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Interleukin-17A (IL-17A) is a pro-inflammatory cytokine produced by TH17 cells that
participates and contributes in host defense and autoimmune disease. We have recently
reported antitumor properties of the probiotic strain of Lactobacillus casei BL23 in mice
and TH17 cells was shown to play an important role in this beneficial effect. In order to
better understand the role of IL-17A in cancer, we constructed a recombinant strain of
Lactococcus lactis producing this cytokine and we determined its biological activity in:
(i) a bioassay test for the induction of IL-6 production by murine fibroblasts 3T3 L1 cells
line and (ii) in a mouse allograft model of human papilloma virus (HPV)-induced cancer.
Our data show that recombinant L. lactis produces and efficiently secretes biologically
active IL-17A cytokine. Interestingly, ∼26% of mice intranasally treated with L. lactis-
IL-17A and challenged with TC-1 cells remained tumor free over the experiment, in
contrast to control mice treated with the wild type strain of L. lactis which developed
100% of aggressive tumors. In addition, the median size of the ∼74% tumor-bearing
mice treated with recombinant L. lactis-IL-17A, was significantly lower than mice treated
with L. lactis-wt. Altogether, our results demonstrate that intranasal administration with
L. lactis secreting IL-17A results in a partial protection against TC-1-induced tumors in
mice, confirming antitumor effects of this cytokine in our cancer model.

Keywords: Lactococcus lactis, lactic acid bacteria, IL-17A, cancer, HPV

INTRODUCTION

Cancer remains a serious health concern in human society worldwide and colorectal cancer
(CRC), prostrate, lung, stomach, liver and breast cancers are among the major types associated
with significant mortality every year (Ferlay et al., 2012). Cancer is generally considered to
be a disease involving both host genetics and environmental factors; however microorganisms
(such as viruses and bacteria) are associated in ∼20% of human cancers (de Martel et al.,
2012). Recent studies suggest that probiotics can help to fight cancer. Probiotics are live
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microorganism which, when administered in adequate amounts
confer a health benefit on the host (Food and Agriculture
Organization, 2002). For instance, probiotics can induce
dendritic cells (DC) maturation (Delcenserie et al., 2008),
enhance natural killer (NK) cells cytotoxicity (Takagi et al.,
2001), and upregulate cytokine secretion (Delcenserie
et al., 2008; Azcarate-Peril et al., 2011). It has also been
reported that some strains of Lactobacillus can induce DC
maturation and TH1 (antiviral and bacterial immunity) and TH17
(inflammation and auto-immunity) differentiation (Kemgang
et al., 2014; Cai et al., 2016; Lee et al., 2016). However, despite
the great number of studies that have demonstrated anti-
cancer effects of different strains of Lactobacillus (Khazaie
et al., 2012; Konishi et al., 2016; Lenoir et al., 2016), the
precise host molecular mechanisms of these antitumor
properties remain unclear. Next generation probiotics, such
as Akkermansia muciniphila and Faecalibacterium genus
as well as genetically modified microorganisms (GMOs)
(O’Toole et al., 2017) have demonstrated beneficial effects in
the context of cancer, promoting the immune checkpoints
inhibitors therapy targeting the programmed cell death
protein 1 (PD-1) and cytotoxic lymphocyte-associated
antigen (CTLA-4). In addition, other studies support the
role of Bifidobacterium, Bacteroides, Faecalibacterium and
Akkermansia species in cancer therapy targeting the immune
checkpoint blockade (CTLA-4, PD-1), showing a T cell-
specific anti-tumor-induced response (Sivan et al., 2015;
Vetizou et al., 2015; Gopalakrishnan et al., 2018; Routy et al.,
2018).

We previously demonstrated that mucosal administration of
the probiotic strain of Lactobacillus casei BL23 displays anti-
tumor properties in three different murine models of cancer
(Lenoir et al., 2016; Jacouton et al., 2017). Interestingly, we
showed that this strain was able to modulate a T-cell immune
response toward a TH17-biased immune response, accompanied
by the expression of regulatory cytokines (e.g., IL-6, IL-17, IL-
10, and TGF-β), in a murine model of CRC (Lenoir et al., 2016).
In particular we were intrigued by IL-17 induction, since IL-
17 seems to be essential for both metastasis and elimination of
tumor cells (Murugaiyan and Saha, 2009). Thus, IL-17-producing
TH17 cells have recently gained considerable importance in cancer
(Maniati et al., 2010). Therefore, we hypothesized that IL-17-
induced by L. casei BL23 could play an important role in the
anti-tumor effect of this probiotic strain. We thus decided to use
a genetically modified strain of Lactococcus lactis, the model lactic
acid bacterium (LAB), to produce and deliver exogenous murine
IL-17 and to determine its anti-tumor effect in a mouse allograft
model of human papilloma virus (HPV)-induced cancer.

MATERIALS AND METHODS

Bacterial Strains and Growth Conditions
L. lactis MG1363 (Gasson, 1983) was grown in M17 medium
(Difco Laboratories, England) supplemented with 0.5% glucose
(GM17) and 15 µg/ml of chloramphenicol at 30◦C without
agitation.

Construction of a Recombinant Strain of
L. lactis Secreting Murine IL-17
To construct a vector which will allow stress-inducible IL-17
expression in L. lactis a DNA fragment encoding IL-17 mature
sequence was obtained from a recombinant plasmid containing
murine il-17 gene (synthesized by Geneart, Invitrogen) with
NsiI/EcoRI enzymes. As previously described (Benbouziane et al.,
2013), we used pLB333 vector containing nucB gene under the
control of the stress inducible groESL promotor. pLB333 was
digested with the same enzymes to replace nuc gene by il-
17 gene. The resulting vector, pSICE:IL-17 (Figure 1A), was
established into L. lactis MG1363 strain to obtain L. lactis-IL-17.
For detection of IL-17, L. lactis-IL-17 strain (L. lactis-wt was used
as negative control) was grown overnight (ON, optical density
(OD)600nm = 2.0–2.5) as described above. Plasmid DNA isolation
and general procedures for DNA manipulation were essentially
performed as described previously (Sambrook et al., 1989). PCR
amplification was performed using High Fidelity PCR Enzyme
Mix (Fermentas) with a thermal cycler (Applied Biosystem).
DNA sequences were confirmed by sequencing (MWG-Genomic
Company, Germany).

In vitro Validation of IL-17 Production
and Secretion by Recombinant L. lactis
Over-night cultures were washed twice using PBS and culture
pursued (after a 1:10 dilution in GM17 medium) until OD600nm
∼0.6. Then, cultures were induced with 2.5% NaCl for 30 min
and protein samples prepared from 2 ml of the induced cultures.
After centrifugation (10 min, 17500g), the cellular pellet (C)
and supernatant (S) were treated separately. The S samples were
precipitated with 200 µl of trichloroacetic acid (TCA) 100%
for 1 h on ice to recover proteins (centrifugation at 17500g at
4◦C for 30 min) and resuspended in 200 µl of 50mM NaOH.
The C fraction was resuspended in 200 µl of PBS plus protease
inhibitors (Roche) and sonicated 30 s with alternated pulses
on ice (on: 5 s, off: 30 s). Protein samples were diluted 1:1 in
Laemmli sample buffer containing 355 mM β-mercaptoethanol
and denaturated 5 min at 95◦C. Equal amounts of proteins
were loaded and separated on a Mini-PROTEAN TGX stain
free 4–20% SDS gel at 200 V and further transferred to a
PVDF membrane using a Trans-Blot Turbo transfer system
(Biorad). Membrane was probed with primary antibody anti-
mouse IL-17A (R&D Systems) and secondary anti-rat IgG
HRP-conjugated antibody (Abliance) at 1:1000 dilutions. Bound
secondary antibody was visualized by the Clarity ECL Western
Substrate (Bio-Rad) and Chemidoc imaging system (Biorad). The
concentration of IL-17A secreted in the medium was assessed by
ELISA (mouse IL-17 ELISA Development Kit, Mabtech).

Determination of the Biological Activity
of IL-17 Produced by Recombinant
L. lactis
Murine fibroblasts 3T3 L1 cells line, grown in DMEM medium
(Lonza, Switzerland) supplemented with 10% heat-inactivated
fetal calf serum (FCS), 50 U/ml penicillin and 50 U/ml
streptomycin (Lonza, Levallois-Perret, France) were cultivated
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FIGURE 1 | IL-17 expression by L. lactis. (A) Schematic representation of pSICE:IL-17 plasmid. Protein samples (C and S) were prepared from both non-stressed
and stressed L. lactis-wt and L. lactis-IL-17 cultures and IL-17 production was assessed by (B) Western blot and (C) ELISA. Position and size of molecular mass
markers is indicated on the left. The position of mature murine IL-17 is given by an arrow. Values are mean ± SEM.

at 1 × 105 cells per well during 24 h at 37◦C, 5% CO2. Then,
medium was changed and bacterial preparations added at 10% for
supernatants, pellet and control medium or MOI 100 for bacteria
suspensions during 24 h. Supernatants of co-incubations were
collected and stored at −80◦C before ELISA analyses (mouse IL-6
DuoSet ELISA, R&D).

Mice and TC-1 Cell Line
Specific pathogen-free C57BL/6 mice (females, 6–8 weeks old;
Janvier SAS, St. Berthevin, France) were housed in a pathogen-
free isolator (n = 4 mice per cage) under sterile conditions in 12-h
light cycles in the animal facilities of the French National Institute
for Agricultural Research (INRA, IERP, Jouy-en-Josas, France).
Animals were supplied with water and fed ad libitum (normal
chow: R 03-40, SAFE). Temperature and moisture were carefully
controlled. Mice were observed once a day to ensure their welfare.
All protocols were carried out in accordance with the institutional
ethical guidelines of the ethics committee COMETHEA (Comité
d’Ethique en Expérimentation Animale of the Centre INRA of
Jouy-en-Josas and AgroParisTech), which approved this study.

The mouse (C57BL/6) lung tumor cell line TC-1 (generated
by transduction with a retroviral vector harboring HPV-16 E6/E7
genes plus a retrovirus expressing activated human oncogene
c-Ha-ras (Lin et al., 1996)) was grown in RPMI medium 1640
(Lonza, Switzerland) supplemented with 10% heat-inactivated
FCS, 50 U/ml penicillin, 50 U/ml streptomycin (Lonza, Levallois-
Perret, France), 0.4 mg/ml G418 and 0.2 mg/ml hygromycin in
5% CO2 atmosphere.

TC-1 Cell Line Challenge and Bacteria
Administration
Groups of mice (n = 22 from 3 independent in vivo experiments)
were intranasally (i.n.) administered using a micropipette with
1 × 109 colony-forming units (CFU) of either L. lactis-wt
or L. lactis-IL-17 strain (suspended in 10 µl of PBS). ON
cultures were washed two times and finally suspended in PBS
at 1 × 1011 CFU/ml. Each mouse received 5 µl of the solution
in each nostril on days −35, −21, and −7. Control mice
received identical quantities of PBS (i.e., 10 µl). Mice were
challenged 7 days after the final bacterial administration (D0)
by subcutaneous (s.c.) injection in the right rear flank with
5 × 104 TC-1 cells in 100 µl of sterile PBS. The dimensions of
the tumor at the site of injection were measured every week in
two perpendicular directions with a caliper, and tumor volume
was estimated as (length × width2)/2 (Bermudez-Humaran
et al., 2005). Mice were sacrificed by vertebral dislocation
at D28.

Analysis of the Immune Response in
Mice Treated With Recombinant L. lactis
and Challenged With TC-1 Cells
Mice were euthanatized at D28 and spleens collected and
isolated via gentle extrusion of the tissue through a 50-µm-mesh
nylon cell strainer (BD). Cells were resuspended in DMEM
medium supplemented with 10% FCS, 2 mM L-glutamine,
50 U/mg penicillin and 50 U/mg streptomycin. Erythrocytes
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were lysed with red-blood-cell lysing buffer (Sigma-Aldrich).
For stimulation experiments, 1 × 106 cells per well were
stimulated for 48 h (37◦C, 10% CO2) in DMEM medium
in P24 plates in presence of PMA (phorbol 12-myristate
13-acetate) ionomycin cocktail 1× (eBioscience). Culture
supernatant was frozen at −80◦C until processing. Levels
of the cytokines IL-6 (mouse IL-6 DuoSet ELISA, R&D),
IL-17A, and IFN-γ (ELISA Development Kit, Mabtech)
were determined using ELISA according manufacturer’s
instructions.

Statistical Analysis
All data are expressed as mean values and standard deviations.
Data analysis was performed using the GraphPad Prism Software
V.5.00. Experiments were analyzed using an unpaired t-test. The
two-tailed unpaired Mann–Whitney test was used to evaluate
differences between two groups. In all experiments, a value of
P < 0.05 was considered significant (∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001).

RESULTS

Characterization of IL-17 Production by
Recombinant Lactococcus lactis
Before to test the biological effect of the genetically modified
strain of L. lactis harboring pSICE:IL-17 plasmid (Figure 1A),
we first analyzed IL-17 production and secretion from both non-
stressed and stressed L. lactis-wt and L. lactis-IL-17 cultures by
Western blot (Figure 1B). A band of approximately 15 kDa
was detected in the supernatant (S) fraction from induced
cultures of L. lactis-IL-17 strain, which corresponds to secreted
mature murine IL-17. IL-17 secretion and quantification was then
determined by ELISA in C and S samples. As shown in Figure 1C,
a better production of IL-17 was observed (∼3-fold) under stress
conditions (i.e., NaCl 2.5%): ∼15,000 pg/ml versus ∼5000 pg/ml.
As expected no IL-17 signal was detected in the negative control
L. lactis-wt.

Recombinant Lactococcus lactis
Secretes a Biologically Active IL-17
Cytokine
Besides IL-17 detection in S samples of bacterial cultures, we
determined the biological activity of this cytokine secreted by
recombinant L. lactis. IL-17A is known to stimulate several
cytokines (including IL-6) in different cell lines (such as
fibroblast, epithelial cells and immune cells). Thus, we selected
murine fibroblasts 3T3 L1 cells to assess specific IL-6-induction
by recombinant L. lactis. Our results showed that S samples
of L. lactis-IL-17 strain and stressed with NaCl 2.5% induced
a significant IL-6 secretion in 3T3 L1 cells (Figure 2A) in
comparison with their respective negative control. No significant
IL-6 production was observed in bacterial cultures without
stress induction. In parallel we confirmed by ELISA the
presence of IL-17 cytokine in S samples of recombinant bacteria
(Figure 2B).

L. lactis IL-17 Has a Protective Effect
Against Tumors in TC-1 Allograft Model
of HPV-Induced Cancer
To further evaluate in vivo the biological activity of IL-17
produced by recombinant L. lactis, and in particular the impact
of this cytokine in the TC-1 mouse allograft model of HPV-
induced cancer, we analyzed the effect after i.n. administration
of this strain in the TC-1 tumor mice. Mice were immunized as
described in Material and Methods and tumor absence/presence
monitored every week. As shown in Figure 3A, L. lactis IL-
17 displayed a protective effect against tumor development at
D28 (the end of the experiment) since 77% (5/22) of mice that
had been administered L. lactis IL-17 developed tumors with
a mean tumor size of ∼0.80 cm3 (Figure 3B) compared to
100% (22/22) of mice receiving L. lactis-wt control strain (mean
tumor size of ∼1.2 cm3) (Figures 3A,B). These results confirm

FIGURE 2 | Cellular-based bioassay for L. lactis-secreted bioactive IL-17.
(A) IL-6 secretion by 3T3 L1 cells after exposure to supernatant samples of
recombinant L. lactis. (B) Quantification of IL-17 production by recombinant
lactococci by ELISA. Data are represented as mean ± SEM of two
independent in vitro assays. GM17 was used a control for supernatant
conditions. Stress was induced with NaCl 2.5%. Data were treated by ANOVA
(Turkey post-test).
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that IL-17 cytokine display anti-tumor effects in our cancer
model.

L. lactis IL-17 Induces IL-6 and IL-17
Secretion in Reactivated Splenocytes
From Mice Challenged With the Tumoral
Cell Line
In order to further explore the impact on the immune
response of mice treated with recombinant L. lactis IL-17
we analyzed cytokines release by reactivated splenocytes
from mice 28 days after i.n administration of recombinant
bacteria and challenged with TC-1 cells. Interestingly, L. lactis
IL-17 induced a significant IL-6 secretion in splenocytes
compared to L. lactis-wt (Figure 4). This modulation
was correlated with a slight IL-17 induction but without
reach statistical significance (Figure 4). No effect was
observed on IFN-γ production by recombinant bacteria
(Figure 4).

DISCUSSION AND CONCLUSION

A better understanding of the interactions between cancer
cells and stromal components in the tumor associated
pro-inflammatory microenvironment would be important
for the management of this disease (Ferlay et al., 2012).
Anti-tumor response involves different components of the
immune system, such as NK cells, DC, macrophages and T
cells. A growing body of evidence suggests that probiotics
can help to combat cancer by either protecting against
gastrointestinal infections or enhancing immune response.
Indeed, it has been shown that probiotics can induce DC
maturation (Delcenserie et al., 2008), enhance NK cell
cytotoxicity (Takagi et al., 2001), and upregulate cytokine
secretion (Delcenserie et al., 2008; Azcarate-Peril et al., 2011). In
addition, recent studies described the role of specific members
of microbiota in cancer therapy by targeting the immune
checkpoint blockade (CTLA-4, PD-1) (Sivan et al., 2015; Vetizou
et al., 2015; Gopalakrishnan et al., 2018; Routy et al., 2018).

FIGURE 3 | Effect of recombinant L. lactis expressing IL-17 against tumors in TC-1 allograft model of HPV-induced cancer. Mice were i.n. treated with 1 × 109 CFU
resuspended in 10 µl of PBS (5 µl were administered with a micropipette into each nostril) on D-35, -21, and -7. Seven days after the last administration (D0), a
challenge with the tumoral cell line TC-1 was performed, and the presence and size of the tumor was monitored once a week. (A) Tumor incidence with proportions
of tumor-free animals (B) Individual tumor volume at the end of week 10. Data represented mean ± SEM from 3 independent in vivo experiments.

FIGURE 4 | Cytokines production by reactivated splenocytes from mice treated with recombinant bacteria and challenged with TC-1 cells. Splenocytes were
stimulated for 48 h with PMA ionomycin before measuring cytokines levels. Data represented mean ± SEM from 4 (L. lactis wt) to 8 mice (L. lactis IL-17). Data are
analyzed with unpaired t-test followed by Mann–Withney post-test.
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Among the potential anti-tumoral mechanisms of probiotics,
two of the most known are the modulation of the immune
response and the induction of cellular apoptosis. For instance,
two strains of L. casei are able to decrease tumor cell proliferation
and enhance apoptosis in allograft models of CRC (Lee et al.,
2004; Baldwin et al., 2010; Konishi et al., 2016). Similarly,
oral administration of a L. casei strain reduces the onset of
chemically induced tumors via the stimulation of IL-12 or
NK-cell cytotoxicity mechanisms (Takagi et al., 2001, 2008).
Furthermore, our team recently demonstrated protective effects
of the probiotic strain L. casei BL23 in three different mouse
models of cancer, including CRC (Lenoir et al., 2016; Jacouton
et al., 2017) and the TC-1 allograft model (Lenoir et al.,
2016). In one of our two CRC models (Lenoir et al., 2016),
the anti-tumor effects of L. casei BL23 were associated with
the reduction of pro-inflammatory cytokines, but the precise
molecular and cellular mechanisms involved in tumor prevention
of this bacterium remain unclear. Since cancer therapy includes
chemotherapy, drug, vaccines, and cytokines, and for instance,
current therapies are toward to enhance the immune system
as use of pro-inflammatory cytokines (such as IL-2, one of
the first cytokines used in cancer therapy) and immune check
points inhibitors (CTLA-4, PD-1). In this work, we constructed
a recombinant strain of L. lactis expressing IL-17. Strikingly,
we showed that i.n. administration of this strain results in
a lower tumor incidence and that tumor size was reduced
in comparison to the control L. lactis-wt, a LAB strain for
which no positive effect has been reported in the HPV-
induced cancer model. Our results not only suggest a positive
effect of IL-17 but also reinforce the idea that some of the
molecular mechanisms of L. casei BL23 against cancer could
be related to activation of TH and NK via TH17. IL-17 is a
pro-inflammatory cytokine, although its role is controversially,
some studies report that IL-17 deficiency state may have a
protective role or a harmful role in tumorigenesis (Welch
et al., 2015; Qian et al., 2017). For example, in IL-17 deficient
mice, enhanced lung and subcutaneous tumor growth and
metastasis is correlated to a decrease in the number of IFN-
γ producing NK cells (Kryczek et al., 2009). Recent research
provided substantial insights into the mode of action of IL-
17 cytokines in a variety of tumors, suggesting an anti-tumor
activity of IL-17 could be achieved by means of a T cell-
dependent mechanism increasing generation of specific cytotoxic

T lymphocytes (Alshaker and Matalka, 2011). Paradigms are
changing, and IL-17 cytokines are double-edged agents acting
in a cancer-type depending manner as anti- and pro-tumor
cytokines (Fabre et al., 2016). IL-6 is a pro-inflammatory cytokine
involved, in part, in a TH17-related immune response with
a feedback loop. Thus, we assessed the in vivo ability of
L. lactis secreting IL-17 to stimulate the TH17 pathway. Here,
we demonstrated an in vivo induction of IL-6 resulting in
an increase of IL-17. We hypothesized that the anti-tumoral
effect of recombinant lactococci secreting biologically active
IL-17 could due to a TH17 immune response even if more
experiments are needed to further decipher the precise molecular
mechanisms.

In conclusion, our results demonstrate that i.n. administration
with a genetically modified strain of L. lactis secreting IL-17
results in a partial protection against TC-1-induced tumors
in mice, confirming antitumor effects of this cytokine in this
model.
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