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Rare earth metals are widely used in the production of many modern technologies.
However, there is concern that supply cannot meet the growing demand in the
near future. The extraction from low-grade sources such as geothermal fluids
could contribute to address the increasing demand for these compounds. Here
we investigated the interaction and eventual bioaccumulation of europium (Eu) by
a thermophilic bacterium, Thermus scotoductus SA-01. We demonstrated that this
bacterial strain can survive in high levels (up to 1 mM) of Eu, which is hundred
times higher than typical concentrations found in the environment. Furthermore, Eu
seems to stimulate the growth of T. scotoductus SA-01 at low (0.01–0.1 mM)
concentrations. We also found, using TEM-EDX analysis, that the bacterium can
accumulate Eu both intracellularly and extracellularly. FT-IR results confirmed that
carbonyl and carboxyl groups were involved in the biosorption of Eu. Infrared and HR-
XPS analysis demonstrated that Eu can be biomineralized by T. scotoductus SA-01 as
Eu2(CO3)3. This suggests that T. scotoductus SA-01 can potentially be used for the
biorecovery of rare earth metals from geothermal fluids.

Keywords: biomineralization, intracellular Eu bioaccumulation, rare earth metals, thermophile, Thermus
scotoductus SA-01

INTRODUCTION

Rare earth metals are essential for the production of modern devices like solar cells, mobile phones
and computers, as well as for biomedical applications (Yu et al., 2009; Bouzigues et al., 2011;
Das and Das, 2013; Zhuang et al., 2015). For example, europium (Eu) luminescent complexes are
excellent probes for several biological and biomedical applications such as organic light-emitting
diode, sensing and targeting specific DNA structures, bioimaging, melamine detection in milk
products, and cellular imaging (Dutta et al., 2016; Silva et al., 2017). Thus, there is an ever increasing
demand for rare earth metals due to the sheer scale and the rapid evolution of the biotechnological
market. Accordingly, novel sources for viable rare earth metal supply have been explored, among
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them metal-rich hydrothermal fluids (Wood and Shannon, 2003;
Lo et al., 2014; Charrier and Ajo-Franklin, 2017). Indeed, elevated
concentrations (20–1133 nmol/kg) of rare earth metals have been
detected in geothermal waters of the Yellowstone National Park
(Lewis et al., 1998).

Recovery technologies for these types of metals include
chemical precipitation, chemical coagulation and ion exchange,
among others (Mahmoud et al., 2008; Xie et al., 2014;
Gunatilake, 2015; Khawassek et al., 2015). For example, chemical
precipitation is widely used for metal recovery from inorganic
liquid solutions (Gunatilake, 2015). Metals can be easily
precipitate by the addition of precipitant agents or by pH
adjustment (Mahmoud et al., 2008). However, this process
requires a large amount of chemicals, which produce large
amounts of sludge (Khawassek et al., 2015). In contrast, biological
approaches (e.g., bioaccumulation and biomineralization) are
more cost effective and environmentally friendly (Volesky, 2001,
2007; Diniz and Volesky, 2005). Furthermore, they seem to
perform very well to recover metal ions from very dilute solutions
with moderate to low grade of rare earth metals, which is a
common feature of geothermal fluids (Das et al., 2010; Lo et al.,
2014). Nevertheless, most of these studies have been performed
with mesophilic microorganisms.

Thermophilic and hyper thermophilic bacteria and archaea,
such as chemoautotrophic sulfur reducer and oxidizers, also
interact with metals (Hetzer et al., 2006; Babák et al., 2012;
Jiang et al., 2012; Naik and Furtado, 2017). For instance, a
comparative investigation on the uptake of heavy metals (Cd2+,
Cu2+, Co2+, and Mn2+) in Geobacillus thermantarcticus and
Anoxybacillus amylolyticus showed high affinity of metals for
the cell envelope (Özdemir et al., 2013). On a dry weight basis,
G. thermantarcticus was able to bind higher amounts of Cd
and Mn more than A. amylolyticus. In general, the microbial
binding capacity of metals is approximately on the order of
10−5 to 10−3 mol metal g−1 (dry weight) microbe, which
compares to the binding capacities of commercial ion exchangers
(Vijayaraghavan and Yun, 2008). Yet, to our knowledge, only
one study using Geobacillus stearothermophilus as a biosorbent
has recently investigated how thermophilic bacteria interact
with rare earth metals (Charrier and Ajo-Franklin, 2017).
Here we report the bioaccumulation and biomineralization of
Eu by Thermus scotoductus SA-01, which was isolated from
fissure water sampled at a depth of 3.2 km (Mponeng Gold
Mine, South Africa) (Kieft et al., 1999). The organism is of
interest because of its ability to interact with a variety of
metals (Kieft et al., 1999; Opperman and van Heerden, 2007;
Cason et al., 2012; Erasmus et al., 2014) under thermophilic
conditions.

MATERIALS AND METHODS

Cultivation Conditions
Unless stated otherwise, T. scotoductus SA-01 was cultivated
under anaerobic conditions in complex organic media TYG
(5 g/L Tryptone; 3 g/L Yeast Extract, and 1 g/L Glucose, pH
7.0) at 65◦C on a rotary shaker (160 rpm). Cell concentrations

were determined by extrapolating OD600nm to dry biomass values
using a calibration curve.

Tolerance to Europium
Thermus scotoductus SA-01 cells were grown to mid-exponential
growth phase (OD600nm = 0.8), inoculated (1:10 dilution,
approximately 0.06 g/L dry weight) into fresh TYG medium
containing Eu (0, 0.01, 0.05, 0.1, 0.5, 1, and 2 mM) and grown
for 24 h. Differences in bacterial growth between cultures were
monitored spectrophotometrically (OD600nm) taking samples at
2 h intervals. The experiment was performed in triplicate.

Removal of Europium
A standardized cell suspension (0.06 g/L dry weight) was used
as an inoculum to initiate growth with 0.5 mM of Eu3+. After
recording the optical density, 1 mL samples were centrifuged
(6,000 × g; 5 min) and the removal of Eu was evaluated by
monitoring the decrease in total Eu3+ concentration in the
media over time using the arsenazo-III method (Uhrovčík et al.,
2013). Briefly, samples (0.5 mL) were added to 1 mL of a
0.1 M potassium hydrogen phthalate buffer solution, followed
by 0.4 mL of the 0.05% chromogenic reagent dissolved in
water. The reaction mixture was filled with deionized water
to a final volume of 5 mL and mixed thoroughly. Eu3+ was
quantified using a calibration curve relating Eu3+ concentration
to absorbance at 655 nm (0.998 correlation coefficient) measured
using a GENESYS 5 (Thermo Fisher Scientific, United States)
spectrophotometer. Negative controls were used to assess abiotic
Eu3+ removal.

Cellular Distribution of Europium
The accumulation of Eu3+ by different subcellular fractions
of T. scotoductus SA-01 was evaluated using the methodology
described by Gaspard et al. (1998). Briefly, cells exposed to
Eu3+ were harvested by centrifugation (6,000 × g; 15 min;
4◦C) and approximately 1 g of cells washed with 20 mM
MOPS-NaOH buffer (pH 7.0). Spheroplasts were prepared by
resuspending ∼1 g wet weight xperiment when concecells in
20 mL of buffer containing 25% (w/v) sucrose. Lysozyme was
added to a final concentration of 0.1% (w/v) and slowly mixed
on a tube roller mixer for 20 min in order to degrade the
cellular wall. EDTA (pH 8.0) was added to a final concentration
of 5 mM to the lysis buffer and slowly shaken for additional
20 min. Magnesium chloride (MgCl2) was added to a final
concentration of 13 mM and the suspension was further shaken
for 20 min. Separation of spheroplast from the periplasmic
fraction was achieved by centrifugation (20,000 × g; 30 min;
4◦C). Spheroplasts were resuspended in 10 mL of 20 mM MOPS-
NaOH buffer (pH 7.0).

To obtain the membrane and cytoplasmic fractions, cells
were disrupted by ultrasonic treatment (6 repeats, 100 W, 30 s
on ice) with a Branson Sonic Power Sonifier Cell Disruptor
B-30 (Danbury, United States). Cell debris was removed by
centrifugation (4,000 × g; 10 min; 4◦C). The crude extract
(supernatant) was subsequently centrifuged (100,000× g; 90 min;
4◦C), yielding a cytoplasmic fraction containing soluble proteins
(supernatant) and a membrane fraction (pellet). The latter

Frontiers in Microbiology | www.frontiersin.org 2 January 2019 | Volume 10 | Article 81

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00081 January 28, 2019 Time: 18:40 # 3

Maleke et al. Thermus scotoductus SA-01-europium Interaction

fraction was resuspended in MOPS–NaOH buffer (20 mM,
pH 7.0) and the concentrations of Eu in all fractions were
immediately determined using the arsenazo-III method.

Scanning and Transmission Electron
Microscopy
Electron microscopy was utilized to investigate the sorption
and/or accumulation of Eu. T. scotoductus SA-01 cells exposed
to 0.5 mM Eu were harvested by centrifugation (6,000 × g;
15 min; 4◦C). For SEM, the cells were fixed in 2.5% (v/v)
glutaraldehyde, and dehydrated. Thereafter, the cells were
critical point dried, mounted on metal stubs, coated with
gold and analyzed using a JSM-7800F thermal field emission
scanning microscope (FE-SEM) coupled with Oxford Aztec
350 X-Max80 energy-dispersive X-ray (EDX) analysis (Oxford
Instruments, United Kingdom). For TEM, the cell pellets
were subjected to fixation, dehydration, and polymerization.
Thin sections (0.2 µm) were cut and trimmed with an ultra-
microtome UM7 (Leica Microsystems, Germany) and collected
on copper grids. Transmission electron micrographs were
taken with a Philips CM100 (FEI, United States) coupled
with an Oxford X-ray analyzer coupled with energy dispersive
X-ray (EDX) spectrum (JSM-7800F) (Oxford Instruments,
United Kingdom).

Fourier Transform Infrared (FT-IR)
Spectroscopy
Fourier transform infrared spectroscopy was used to elucidate
functional groups interacting with Eu. After centrifugation as
above, the bacterial cells were dried overnight by lyophilization
under vacuum and analyzed using a Bruker Tensor 27 model
(Bruker, Germany). The spectral analysis was done in the mid
IR region (500–4000 cm−1) with 16 scan speed. Peaks were
identified based on previously reported data.

High-Resolution X-Ray Photoelectron
Spectroscopy (HR-XPS)
High-resolution X-ray photoelectron spectroscopy was
used to determine both Eu oxidation state and neoformed
mineral phases. HR-XPS was obtained with a PHI 5000
Versaprobe system (Physical Electronics, United States).
Briefly, after incubation following standard conditions,
bacterial cells were harvested by centrifugation (6000 × g;
15 min; 4◦C), the pellets were dried under vacuum by
lyophilization, embedded on a carbon tape and then
analyzed in a vacuum chamber. A low energy Ar ion-
gun and low energy neutralizer electron-gun were used
to minimize charging on the surface. A 100 µm diameter
monochromatic Al Kα x-ray beam (hν1/4 1486.6 eV)
generated by a 25 W, 15 kV electron beam was used
to analyze the different binding energy peaks. The pass
energy was set to 11 eV giving an analyzer resolution of
0.5 eV. Multipack version 8.2 software (Ulvac-PHI, Inc.,
Japan) was utilized to analyze the spectra to identify the
chemical compounds present and their electronic states using
Gaussian–Lorentz fits.

RESULTS

Tolerance to Europium
The growth of T. scotoductus SA-01 in TYG medium was
identical when exposed to concentrations between 0.01 and 1 mM
of Eu3+ (Figure 1 and Table 1), although slower growth was
observed at the beginning of the experiment when concentration

FIGURE 1 | Growth curve of Thermus scotoductus SA-01 in TYG media over
a 16 h period. Symbols indicate the mean value of OD600nm samples.
Standard deviations are included but are negligible.

TABLE 1 | Specific growth rate and doubling time values for Thermus scotoductus
SA-01 grown in different Eu (0, 0.01, 0.05, 0.1, 0.5, 1, and 2 mM) concentrations.

Concentration µMax (h−1) td (h)

Control (0 mM) 0.34 ± 1.9E − 04 2.14 ± 5.4E − 03

0.01 mM 0.39 ± 3.5E − 04 1.81 ± 3.2E − 03

0.05 mM 0.38 ± 2.4E − 04 1.82 ± 1.5E − 03

0.1 mM 0.37 ± 1.1E − 04 1.84 ± 1.2E − 03

0.5 mM 0.35 ± 2.3E − 04 2.04 ± 6.4E − 03

1 mM 0.31 ± 9.2E − 04 2.47 ± 7.2E − 03

2 mM BD∗ –

∗BD, below detection limit.
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of Eu were >0.5 mM. In contrast, no growth was observed at
2 mM of Eu, suggesting that at this concentration Eu is toxic for
this bacterium.

Removal of Europium
Europium was totally removed by T. scotoductus SA-01 within
10 h of incubation during the exponential growth phase
(Figure 2). We note that Eu precipitation also took place in the
negative controls, but in lower amount than in the presence of
T. scotoductus SA-01, likely due to the change in physicochemical
parameters other than pH, as pH did not vary significantly and
kept neutral until the end of the experiments (from 7 to 6.5 on
average).

Bioaccumulation of Europium
Scanning electron micrographs showed that most of the cells
exposed to Eu were similar in morphology to those unexposed
(Figure 3). Several collapsed cells were found in the preparations
but with a similar rod-shaped form as those of the control cells
(Figure 3b). Metal precipitates were also observed and electron

dispersion X-ray (EDX) spectroscopy analyses revealed that the
precipitates were mainly composed of Eu, P, C, and O (inset
Figure 3b).

Transmission electron microscopy coupled to EDX spectra
analysis corroborated that most Eu deposits accumulated on the
cell surface (Figures 4a,b), although Eu precipitates were also
intracellularly accumulated (Figure 4b). The presence of the
intense copper (Cu) peak is attributed to the copper grid used
for sample collection.

Similar results were obtained after the separation of the
different subcellular fractions. Approximately 78% of the Eu3+

retained (0.36 mM out of 0.5 mM) by the bacterium was found
on the cell surface, 17% on the cytoplasmic membrane and 5%
in the cytoplasm. We did not detect any Eu3+ in the periplasmic
fraction.

Surface Characterization
The interaction between the cell wall and Eu was further assessed
by Fourier transform infrared (FTIR) analysis. The FTIR spectra
were in the range of 500–4000 cm−1 (Figure 5 and Table 2).

FIGURE 2 | Growth curve of T. scotoductus SA-01 supplemented with 0.5 mM Eu3+ in TYG media. Error bars indicate standard deviation, while symbols indicate
mean values.
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FIGURE 3 | Scanning electron microscopy micrographs of T. scotoductus SA-01. Bars indicate the scale as micrometers and red arrows indicate EDX spectra.
Control (a) and Eu amended cells (b).

FIGURE 4 | Transmission electron microscopy micrographs of T. scotoductus SA-01 amended with 0.5 mM Eu. White bars indicate the scale in nanometers and red
arrows show the location and distribution of Eu (shown as electron-dense granules). Europium biosorption (a) and intracellular bioaccumulation (b). Insets show
energy-dispersive X-ray spectra.

Prominent peaks in the loaded biomass were observed at 621.7,
1002.4, 1066.4, and 2356.6 cm−1. While, the intensity of some
peaks (at 1228.1, 1538.5, 1641.9, 2926.7, and 3292.7 cm−1) in
the loaded biomass was substantially lower than the unloaded
biomass. The peak stretching and intensity demonstrate a change
in the amount of the functional group associated with the
molecular bond. Whereas a shift in peak position demonstrates
the hybridization state in the molecular bond has changed. The
spectra showed a distinctive peak at 621.7 cm−1 attributed to
PO4

3− in the loaded biomass, which is absent in the control
samples. Peaks attributed to organic phosphate and C-PO3

2−

(1002.4 and 1066.4 cm−1), CO2 (2356.6 cm−1) and alkyl chain
bands (around 2850–2955 cm−1) were also observed. Low
intensity peaks were also noted, for instance, peaks between
1056 and 1233 cm−1, which are attributed to P-O of C-PO3

2−

moiety region and P = O, as well as, lower intensity peaks

around 1400 and 1600 cm−1, which contribute to the amide I
and II regions of proteins, were reduced in cells binding Eu. The
amide II region consists of N–H bending and C–N stretching
vibrations close to the region of 1520–1550 cm−1. While, amide I
is usually the region at 1633 cm−1 but in the experiments shifted
to 1641 cm−1, which was caused by C = O stretching. Overall, the
spectra indicated that the interaction occurs mainly through the
phosphate, carboxyl and carbonyl of amide groups.

Biomineralization of Europium
The fitted curve of the HR-XPS spectra indicated two major peaks
at 1135.1 and 1131.6 eV (Figure 6). The HR-XPS analysis revealed
that the Eu was in the 3+ oxidation state. According to Mercier
et al. (2006), the 1135.1 eV peak was identified as Eu carbonate
[Eu2(CO3)3].
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FIGURE 5 | Fourier transform infrared spectrum of T. scotoductus SA-01.
Control (A) and cell cultures supplemented with Eu (B).

DISCUSSION

Rare earth metals, including Eu, have recently been found to
play an important role in the biology of different bacteria (Pol
et al., 2014; Jahn et al., 2018). Here we found that Eu promotes
the growth of T. scotoductus SA-01 at low concentration (up
to 0.1 mM), while it is detrimental at high concentrations
(>0.5 mM). This is in accordance with the results reported by
Azabou et al. (2007) in Desulfomicrobium species, a mesophilic
bacterium. Similarly, Pol et al. (2014) showed that the growth
of Methylacidiphilum fumariolicum SoIV (thermophilic) was
affected by rare earth metals. Comparatively, the tolerance of
T. scotoductus SA-01 is higher than that of other bacterial strains
reported to tolerate rare earth metals. For example, Bacillus sp.
W-28 and S. acidiscabies W-12 (both mesophilic) can tolerate
0.05 and 0.2 mM of La, respectively (Haferburg et al., 2007).
Conversely, T. scotoductus SA-01 tolerance is lower than that
reported for K. vulgare (mesophilic) which is able to tolerate
5 mM of La (Lyu et al., 2014). In general, the toxicity of metals
in bacteria results from the displacement or substitution of

TABLE 2 | Assignment of FTIR derived peaks to functional groups of
T. scotoductus SA-01.

Wavenumber (cm−1)

Control Europium Assignment Reference

1010.1 1002.4 Organic phosphate Hosomomi et al., 2013

– 1066.4 P-O of C-PO3
2− Hosomomi et al., 2013;

Oves et al., 2013

1228.1 1232.4 P = O phosphodiester Kamnev et al., 2002;
Hosomomi et al., 2013;
Oves et al., 2013

1369.6 1390.2 COO− (carboxyl) and
C-O-C

Emmanuel et al., 2011;
Hosomomi et al., 2013

1533.9 1536.5 Amide II; N-H and C-N
group

Adochitei and
Drochioiu, 2011;
Hosomomi et al., 2013;
Oves et al., 2013

1633.7 1641.9 Amide I; C = O group
(carbonyl)

Adochitei and
Drochioiu, 2011;
Hosomomi et al., 2013;
Oves et al., 2013

2924.8 2926.7 C-H stretching and
alkyl group

Hosomomi et al., 2013;
Oves et al., 2013

3284.3 3292.7 O-H of carboxyl
stretching/N-H
stretching

Kamnev et al., 2002;
Emmanuel et al., 2011

essential elements from cellular sites and due to the blocking of
functional groups of important biochemical molecules (Cason
et al., 2012). For instance, rare earth metals can replace calcium
ions in the binding sites of nucleases, affecting bacterial growth
(Balasubramanian et al., 2014).

Rare earth metals substantially change bacterial cell walls
particularly those of gram-negative bacteria (Peng et al., 2004;
Chen et al., 2010, 2012). Likewise, we also found morphological
changes in the bacterial cells treated with Eu. In general, the
cell wall has high affinity for metals in solution (Mishra et al.,
2010; MacHalová et al., 2015), which bind to cell surface receptors
such as S-layer proteins and other organic molecules (Borrok
et al., 2007; Hosomomi et al., 2013; MacHalová et al., 2015).
The SEM and TEM micrographs and cellular fractionation
showed that Eu accumulates (in decreasing order), on the
cell surface of the bacterial envelopes, in the membrane and
in the cytoplasm, but not in the periplasmic space. These
results are in contrast to what was observed in E. coli, which
was able to accumulate rare earth metals in the periplasmic
space (Bayer and Bayer, 1991). We did not investigate the
molecular mechanism that allow Eu to enter the cytoplasm, but
previous studies using this bacterium and other metals (i.e.,
U and Au) seem to indicate that ABC transporters (Cason
et al., 2012; Erasmus et al., 2014) may play a role. On the
other hand, the intracellular accumulation of Eu might be
mediated by PolyP metabolism. Indeed, transmission electron
microscopy and EDX analysis showed electron dense granules
in the cytoplasm composed of Eu and phosphate. Furthermore,
T. scotoductus SA-01 harbors polyphosphate kinases (ppk) and
exopolyphosphatases (ppx) genes, which are responsible for the
synthesis and degradation of PolyP, respectively. PolyP is often
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FIGURE 6 | High-resolution XPS spectrum of (A) negative control amended with Eu and (B) minerals formed in TYG media amended with Eu and T. scotoductus
SA-01.

FIGURE 7 | Illustration of the interaction mechanisms of T. scotoductus SA-01 with Europium.

involved in metal accumulation and detoxification in bacteria
(Rao and Kornberg, 1996; Kuroda et al., 1999; Nikel et al.,
2013) as a defense mechanism against environmental stress.

Overall, the data seem to indicate that there is a rapid phase of
metal binding to the cell surface (biosorption) that is followed
by a slower phase of metal bioaccumulation into the cell.
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We further investigated which functional groups could be
involved in the biosorption of Eu. The FT-IR results showed
that peaks associated with functional groups such as phosphates
(PO4), carboxyl (COOH) and carbonyl (C = O) of amide
groups, commonly found as organic molecules released by
microorganism, become more evident after the incubation with
Eu (Benzerara et al., 2005). These functional groups as well as
others (e.g., aldehyde, hydroxyl, ketone) are commonly involved
in the biosorption of metals in mesophilic bacteria (Madrid
and Camara, 1997; Saleem et al., 2008), but few reports are
available on thermophiles (Özdemir et al., 2013). Elements such
as Ca2+ can react with COOH and C=O groups to form various
chelate complex [Cax

2+(CO)y]n (Qian et al., 2010). Interestingly,
Europium (Eu3+/2+) has similar ionic charge and radius to
Ca2+, which facilitate the replacement of Ca by Eu in mineral
structures (Homer and Mortimer, 1978; Hellebrandt et al.,
2016). This suggests the biomineralization of Eu as neoformed
mineral complex [Eux

+(CO)y]n on the cell wall. Indeed, HR-
XPS analysis demonstrate that the phase minerals bound to the
cell surface of T. scotoductus SA-01 were Eu2(CO3)3. However,
a significant drawback to this technique is that it only provides
information with regards to surface binding of Eu (Kumar
et al., 2015). Usually, reduction of metals leads to intracellular
bioaccumulation as it was observed in bacterium Paracoccus
denitrificans interaction with Cu (Su et al., 2015). Therefore, it
is possible that a fraction of Eu accumulated intracellularly might
exist in the divalent state.

Microorganisms can also induce the precipitation of
minerals by modifying the conditions of their surrounding
microenvironments (De Muynck et al., 2013; Sánchez-Román
et al., 2015; Zhu and Dittrich, 2016). Under neutral to alkaline
pH, the carbon dioxide produced by respiration reacts easily with
OH− radicals leading to the formation of carbonate minerals. For
example, Sánchez-Román et al. (2015) reported that the increase
in CO3

2− induced Fe-carbonate mineralization in Tessarococcus
lapidicaptus. Several studies have also reported on the external
precipitation of Ca-carbonate by Cyanobacteria (Obst et al., 2006;
Kamennaya et al., 2012; Benzerara et al., 2014). Altogether, it
seems that the presence of T. scotoductus SA-01 can induce the
biomineralization of Eu in two different ways: (1) by modifying

the conditions of its surrounding microenvironments and/or (2)
acting as nucleation sites (Figure 7).

CONCLUSION

Our findings provide information on how T. scotoductus
SA-01 interacts with Eu under thermophilic conditions. This
is important because temperature is a limiting factor when
exploring metal recovery from geothermal fluids by biological
processes and for the use of bacteria in other industrial
applications. We conclude that T. scotoductus SA-01 can be
employed for the biorecovery of Eu and other rare earth metals
in rare earth metal-containing carbonates.
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