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Production of fuels, therapeutic drugs, chemicals, and biomaterials using sustainable
biological processes have received renewed attention due to increasing environmental
concerns. Despite having high industrial output, most of the current chemical processes
are associated with environmentally undesirable by-products which escalate the cost
of downstream processing. Compared to chemical processes, whole cell biocatalysts
offer several advantages including high selectivity, catalytic efficiency, milder operational
conditions and low impact on the environment, making this approach the current
choice for synthesis and manufacturing of different industrial products. In this review, we
present the application of whole cell actinobacteria for the synthesis of biologically active
compounds, biofuel production and conversion of harmful compounds to less toxic by-
products. Actinobacteria alone are responsible for the production of nearly half of the
documented biologically active metabolites and many enzymes; with the involvement
of various species of whole cell actinobacteria such as Rhodococcus, Streptomyces,
Nocardia and Corynebacterium for the production of useful industrial commodities.
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INTRODUCTION

Biotransformation is the process by which substrates are converted into useful products using
biocatalysts either in the form of whole cells or their enzymes (Ward and Köhler, 2015; Bezborodov
and Zagustina, 2016).The classical chemical based transformation of substrates is prone to
several disadvantages, including ecologically unfavorable conditions and associated undesirable
by-products (Lin and Tao, 2017). Unlike chemical methods, biocatalysts provide several benefits
such as their availability from renewable resources, they work at low temperature and pH, are
easy to degrade biologically and are selective in both substrate and product stereochemistry (Jemli
et al., 2016). Enzyme based biotransformations, however, are also not free of drawbacks including
their high cost, higher susceptibility to changes in operating conditions and substrate or product
toxicity (Garzón-Posse et al., 2018). In contrast to other catalytic reactions, whole cell biocatalysts
allow transformation of substrates via multiple cascades of reactions, help generation of cofactors,
have high regio- and stereo-selectivity, work under mild operational, environmentally-friendly
conditions, and help selective hydroxylation of non-activated carbon atoms. The latter is not
possible with chemical catalysts (de Carvalho, 2017). In addition to these advantages, compounds
produced by microorganisms are considered to be safe, which attract many health-conscious
consumers (de Carvalho, 2017).

To meet the growing call for efficient and economically feasible biocatalysts, researchers
are testing different groups of microorganisms, including actinobacteria (Mukhtar et al., 2017),
Escherichia coli (Lin et al., 2013; Ladkau et al., 2014; de Carvalho, 2017), Pseudomonas putida
(Gehring et al., 2016), Bacillus cereus (Banerjee and Ghoshal, 2010), Enterococcus faecalis and
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Saccharomyces cerevisiae (Whited et al., 2010; Lin and Tao,
2017). Actinobacteria are widely distributed in nature, with
several phenotypes including anaerobes, aerobes, spore formers,
unicellular, and filamentous forms (Lewin et al., 2016).
They are one of the most diverse, well characterized and
metabolically versatile group of microorganisms. They play
an essential role in maintaining soil structure and carbon
recycling through decomposition of various organic matter such
as cellulose, chitin, and pectin (Priyadharsini and Dhanasekaran,
2015; Kim et al., 2016). Furthermore, they produce several
enzymes (amylases, cellulases, proteases, chitinases, xylanases,
and pectinase) (Mukhtar et al., 2017), antibiotics, antitumor
agents, plant growth regulators, and vitamins (Prakash et al.,
2013; Kamjam et al., 2017).

Over 22,000 biologically active microbial metabolites reported
and actinobacteria alone represented 45% of them which are
followed by fungi (38%) and unicellular bacteria, especially
Bacillus sp. and Pseudomonas sp. (17%) (Bérdy, 2005; Demain
and Sanchez, 2009). Among the described 140 genera of
actinobacteria, only few of them produce the majority of active
compounds (Jensen et al., 2005; Bull and Stach, 2007; Pimentel-
Elardo et al., 2010; Adegboye and Babalola, 2013). Streptomyces
alone represents three fourth of the total active metabolites
produced by actinobacteria (Lam, 2007; Solecka et al., 2012;
Barka et al., 2015; Chater, 2016). Table 1 below highlights
the approximate share of each microbial group for active
metabolite production.

Apart from the above contributions, actinobacteria play
a vital part in the development of a sustainable bioenergy
industry, predominantly through their cellulolytic enzymes
which decompose plant biomass to produce simple
sugars that serve as raw materials for biofuel production.
Furthermore, their diverse biosynthetic capacity allow them
to mediate various environmental interactions which lead
to synthesis of various biologically active products (Lewin

TABLE 1 | Microbial share of active bioactive metabolites (Bérdy, 2005).

Source Total bioactive
metabolites

Antibiotics Other bioactive
metabolites

Bacteria 3800 2900 900

Eubacteriales 2750

Bacillus sp. 860

Pseudomonas sp. 795

Myxobacter 410

Cyanobacter 640

Actinobacteria 10100 8700 1400

Streptomyces sp. 7630

Other genera 2470

Fungi 8600 4900 3700

Microscopic fungi 6450

Penicillium/Aspergillus 1950

Basidiomycetes 2000

Yeasts 140

Slime molds 60

Total 22500 16500 6000

et al., 2016). Here, we review the application of whole cells
actinobacteria for biotransformation of various substrates in
a way to produce more active and less toxic compounds as
well as biofuels.

BIOTRANSFORMATION OF HARMFUL
COMPOUNDS

Nitrile Biotransformation
Microbial or enzymatic biotransformation of nitriles result
the conversion of these toxic compounds into industrially
important compounds like acids and amides. Nitriles constitute
a group of chemicals widely used in drugs, rubbers, and plastic
industries. These compounds contain a cyano group in their
backbone which is highly correlated with toxicity (Ramteke et al.,
2013). Their high rate of manufacture and continuous usage
make them an important source of environmental pollution
and have been detected in different environmental samples
including sediments of water-treatment plants, in marinas and
beach areas (Baxter and Cummings, 2006). Clinically, nitrile
toxicity has been associated with cancer and different health
problems such as bronchial irritation, respiratory disorders,
convulsions, coma, and skeletal deformities (Ramteke et al.,
2013). Some researchers highlighted the link with psycho-
behavioral abnormalities including learning, memory, motor
nerve anomalies in rats treated with aliphatic nitriles such as
acetonitrile, acrylonitrile and crotononitrile (Boadas-Vaello et al.,
2007; Ramteke et al., 2013).

The removal of nitrile compounds from the environment is
possible using microbial methods, due to their associated low cost
and user-friendly approach (Fang et al., 2015). Microorganisms
degrade nitrile compounds through the hydrolytic route, which
comprises two enzymatic systems as indicated in Figure 1.
In the first route, nitrile hydratase (NHase, EC 4.2.1.84)
catalyzes the formation of amides from nitriles, which are later
changed to ammonia and carboxylic acids by amidase (EC
3.5.1.4). Alternatively, nitrilase (EC 3.5.5.1) catalyzes for the
direct conversion of nitriles into carboxylic acids and ammonia
(Ramteke et al., 2013).

The production of acids and amides from nitriles is possible
using chemical catalysts. However, this approach is only achieved

FIGURE 1 | Enzymatic pathways for nitrile hydrolysis (Ramteke et al., 2013).
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under harsh conditions like extreme temperature, acidity or
alkalinity (Nigam et al., 2009). Currently, many microorganisms
having either of the two nitrile degradation enzymatic systems
have been reported. These microorganisms can be categorized
into two groups. The first is made up of bacteria like
Mesorhizobium sp. F28 (Feng and Lee, 2009), Klebsiella oxytoca
(Kao et al., 2006), Rhodococcus erythropolis A4 and Rhodococcus
rhodochrous PA-34 (Vesela et al., 2012), which only contain
a single enzyme system of NHase/amidase and Streptomyces
sp. MTCC 7546 only contains nitrilase (Nigam et al., 2009).
The other group contain bacteria such as Nocardia globerula
NHB-2 (Bhalla and Kumar, 2005), Amycolatopsis sp. IITR215
(Babu et al., 2010), Bacillus subtilis ZJB-063 (Zheng et al., 2008)
and R. rhodochrous BX2 (Fang et al., 2015), which have both
NHase/amidase and nitrilase.

Variation among nitrile degrading microorganisms also
exists in terms of the end products of nitrile degradation.
Bacteria in the single enzyme system like R. rhodochrous PA-
34 convert nitrile only into amides while K. oxytoca and
Mesorhizobium sp. F28 convert nitriles into corresponding
amides and carboxylic acids. Those bacteria which utilize
the two enzyme system result in amides and carboxylic
acids. Among these group of bacteria, R. rhodochrous BX2,
B. subtilis AJB-063 and Paracoccus sp. SKG (Santoshkumar
et al., 2011) displayed completed degradation of carboxylic
acids with final end product of ammonia. As indicated above
nitrile degradation systems vary among different bacterial genera
as well as with in the same genus such as Rhodococcus.
Unlike others, Streptomyces sp. MTCC 7546 in the immobilized
as well as Free State biotransforms acrylonitrile into acrylic
acid without the formation of amides. The authors suggested
that due to several reasons such as operational stability
(allow to reuse the system several times), and ease of
production on a large scale, the conversion of acrylonitrile
using immobilized cells is better than cells in the free state
(Nigam et al., 2009).

Biotransformation of Aromatic Ring
Containing Compounds
Phthalate esters and phenols are the two most common chemicals
used in industry for stabilization and modification of the
characteristics and performance of polymers (He Z. et al.,
2014). Di-n-butyl phthalate (DBP), a type of phthalate ester,
is a component of different merchandises including pesticides,
wrapping materials, makeups, wrappers, wears, and insulators in
electric disposals (Dargnat et al., 2009). Similarly, phenol can be
applied for the manufacturing of drugs, rubbers, polycarbonate
resins, and nylon (Christen et al., 2011).

Phthalates are major environmental pollutants which come
into contact with humans and animals through contaminated
water systems (He Z. et al., 2014). The European community
listed these compounds among the 33 dangerous substances to
be controlled in surface water (Dargnat et al., 2009). As they are
a constituent of plastics which are now ubiquitous in diverse
environments phthalates are now present almost everywhere
(Fang et al., 2010). Phthalate toxicity is associated with endocrine

system disruption in different species of fish and mammals. These
compounds were also observed to interfere with the reproductive
system and in human and animal development (Lottrup et al.,
2006; Li et al., 2010). Concurrent observation of phenols and
phthalate esters has been reported in the Selangor River basin
in Malaysia (Santhi and Mustafa, 2013) and induction of lactate
dehydrogenase release from Sertoli cells, which is associated
with infertility, coexist compared to individual chemical effects
(Li et al., 2010).

Different approaches have been documented for removal
of DBP from natural environments. These are hydrolysis,
photo degradation and biodegradation (Lau et al., 2005;
Jonsson et al., 2006; Chen et al., 2009). Two of the former
approaches were not effective due to the structural nature
of DBP and microbial mediated metabolic transformation of
DBP is the current choice. Microbial mediated degradation
of DBP involves initial conversion of DBP into phthalic
acid and which is further transformed with the help of
two dioxygenase pathways into 4,5-dihydroxyphalate and
4,5-dihydroxyphalate in gram negative and gram positive
bacteria, respectively. Finally, these two compounds are
transformed into a common intermediate protocatechuate
under aerobic conditions (Wu et al., 2011). For the
degradation of phenols the first step is hydroxylation of
phenol to catechol followed by ring cleavage of catechol
into 2-hydroxymuconic semialdehyde for the meta-pathway
aided by catechol-2, 3-dioxygenase and into cis, cis-
muconate with the help of catechol-1, 2-dioxygenase for
ortho pathway. Finally 2-hydroxymuconic semialdehyde
oxidized 4-oxalocrotonate or hydrolyzed it to 2-oxopent-
4-enoate and cis, cis-muconate into muconolactone
(Banerjee and Ghoshal, 2010).

Several bacteria strains have the ability to degrade DBP, such
as Rhodococcus sp. (Yu et al., 2009; Jin et al., 2010), Gordonia
sp. (Wu et al., 2011), Agrobacterium sp. (Wu et al., 2011) and
Enterobacter sp. (Fang et al., 2010). Members of the Rhodococcus
genus, have been demonstrated for degradation of Phenol in
addition to DBP (Saa et al., 2010), individually as well as via
simultaneously mineralization of DBP and phenol (Lu et al.,
2009; He et al., 2013). Individual or synchronous biodegradation
of DBP and phenol by Rhodococcus ruber strain DP-2 was also
reported in similar study (He Y.C. et al., 2014).

Chlorophenols (CPs) are aromatic compounds which contain
a minimum of one chlorine and a hydroxyl group on the
benzene rings. Five types of CPs, as indicated in Figure 2 below,
based on chemical structures include monochlorophenols,
polychlorophenols, chloronitrophenols, chloroaminophenols,
and chloromethylphenols (Arora and Bae, 2014). They are
largely used as fungicidal, germicidal and wood preservatives
agents. They are also important for synthesis of dyes and
drugs (Arora and Bae, 2014). CPs and their derivatives rank
among the top environmental pollutants where industrial wastes,
pesticides, herbicides, and complex chlorinated hydrocarbons are
major sources of contamination (Olaniran and Igbinosa, 2011).
Direct skin contact and eating or drinking of contaminated
substances are major sources of people exposure (Arora and Bae,
2014). Cellular exposure to CPs are associated with cytotoxic,
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FIGURE 2 | Some examples of chlorophenols (Arora and Bae, 2014).

mutagenic and carcinogenic properties, with several types of
polychlorophenols labeled as potential human carcinogens by
the World Health Organization and the International Agency for
Research on Cancers (Igbinosa et al., 2013).

Different possible mechanisms are reported for bacterial
degradation of CPs and their derivatives. In the first mechanism,
hydroxylation of chlorophenolic rings at ortho-positions with the
help of monooxygenases results in formation of chlorocatechols
which are further degraded (Hollender et al., 1997; Solyanikova
and Golovleva, 2011) or hydroxylated prior to ring cleavage
(Nordin et al., 2005). In the second mechanism, with the same
enzyme, hydroxylation of chlorophenolic rings at meta position
results in chlorocatechols which degrade via hydroxylation
(Nordin et al., 2005) or dehalogenation (Xun et al., 1992)
prior to ring cleavage. The third mechanism applicable for
degradation of chloronitrophenols where the degradation may
be initiated by hydroxylation (Arora and Jain, 2012), reductive
dehalogenation (Pandey et al., 2011), or reduction of the
nitro group (Arora and Jain, 2012). Finally, in case of
chloroaminophenols degradation, the pathway may start with
removal of ammonium ions by the enzyme deaminase followed
by the ring cleavage (Arora and Bae, 2014) or the dehalogenation
(Arora and Bae, 2014). The detail mechanisms of different
routes of biodegradation of chlrophenols and its derivatives
with various bacteria, such as Pseudomonas knackmussii B-13,
Rhodococcus opacus 1G, Arthrobacter chlorophenolicus A6,
Streptomyces rochei 303, Pseudomonas sp. NCIB9340, Bacillus
insolitus, Nocardioides sp. K44, Mycobacterium chlorophenolicum
PCP1 and Mycobacterium fortuitum CG-2 are well documented
in a recent review by Arora and Bae (2014); and the following
Figure 3 presents degradation of 4-chlorophenol as an example
of the process.

Hou and his colleagues reported for the first time magnetically
immobilized R. rhodochrous cells for biodegradation of CPs.
Their study demonstrated that R. rhodochrous DSM6263 depends
on constitutively expressed enzymes for hydroxylation of CPs
resulting in chlorocatechol formation and complete degradation.
Their observation was consistent with another study where
Rhodococcus sp. AN-22 (an aniline-assimilating bacterium)

produced cis, cis-muconic acid from catechol (Matsumura et al.,
2006) and highlighted how these compounds could also be
metabolized with immobilized cells of R. rhodochrous DSM6263
(Hou et al., 2016). Researchers advocated the use of immobilized
cells, over free cells, to degrade toxic chemicals due to many
reasons such as long-term stability of the catalyst and the
immobilization also protects cells from harmful effects of toxic
pollutants (Jianlong et al., 2002). Immobilization of cells can be
done using a number of techniques including surface adsorption,
natural or artificial flocculation, covalent or electrostatic binding
to carriers, and encapsulation in a polymer-gel (Hou et al., 2016).

Atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-1, 3,
5-triazine) was first introduced in 1950s as an emergent herbicide
and they are among widely used pesticides in different countries
such as United States, Canada, Africa, and Asia Pacific region
(Huang et al., 2003; Jablonowski et al., 2011). Usage of atrazine
banned in European countries in 2004 as atrazine concentrations
in water surpassed or were estimated to surpass allowable limits
(Jablonowski et al., 2011). Due to factors like its widespread
utilization as a herbicide and its persistence in the environment,
it is common to observe traces of atrazine both in surface and
ground water bodies (Gilliom et al., 2006). Traces of atrazine were
detected in widely dispersed areas which are far from urban and
agricultural areas such as in rainwater in different places (Brun
et al., 2008) in fog, arctic ice and seawater.

Contact with atrazine is associated with a serious threat to
human and ecosystem health. One of the most notable effects of
exposure is endocrine (Solomon et al., 2008; Rohr and McCoy,
2010). Many studies link atrazine with harmful effects on the
health of animals and humans, such as sexual abnormalities
(demasculinization) in frogs, low testosterone production in rats
and higher levels of prostate cancer in workers at an atrazine
manufacturing factory (Hecker et al., 2005; Liu and Parales,
2009), and it is also categorized as a group 3 carcinogen according
to the International Agency for research on cancer1. The above
observations indicated that there is cause for concern regarding
atrazine residues in soil, groundwater, and surface waters.

Due to its persistence in the environment and being
highly toxic, it is very important to develop approaches to
degrade and remove atrazine deposits from the environment.
Microbial-degradation is one of the methods for elimination
of atrazine from soil (Tappe et al., 2002). Different species of
microorganisms associated with degradation of atrazine with
various degree of biodegradation where some undergo complete
mineralization while others produce various intermediates
including hydroxyatrazine, deethylatrazine, deisopropylatrazine,
n-isopropylammilide, n-ethylammilide, and cyanuric acid
(Mandelbaum et al., 1995; Ralebits et al., 2002; Ghosh and Philip,
2004; Getenga et al., 2009). Specifically, atrazine degradation
was documented with the help of Rhodococcus sp. BCH2
(Kolekar et al., 2014), Arthrobacter sp. (Getenga et al., 2009),
Nocardioides sp. (Topp et al., 2000). Pseudomonas sp. strain
ADP (Rousseaux et al., 2001; Liu and Parales, 2009) was the
first bacterium reported that could completely mineralize
atrazine; with most of the degradation studies based on study

1https://monographs.iarc.fr/agents-classified-by-the-iarc/
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FIGURE 3 | 4-chlorophenol degradation via ortho postion where the final intermidate, maleylactate, inter for TCA cycle for complet mineralizatio (Arora and Bae,
2014).

this strain. As indicated in Figure 4 (below) atrazine degradation
is achieved because of the presence of the genes, atzA, atzB
and atzC, which code for enzymes such as chlorohydrolase
(AtzA), hydroxyatrazine ethylaminohydrolase (AtzB) and
N-isopropylammelide isopropylaminohydrolase (AtzC),
respectively which convert atrazine sequentially to cyanuric acid
(Neumann et al., 2004). Some strains of Pseudomonas can further
degrade cyanuric acid into CO2 and NH3.

1, 4-Dioxane is a cyclic ether with many applications
including components of deodorants, detergents and various
types of paints. The process for manufacturing of polyesters
also results 1,4-dioxane production. Various factors including
illegal dumping of industrial wastes contribute to 1, 4-dioxane
associated water contamination. High level of 1, 4-Dioxane can
cause liver and nasal cancers in rats module (Dourson et al.,
2014) and are listed as group 2B human carcinogen (Inoue et al.,
2016). These compounds are soluble in water with low volatility
and have a lower chance of absorbance in solids (Stepien et al.,
2014). Therefore, once 1, 4-dioxane appears in the environment

FIGURE 4 | Pathway for atrazine degradation (Liu and Parales, 2009).

it can persist for many days and a high degree of 1, 4-dioxane
pollution was observed in surface water, groundwater, and landfill
leachatewa (Stepien et al., 2014).

Their removal from water bodies is an important public
concern, especially as the routine physical and chemical methods
for water decontamination are not effective for removal of 1,
4-dioxane (Adams et al., 1994). Advanced procedures such as
the combination of ozone and hydrogen peroxide treatments are
expensive to use (Adams et al., 1994; Kishimoto et al., 2008).
Thus, cost effective as well as reliable methods for cleaning of 1,
4-dioxane from water lead to nocardioform actinobacteria such
as Pseudonocardia (Matsui et al., 2016) and Rhodococcus (Deeb
and Alvarez-Cohen, 1999) which account for the major portion
of capable microorganisms. Inoue et al. (2016) tested various
species of Pseudonocardia and Rhodococcus for their ability to
degrade 1, 4-dioxane. Their findings indicated P. dioxanivorans
JCM 13855T (also known as P. dioxanivorans CB1190) (Parales
et al., 1994) was the only Pseudonocardia sp. tested that used 1,4-
dioxane as a carbon source and degraded it. In contrast, they
observed the inability of R. ruber JCM 3205T to degrade 1, 4-
dioxane. However, there are reports on the ability of Rhodococcus
spp. such as R. ruber 219 (Bernhardt and Diekmann, 1991) and
R. ruber T1 and T5 (Oyama et al., 2013) to biodegrade 1,4-
dioxane. This highlighted species variation among Rhodococcus
in relation to effective degradation and utilization of 1, 4-dioxane.

PRODUCTION OF IMPORTANT
COMPOUNDS

Ethylene Glycol Synthesis
Due to the continuing concern about climate change and
depletion of fossil energy, expansion of biological processes using
renewable biological resources to produce different chemical feed
stocks and energy has become an attractive approach for the
chemical industry. Ethylene glycol is a feedstock which serves
as a starting material for the manufacture of several items
including polymers, anti-freeze agents, and coolants (Zhang and
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Yu, 2013). Routinely, ethylene glycol is produced through a costly
chemical process using ethylene derived from the petrochemical
industry as a starting material. Therefore, there is a preference for
biological synthesis of ethylene glycol over chemical methods as
the former has a low impact on the environment and the reaction
is selective (Mattam et al., 2013).

Fermentation of carbohydrates is an economical process
for production of ethylene glycol from biofeed stock.
Corynebacterium glutamicum, an actinobacterium, has been
designed for manufacture of ethylene glycol directly from
glucose via extension of the serine synthesis pathway. Serine is
produced by most microorganisms from 3-phosphoglycerate
(a glycolysis intermediate) using three enzymatic steps: 3-
phosphoglycerate converted into P-hydroxypyruvate with the
help of 3-phosphoglycerate dehydrogenase (PGDH; serA),
followed by conversion of P-hydroxypyruvate to P-serine by
phosphoserine aminotransferase (PSAT; serC) and P-serine to
serine with the help of phosphoserine phosphatase (PSP; serB)
(Peters-Wendisch et al., 2005). Chen et al. (2016) proposed
two ways for ethylene glycol synthesis via the extension of the
serine synthesis pathway where serine is the starting material
for both systems with the end product glycoaldehyde (Chen
et al., 2016). The first route involves deamination of serine
with aminotransferase or amino acid dehydrogenase resulting
in hydroxypyruvate. Finally, glycoaldehyde is produce from
hydroxypyruvate with the help of α-ketoacid decarboxylase.
Similarly, the other route also has two steps where ethanolamide
produced from serine with decarboxylation and then converted
to glycoaldehyde following oxidation by monoamine oxidase.
Finally, glycoaldehyde can be reduce to ethylene glycol by alcohol
dehydrogenase such as yqhD as indicated in Figure 5.

In addition to glucose, C. glutamicum uses several substrates
such as sugars present in molasses (sucrose and fructose), pentose
sugars present in lignocellulosic (Zahoor et al., 2012), n-acetyl-
D-glucosamine and n-acetyl-D-muramic acid (Sgobba et al.,
2018) for manufacturing of various amino acids (Bommareddy
et al., 2014). Production of other compounds such as isobutanol,
cadaverine, and succinate are possible with C. glutamicum
(Blombach et al., 2011; Buschke et al., 2011; Litsanov et al., 2012).

FIGURE 5 | Proposed pathways for synthesis of ethylene glycol from glucose
using serine intermediate (Chen et al., 2016).

Rhodococcus sp. are also associated with production of
Ethylene glycol. Rhodococcus sp. CGMCC 4911 converted 1, 3-
propanediol cyclic sulfate and its derivatives into corresponding
diols. The growing cells of Rhodococcus successfully hydrolyzed
ethylene sulfate, glycol sulfide, 1, 3-propanediol cyclic sulfate,
and 1, 2-propanediol cyclic sulfate with different conversion rates
(He et al., 2015).

Cyclic sulfates and its derivatives are very important
compounds that serve as starting materials for the synthesis of
various useful intermediates (Steinmann et al., 2001). Sulfatases
hydrolyse organic sulfate esters into primary or secondary alkyl
alcohols (Gadler and Faber, 2007). Microbial transformation of
cyclic sulfates into diols can be achieved under mild reaction
conditions. He et al. (2013) reported for the first time that
Rhodococcus sp. CCZU10-1 can convert 1, 3-propanediol cyclic
sulfate and its derivatives into diols, where factors like pH,
temperature, and cells dose affect rate of biotransformation.

Production of Less Toxic and Biologically
Active Drugs
The absolute configuration of chiral centers in molecules
determine the biological activities of the compounds as these
molecules bind with receptors made of enantiomerically pure
protein (Kato et al., 2003). Most of the available chiral carbon
containing drugs are racemic which contain equal concentration
of S (+) and R (+) enantiomers. Since only one of the two
is active and the other associated with toxicity, the current
drug development gives priority to compounds only with a
single enantiomer.

Ibuprofen [(R,S)-2-(4′-isobutylphenyl)propionic acid] are a
group of effective, orally active, nonsteroidal, anti-inflammatory
agents which include drugs such as naproxen, fenoprofen, and
flurbiprofen (Sen and Anliker, 1996). Even though the S-(+)-
ibuprofen form is more than 100 times more effective than the
R-(-)-ibuprofen, the racemic form of ibuprofen is widely used
(Kumaresan, 2010). The (R)-ibuprofen form can be converted to
its enantiomer in the livers and kidneys of pigs and rats, though
this process is not free of toxicity (Liu et al., 2009). Figure 6
below highlighted the application of whole cells N. corallina to
biocatalyse the enantioselective hydrolysis of racemic ibuprofen
nitrile [2-(4-isobutylphenyl) propanenitrile, 1] to optically active
ibuprofen amide [2-(4-isobutylphenyl) propanamide, 2], a
prodrug using nitrile hydratase (NHase) and hydrolyse this amide
into optically active ibuprofen (3) using amidase.

The results of the above observation indicated N. corallina
B-276 displayed nitrile hydratase and amidase activities having

FIGURE 6 | Biotransformation of ibuprofen nitrile 1 to ibuprofen amide 2 and
ibuprofen 3 using Nocardia corallina B-276 (Lievano et al., 2012).
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low stereo-selectivity (Figure 6). This finding also revealed that
N. corallina catalyzed deracemisation of racemic ibuprofen to
(R)-ibuprofen enantiomer with an efficiency of >99%. This
is the first observation where N. corallina B-276 catalyzed
deracemisation processes. Currently, the (R)-enantiomer form of
non-steroidal anti-inflammatory agents are the center of studies
and research focus on resolving rac-ibuprofen (Pignatello et al.,
2008); and due to this, recent efforts have been directed at
resolving rac-ibuprofen (Trung et al., 2006).

A high percentage of optical active S-(+)-ibuprofen was
reported from hydrolysis of ibuprofen amide and four related
2-phenylpropionamides using whole cell Rhodococcus AJ270
(Snell and Colby, 1999). This high purity was achieved through
partial hydrolysis as complete hydrolysis of (R, S)-(+)-2-(4′-
isobutylphenyl) propionamide (ibuprofen amide) results in a
racemic mixture of ibuprofen enantiomers. The findings of this
study suggested that prolonged hydrolysis of ibuprofen amide
resulted in both ibuprofen amide and an optical purity of 90-94%
of s-(+)-ibuprofen if the reaction is stopped before completion.

Due to its huge production and wide usage, ibuprofen is
one of the most commonly detected compounds in wastewater
(Buser et al., 1999). In addition to production of active ibuprofen,
different species of actinobacteria including Patulibacter sp.
strain I11 (Almeida et al., 2013) and Nocardia sp. NRRL 5646
(Chen and Rosazza, 1994; Cy et al., 2018) are involved in
its biodegradation to the level where there is no more risk
the community.

Carvedilol is a non-selective, β-adrenergic receptor antagonist
and α1-adrenoceptor blocker, and it exists in two enantiomeric
forms (Gagyi et al., 2008). The overall cardio-protective action
of Carvedilol is due to its (S)-(-)-enantiomer, which is less
hepatotoxic than the racemic mixture, and (R)-(+)- enantiomer
(Hao and Kim, 2010). Ettireddy et al. (2017) tested Streptomyces
halstedii and other bacteria for their ability to biotransform
racemic carvedilol to its (S)-(-)-enantiomer. The result indicated
some bacteria including S. halstedii exhibited incubation time
dependence enantioselective conversion of carvedilol where the
conversion rate increased up to 10 days of incubation and then
after the rate is reduced and finally become zero.

Chiral amines have been widely used for manufacturing
of several therapeutics such as codeine (pain relief), zoloft /
sertraline (anti-depression), lariam (anti-malaria) and ethambuto
(anti tuberculosis) and agrochemical intermediates including
insecticides (imiprothrin, nornicotine), herbicides (imazapyr,
imazapic) and fungicides (cyprofuram, fenbuconazole) (Ulrich
et al., 2012). Several syntheses of optically active amines
have been studied for many years. Asymmetric synthesis
of chiral cyclic amine from cyclic imine achieved using
whole-cell Streptomyces sp. GF3587 and 3546. As showed in
Figure 7, these strains produced novel imine reductase enzymes
which facilitate enantioselective redaction of cyclic 2-methyl-1-
pyrroline into R-2-methylpyrrolidine and S-2-methylpyrrolidine
in the presence of glucose.

In addition to enantioselective production of active drugs,
regioselective addition or substitution of functional groups
can also produce active drugs. Actinobacteria play a role in
regioselective hydroxylation which mediates the conversion

FIGURE 7 | Asymmetric reduction of 2-methyl-1-pyrroline using
Streptomyces sp. (Mitsukura et al., 2010).

into more active forms. The hydroxylated form of isoflavones
such as daidzein (4′, 7-dihydroxyisoflavone) and genistein
(4′,5,7-trihydroxyisoflavone) are associated with lowering
blood cholesterol and preventing cardiovascular diseases and
cancer (Foti et al., 2005). As presented in Figure 8 below,
some cytochrome P450 monooxygenases of Streptomyces
avermitilis MA-4680 catalyze 3′-specific hydroxylation of
daidzein and genistein to 3′,4′,7-trihydroxyisoflavone and
3′,4′,5,7-tetrahydroxyisoflavone, respectively (Roh et al., 2009).

Microbial biotransformation of natural steroids into
pharmaceutically active intermediates has been practiced for
many years (Fernandes et al., 2003). These active intermediates
play a role in the manufacturing of all type I aromatase inhibitors
(Lombardi, 2002) and several high-value steroidal drugs
(Wadhwa and Smith, 2000).The bioconversion reaction proceeds
with removal of the C-17 side chain of the steroid without any
modification of the steroid nucleus (Szentirmai, 1990; Murohisa
and Iida, 1993). As indicated in Figure 9, Mycobacterium sp.
NRRL B-3683 and Mycobacterium sp. NRRL B-3805 facilitate
a single step C-17 side chain cleavage of sitosterol, cholesterol,
stigmasterol and ergosterol to produce C-19 steroids such as
1-androstene-3,17-dione and 1,4-androstadiene-3,17-dione
(Sripalakit et al., 2006). The initial step of the side-chain
oxidation of sterols is hydroxylation at C-17. The reaction is
catalyzed by cytochrome P450 monooxygenase, then several
dehydrogenase including 3-β-hydroxysterol dehydrogenase
remove hydrogen to introduced a double bound at various points
(Donova and Egorova, 2012).

FIGURE 8 | Schematic presentation for isoflavones hydroxylation with the
help of Streptomyces avermitilis (Roh et al., 2009).
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FIGURE 9 | Sterol side-chain cleavage reaction mediated by Mycobacterium
spp. (Sripalakit et al., 2006).

Amino Acid Production
Amino acids alone or in combination with other molecules can
be used as drugs, food supplements, agriculture chemicals, and
polymers. Ever year the annual production of amino acids has
increased and is currently estimated to be about 3.7 million
metric tons (Ikeda and Takeno, 2013). The global market for
amino acids is estimated to be about US$6.6 billion and expected
to increase by 8-10% each year (Leuchtenberger et al., 2005;
Ikeda and Takeno, 2013). Amino acids including L-lysine, DL-
methionine, L-threonine, and L-tryptophan account for the
largest share in terms of production followed by L-glutamate,
L-aspartate, and L-phenylalanine (Ikeda and Takeno, 2013).

Microbial fermentation is the primary source of most of the
available amino acids in the market. The L-glutamate-producing
bacterium, C. glutamicum, has been the cornerstone for the
introduction of fermentation in industrial manufacturing of
amino acids (Udaka, 1960). This bacterium is still the most widely
utilized strain for manufacturing of important amino acids,
mainly L-glutamate and L-lysine (Leuchtenberger et al., 2005).
Manipulation of metabolic pathways of this bacterium allowed
for the an improved product range including L-phenylalanine,
L-aspartate, L-tryptophan, L-arginine, L-valine, nucleic acids
such as purines, vitamins such as riboflavin and pantothenic acid
(Burkovski, 2008; Gopinath et al., 2012) and significant amounts
of organic acids such as acetic, lactic and succinic acid (Inui
et al., 2004). Figure 10 highlights the biotechnological role of
C. glutamicum. As indicated, C. glutamicum utilizes different
starting materials for manufacturing of amino acids and other
chemical commodities.

Apart from the above mentioned biologically active
compounds, different species of actinobacteria are involved
in the synthesis of active compounds. Table 2 below summarizes
some of these compounds.

PRODUCTION OF BIOFUELS

A recent report indicated 80% of the world’s energy is obtained
from fossil fuels such as petroleum, coal, and natural gas
(Birol, 2017) with huge consequences for all living systems.
Therefore, the search for environmentally benign sustainable
energy from renewable sources continues. Plant biomass is
considered the most promising feedstock to meet the global
demand for sustainable energy and chemicals (Jojima et al., 2013).
Lignocellulosic biomass hydrolysates are the primary polymers of
plant biomass ideal for biofuel production. Glucose and xylose
are the major components of this biomass followed by minor
sugars, such as arabinose, and galactose (Elander et al., 2009).

Microbial conversion of plant biomass to sugars and their
transformation into a wide array of important compounds,
contribute in a major way to the development of a sustainable
biofuel industry (Van Hamme et al., 2003; Fulton et al.,
2015). Unlike other bacteria phyla, actinobacteria are equipped
with the necessary enzymes for degradation of plant biomass
(Berlemont and Martiny, 2013) and form the choice of
biocatalysts in the biofuel industry (Lewin et al., 2016). Several
species of actinobacteria including Streptomyces, Cellulomonas,
Mycobacterium, Propionibacterium, Nocardia, Corynebacterium,
Rhodococcus, and Micromonospora are rich in carbohydrate-
degrading enzymes (glycoside hydrolase, endo/exo glucanases,
cellulases, esterases) (Lombard et al., 2013).

The above mentioned enzymes are used to produce several
types of simple sugars, which are further converted into biofuels
and other compounds. The widespread utilization of bioethanol
from corn and sugarcane and biodiesel from plant oil suffers

FIGURE 10 | The Biotechnological potential of Corynebacterium glutamicum
(Ikeda and Takeno, 2013).

Frontiers in Microbiology | www.frontiersin.org 8 February 2019 | Volume 10 | Article 77

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00077 February 15, 2019 Time: 16:19 # 9

Anteneh and Franco Whole Cell Actinobacteria as Biocatalysts

TABLE 2 | Industrial production of bioactive molecules using whole cells as biocatalysts.

Compound Microorganism Biological activity Reference

nicotinamide Rhodococcus rhodochrous J1 Meyer and Ruesing, 2008

L-lysine Corynebacterium glutamicum Amino acids Burkovski, 2015

L-glutamate Corynebacterium glutamicum Amino acids Burkovski, 2015

carboxylic acids Rhodococcus sp. MTB5 Various application Ismailsab et al., 2017

phenylpropanoic acid Nocardia diaphanozonaria JCM3208 Non-steroidal anti-inflammatory drugs Mitsukura et al., 2002

aromatic dicarboxylic acids Rhodococcus jostii RHA1 Aromatic chemicals synthesis Mycroft et al., 2015

ammonium acrylate Rhodococcus ruber NCIMB 40757 Raw materials for water-soluble polymers Webster et al., 2001

L-malic Acid Nocardia sp. Metabolites Hronska et al., 2015

butyramide Rhodococcus rhodochrous Drugs Raj et al., 2007

daptomycin Streptomyces roseosporus Antibiotics Boeck et al., 1988

hydroxylated adamantine (1-adamantanol) Streptomyces griseoplanus Pharmaceutical intermediate Mitsukura et al., 2006

from several disadvantages (Atsumi et al., 2008; Atabani et al.,
2012; Caspeta and Nielsen, 2013). Therefore, alternative biofuels
including microbially produced specialty biofuels with similar
properties to traditional fuels have increased (Atsumi et al., 2008).
These speciality biofuels which encompasses higher-alcohol
biofuels, fatty acid alkyl esters and various isoprenoid compounds
can be used directly as an energy source or fuel precursors
(Peralta-Yahya et al., 2012; Beller et al., 2015). C. glutamicum is
used for the production of specialty biofuels as this bacterium
inherently resists the effect of isobutanol and synthesizes several
amino acids like glutamate which are important for production of
branched-chain alcohols. Genetic engineering of C. glutamicum
was employed to produce similar amount of isobutanol as E. coli
strains, the known producers of isobutanol (Smith et al., 2010;
Blombach et al., 2011; Yamamoto et al., 2013). For the past few
years, R. opacus PD630 has been the center of studies as they were
capable of depositing up to 80% lipid in their biomass (Alvarez
et al., 2000). The substrates used were alkanes, phenylalkanes,
or non-hydrocarbons as the only source of carbon (Hong et al.,
2011). Moreover, production of long chain fatty acid alkyl esters
(biodiesel) were observed using a Streptomyces strain isolated
from sheep feces (Lu et al., 2013); bisabolene, another alternative
to diesel fuel (Phelan et al., 2014) produced by Streptomyces
venezuelae; also produced 1-Propanol, an industrially relevant
solvent with good fuel properties from Thermobifida fusca
(Deng and Fong, 2011).

In addition to direct involvement in biofuels production,
actinobacteria play a significant role in detoxifying fuel-
associated toxic compounds. Starting from formation to
maturation, microorganisms have been in contact with crude
oil in different reservoirs which contribute for their adaptation
to use and modify nearly all chemical categories in crude oil
(Mohamed Mel et al., 2015). 85% of fossil fuels contain polycyclic
aromatic hydrocarbons (PAHs) and about 13% of these PAHs
contain nitrogen, oxygen or sulfur (hetero-PAHs) (Brinkmann
et al., 2014). Burning of these fuels results different pollutants
such as the oxides of carbon (COx), nitrogen (NOx), and
sulfur (SOx) (Ma et al., 2006). Oxides of nitrogen and sulfur
combine with water vapor in cloud and result acid rain of
sulfuric and nitric acids, which become part of rain and snow
(Gupta et al., 2005).

Among PAHs, sulfur (hetero-PAHs) in the form of thiophenic
compounds such as benzothiophene (BT), dibenzothiophene
(DBT), and their alkylated homologs (Khedkar and Shanker,
2015) have attracted increasingly stringent regulations due to
their harmful effects on the environment and human health

FIGURE 11 | Desulfurization pathway of R. erythropolis strain IGTS8 (Gray
et al., 2003).
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(Brinkmann et al., 2014; Sousa et al., 2016). The harmful effects
of PAHs, particularly hetero-PAHs well documented (Brinkmann
et al., 2014) and associated with mutagenic effects, chromosome
aberrations, toxicity to daphnia and green algae, embryotoxicity
of the zebrafish, and respiratory system irritations.

The concentration of sulfur compounds in crude oil ranges
from 0.1 to 8% (w/w) (Müller et al., 2012) and their combustion
associated with toxic pollution, most countries developed
legislation which demands low level of sulfur in oils, and this
in turn forces companies to produce ultra-low sulfur oil, which
is currently a challenge (Kawaguchi et al., 2012; Khedkar and
Shanker, 2015). Traditionally, reduction of sulfur from crude
oil has been achieved with hydrodesulfurization (Gupta et al.,
2005), a method that depends on high energy and pressure,
which mostly reduces the quality of fuel in terms of energy
(Shafi and Hutchings, 2000).

Biodesulfurization depends on whole microbes or their
enzymes to eliminate sulfur atom selectively from various
refractory compounds present in the fossil fuels. Several strains
of Rhodococcus sp. (Khairy et al., 2015), Mycobacterium sp.
(Kawaguchi et al., 2012), Brevibacterium sp. (van Afferden
et al., 1990),Corynebacterium sp. (Maghsoudi et al., 2001),
Paenibacillus sp. (Izumi and Ohshiro, 2001), Pseudomonas sp.
(Van Keulen et al., 1998), Gordonia sp. (Chang et al., 2000), and
Bacillus sp. (Kirimura et al., 2001) have been studied for their
ability to metabolize various polyaromatic sulfur heterocycles
(PASHs) including BT and DBT (Aggarwal et al., 2013). The
process adopted by this organism is known as the 4S pathway
and involves four enzymes: DszA, DszB, DszC, and DszD
(Wang et al., 2013; Sousa et al., 2016). DszA and DszC are
monooxygenases that insert oxygen into the sulfur compounds,
while DszB is a desulphinase that removes sulfur in the form
of sulfite. DszD supplies FMNH2 to the two monooxygenases
and is responsible for reduction of FMN to FMNH2 through
NADH oxidation to NAD+. The complete reaction as indicated
in Figure 11 result in a phenolic product and SO3

2− (Gray et al.,
2003; Kawaguchi et al., 2012).

Most desulfurization studies in the literature have used DBT
as the model compound. While several rhodococci strains exhibit
non-destructive desulfurization of DBT, R. erythropolis IGTS8
(Kilbane and Jackowski, 1992) was the first to be identified and
has received the most attention. Even recent study highlighted
their potential to desulfurization and denitrogenation of heavy
gas oil by R. erythropolis ATCC 4277 (Maass et al., 2015).
However, most rhodococci are unable to show high activity
for the alkyl derivatives of DBT and show no activity for BT
and other thiophenic compounds. various Gordonia species
demonstrated greater desulfurization potential against broader
range of PASHs compared to rhodococci (Alves et al., 2005). Of
them, G. alkanivorans desulfurized DPT with a 4S enzyme system
similar to R. erythropolis. Besides DBT, it can also specifically
cleave the C–S bond in BT and other thiophenes with a
reaction rate 2-10 times higher when compared to R. erythropolis
(Mohebali et al., 2007; Aggarwal et al., 2013).

Microbial mechanisms also operate for degradation of N and
O heterocycles. Carbazole is representative N heterocycles and
bacteria such as pseudomonas sp. and Rhodococcus sp. (Maass

et al., 2015) reported for mineralization of this compound.
Metabolic pathways employed by most microorganisms for
carbazole degradation are similar which involve ring cleavage
of heterocycles to produce anthranilic acid as intermediates
before their complete mineralization. In this pathway, carbazole
is first degraded to 2′-aminobiphenyl-2, 3-diol by carbazole 1,9a-
dioxygenase which breaks the first C–N bond. This process
allow for the selective removal of refractory organonitrogen
compounds from petroleum. Unlike other dioxygenases active
against aromatic compound carbazole 1,9a-dioxygenase can
catalyze cis-dihydroxylation, monooxygenation and angular
dioxygenation on diverse aromatic compounds (Xu et al., 2006).

Dibenzofuran is representative of an O heterocyclic pollutant
and microbes also developed mechanisms for biodegradation of
these O heterocycles. The detail mechanisms were reviewed by
Xu et al. (2006) and different monooxygenase and dioxygenases
participate in angular dioxygenation, lateral dioxygenation and
lateral oxygenation.

CONCLUSION

Unlike the traditional chemical based production of biologically
active compounds, biocatalysts, particularly whole cell microbial
biocatalysts, provide a cost effective and environmentally sound
approach. Several candidate microorganisms displayed their
ability to catalyze a range of substrates either to change
them into usable compounds or to make them less toxic to
the general community. Compared to other microorganisms,
species in the phylum Actinobacteria are a priority for whole
cell biocatalysts as this group of bacteria produce the highest
percentage of biologically active compounds compared to any
other and they are abundant in a range of environmental
conditions. These inherent characteristics of actinobacteria
encourage screening of various species in this phylum for their
metabolic potential with the discovery of metabolic pathways
applicable into different industries, including pharmaceuticals,
food and bioenergy sectors. While most screening studies for
whole cell actinobacteria as biocatalysts targeted only common
species such as Rhodococcus, Streptomyces and Corynebacterium,
future evaluation should consider other uncommon species
such as Gordonia which has demonstrated promising bio-
catalytic activities. Furthermore, most recent studies of whole
cell actinobacteria as biocatalysts did not show the detailed
mechanisms behind biotransformation such as what genes and
enzymes are involved in the process. Future studies should
focus on the investigation of the mechanisms behind the
biotransformation of certain substrate to product, as this will help
to manipulate each system to maximize the yield.
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