icosahedra. Some
years ago, the first cryo-EM structures of geminiviruses [one
a mastrevirus (Zhang et al., 2001), the other a begomovirus
(Böttcher et al., 2004)], revealed details of the structure of
these unique particles, which have eluded crystallography
until now. With recent advances in cryo-EM, high-resolution
structures now reveal the fine detail of the organization of the
single capsid protein in the particle, revealing the important
role played by the N-terminus of the protein in different
positions (Hipp et al., 2017; Hesketh et al., 2018). Together
with atomic models of the capsid proteins, these new cryo-EM
maps provide the first clues as to how the protein–genomic
DNA interactions and assembly of these unique particles might
occur.

Advances in cryo-EM have revealed near-atomic structures
of rod-shaped and flexible filamentous plant viruses. In contrast
to the right-handed helical organization of the CPs of rod-
shaped Tobamovirus (Fromm et al., 2015) and Hordeivirus
(Clare et al., 2015), the particles of Potexviruses (Agirrezabala
et al., 2015; DiMaio et al., 2015) and a Potyvirus (Zamora
et al., 2017) are arranged in left-handed helices. Despite low
sequence identity, the CPs of these flexible filamentous viruses
share a common fold and a conserved RNA binding site (Valle,
2018). The CP structures also facilitated the identification of
nucleoproteins from segmented negative-strand RNA viruses as
structural homologs (Agirrezabala et al., 2015; Zamora et al.,
2017).

Apart from deciphering key aspects of genome encapsidation
and assembly of virus particles, cryo-EM may also facilitate the
development of plant virus-like particles for use in biomedical
and nanotechnology applications. Such virus-like particles could
accommodate foreign material or can be chemically modified
for coupling targets while still retaining the ability to assemble
efficiently into particles (Koch et al., 2016; Meshcheriakova et al.,
2017).

Besides cryo-EM of single particles, cryo-electron tomography
has facilitated a major leap in our understanding of viral
infection, revealing the structure and components involved
in virus replication (Ertel et al., 2017). Further 3D imaging

technologies, such as 3D reconstructions of serial sections and
focused ion beam scanning electron microscopy (FIB/SEM) will
also help explore aspects of the viral life cycle (Risco et al.,
2014; Villinger et al., 2015) but are beyond the scope of this
review.

OUTLOOK

The latest master species list (MSL32) assembled by the
International Committee on Taxonomy of Viruses (ICTV)
classifies 4853 virus species covering all host phyla. The
NCBI database records 7512 sequenced viral genomes from
all kingdoms. Viral abundance extrapolated from studies on
the virosphere is estimated at 1031–1032 (Perales et al., 2015).
However, <10% of sequences obtained from metagenomic
surveys showed homology to GenBank accessions (Suttle, 2007).
Comparing the sheer numbers of what is already classified with
as yet uncharacterized viruses predicts the future demand for EM
and its manifold applications in diagnosis, functional analysis,
and high resolution characterization.

High-resolution EM in combination with generation of
mutants of infectious viruses provides a powerful tool for the
detection and study of structural aberrations and their impact
on virus replication and evolution. The biological relevance of
the coexistence of isometric and bacilliform particles, as occurs
in the family Caulimoviridae, representing dsDNA viruses, or
Bromoviridae comprising multipartite positive ssRNA viruses,
is still unknown. In the case of filoviruses—enveloped negative
sense ssRNA viruses—the three different shapes and virion
lengths observed have been assigned to different numbers of
encapsidated viral genomes (Booth et al., 2013). Such polyploidy,
accompanied by elongated particles, has also been described for
one member of the Caulimoviridae (Geijskes et al., 2004), and
awaits further functional analysis.

The ubiquitous nature, high mobility and genetic versatility of
viruses makes them ideal for mediating horizontal DNA transfer.
As demonstrated in recent years, a combination of molecular,
next-generation sequencing and EM technologies has shown that
viruses can encapsidate host nucleic acids corresponding to their
genome composition (Ghoshal et al., 2015). It will be interesting
to see to what extent such hetero-encapsidation promotes the
crossing of kingdom borders by viruses (Balique et al., 2015).
High resolution EM will be essential for risk evaluation with
regard to human health of artificially designed spheres or rods
for use in synthetic virology or nanotechnology.

International efforts by virologists have already established
platforms for direct communication and scientific exchange
(Gould et al., 2012; Roenhorst et al., 2017). The networks
generated coordinate dissemination of viruses and material,
and define standards for establishing and maintaining virus
collections as well as data archiving. Providing bioinformatic
tools for database security and data management seems essential
for efficient application of this new technology in virus
diagnostics and control. These global networks have already
proven successful in pathogen diagnoses and virus epidemiology
(Romette et al., 2018). Strengthening cooperation between
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virologists from different fields to fully exploit technical expertise
and in-depth knowledge of virus hosts will be necessary to
tackle future challenges posed by the high dynamics of the
virosphere.
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