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Potato common scab (PCS) is an economically important disease worldwide. In this
study we demonstrated the possible role of Streptomyces violaceusniger AC12AB in
controlling PCS. Isolates of Streptomyces scabies were obtained from CS infected
tubers collected from Maine United States, which were confirmed by morphological
and molecular analysis including 16S rRNA sequencing and RFLP analysis of amplified
16S-23S ITS. Pathogenicity assays related genes including txtAB, nec1, and tomA were
also identified in all S. scabies strains through PCR reaction. An antagonistic bacterial
strain was isolated from soil in Punjab and identified as S. violaceusniger AC12AB based
on 16S rRNA sequencing analysis. Methanolic extract of S. violaceusniger AC12AB
contained azalomycin RS-22A which was confirmed by 1H and 13C-NMR, 1H/1H-
COSY, HMBC and HMQC techniques. S. violaceusniger AC12AB exhibited plant growth
promotion attributes including Indole-3-acetic acid production with 17 µgmL−1 titers,
siderophores production, nitrogen fixation and phosphates solubilization potential. When
tubers were inoculated with S. violaceusniger AC12AB, significant (P < 0.05) PCS
disease reduction up to 90% was observed in greenhouse and field trials, respectively.
Likewise, S. violaceusniger AC12AB significantly (P < 0.05) increased potato crop up to
26.8% in field trial. Therefore, plant growth promoting S. violaceusniger AC12AB could
provide a dual benefit by decreasing PCS disease severity and increasing potato yield
as an effective and inexpensive alternative strategy to manage this disease.

Keywords: Streptomyces scabies, biological control, plant growth promoting Streptomyces, antagonistic
Streptomyces, potato common scab

INTRODUCTION

Potato common scab (PCS) is considered among top five diseases by potato farmers in United States
(Slack, 1991). PCS is caused by Gram positive, filamentous bacteria in the genus Streptomyces.
Streptomyces are soilborne saprophytic bacteria, mostly famous for the production of antibiotics
(Kemung et al., 2018). However, only few of them are plant pathogens. Although, several species
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of Streptomyces can cause common scab (CS), Streptomyces
scabies was considered as predominant plant pathogen (Lambert
and Loria, 1989). PCS infection is characterized by superficial,
raised or pitted scab lesions on the surface of the tubers. The
occurrence of PCS infection is, generally not hazardous to human
health. However, they may deteriorate the quality of tubers and
effects the market value. For instance, potato industry in Canada
reported to experience $1.2 million loss every year due to this
disease (Al-Mughrabi et al., 2016).

Scab lesions on the surface of the tubers develop due
to a phytotoxin called thaxtomin. In 1898, thaxtomin was
firstly described (King et al., 1989; Lawrence et al., 1990) as
toxin responsible to produce CS on immature tubers. All PCS
causing Streptomyces spp. produce thaxtomin A or another
member of thaxtomin family (Loria et al., 2008). Biosynthesis of
this phytotoxin encompasses non-ribosomal peptide synthetases
encoded by txtA and txtB genes (Loria et al., 2008). The
genes responsible for pathogenicity like txtAB, nec1 and tomA
are clustered together and termed as pathogenicity island
(PAI) (Kers et al., 2005). PAI consists of thaxtomin genes
including txtAB (Healy et al., 2000), txtH, txtC (Healy et al.,
2002), txtR, txtE (Joshi et al., 2007), nos/txtD (Kers et al.,
2004), and genes for pathogenicity factors like Tomatinase
(tomA) and Necrotic protein (nec1) (Kers et al., 2005; Barry
et al., 2012). Secreted Nec1 protein helps to enhance the
virulence by weakening the plant defense mechanism (Bukhalid
et al., 1998). TomA gene encodes for a virulent protein
having high similarity with phytopathogenic fungi tomatinase
(Kers et al., 2005).

Although thaxtomin A, which is encoded by txtAB gene, is
considered as a major player toward plant pathogenicity, other
genes including nec1 and tomA are also somehow required
for the virulence (Loria et al., 2006). Many unknown factors
can play a supportive role in pathogenicity. However, the
prevalence of CS pathogens without txtAB genes are either
very rare or confined to geographic locations (Park et al., 2003;
Wanner, 2004).

Over the decades, PCS management remained a serious
problem among potato growers. The control strategies are
challenging due to limited understanding of genetic diversity
of S. scabies and genetic differences in various potato cultivars
(Dees and Wanner, 2012). Several physiochemical approaches
like reducing soil pH, crop rotation, and soil fumigation agents
like chloropicrin (trichloronitromethane) have conventionally
been used with harmful effects to the environment (Larkin
et al., 2011; Xue et al., 2018). In contrast, research in
biological control as an alternative strategy is emerging. Several
antagonistic bacteria including Bacillus spp. (Meng et al., 2013),
Pseudomonas spp. (Arseneault et al., 2015) and Streptomyces
spp. (Sarwar et al., 2018) have been used as biocontrol agent
against PCS.

The present study was designed to evaluate the pathogens
responsible for PCS incidences and to assess the antagonistic
ability of S. violaceusniger. It was hypothesized that
S. violaceusniger AC12AB could be used as effective biological
control agent due to its ability to promote plant growth and
suppress PCS.

MATERIALS AND METHODS

Sample Collection, Bacterial Isolation,
and Identification
Potatoes having visible CS symptoms were collected from
Presque Isle, ME, United States. All collected samples were
carefully transferred to the laboratory at the University of Maine,
United States. Samples were stored at 4◦C prior to use.

Tubers with CS symptoms were washed and surface sterilized
with 5% sodium hypochlorite (NaOCl) for 1 min. Surface
sterilized tubers were rinsed with sterile distilled water and air
dried. The infected portion from CS tubers were carefully excised
with sterile scalpel and triturated to form a homogenized paste by
adding 1 mL Tris-HCl. The homogenized suspension was poured
into 2 mL Eppendorf tubes, separately. The Eppendorf tubers
were placed at 55◦C for 2 h to remove unwanted microorganisms.
This suspension was ten-fold diluted with sterile distilled water
before pouring onto yeast malt extract (YME) agar plates
(Shirling and Gottlieb, 1966). An aliquot of 100 µL from diluted
suspension was used to spread on YME agar plates and placed
in an incubator for 5–7 days at 28◦C. After incubation, YME
agar plates were checked for the white cottony Streptomyces
like colonies.

Antagonistic bacterial isolates were collected from agriculture
field located at Lahore, Pakistan having no visible CS symptoms
over the period of past 5 years. Suppressive soil samples were
used to isolate Actinomycetes by serial dilution method (Wang
et al., 2015). Colonies were further purified on YME agar
plates (Shirling and Gottlieb, 1966). Microorganisms particularly
antibiotic producing actinomycetes were targeted as promising
candidate as PCS antagonistic bacteria (Kharel et al., 2010).

DNA Extraction and PCR Amplification
Selected bacterial spores were inoculated into YME broth and
incubated for 3 days in shaking incubator with 180 rpm at 28◦C
temperature. After incubation, supernatant was separated from
cell pellet by centrifugation. The cell pellet was used for genomic
DNA extraction by using the FastDNA R© kit (MP Biomedicals,
Santa Ana, CA, United States). PCR amplification of DNA
samples were performed with 16S rRNA primers (Edwards et al.,
1989). PCR reaction was performed in PCR tubes with 25 µL
reaction volume which included 1 µL (50ng) DNA (A260/A280
ratio was 1.9) template, 5 µL 5X PCR buffer, 0.50 µL 10 mM
dNTPs, 0.50 µL 10 µM forward and reverse primers each, 0.10
5 u/µL Taq polymerase and 17.90 µL H2O. PCR reaction was
programmed as, initial denaturation for 5 min at 95◦C followed
by 30 cycles of denaturation for 30 s at 95◦C, annealing for
40 s at 60◦C, extension for 40 s at 72◦C and final extension was
performed for 5 min at 72◦C.

Identification of PCS Pathogens
Streptomyces species specific primers were used for the
identification of PCS causing pathogens. Species specific
primers for Streptomyces pathogens including S. scabies
(Lehtonen et al., 2004), S. europaeiscabiei, S. bottropensis,
S. stelliscabiei (Wanner, 2006), S. acidiscabiei, and S. turgidiscabiei
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(Tagawa et al., 2008) were used for the identification by PCR
amplification. Amplification of 16S-23S internal transcribed
spacer (ITS) sequence was performed with ITS forward and
reverse primers (Song et al., 2004). PCR amplified product was
digested with Hpy99I restriction enzyme which expurgated the
amplicon at 1629–1633 nucleotide position.

DNA fragments were visualized under gel electrophoresis.
PCR amplified product was sent to DNA sequencing facility,
University of Maine for sequencing. 16S rRNA sequences were
submitted to NCBI to obtain accession numbers.

Polymerase chain reaction was used to amplify PAI related
genes including txtAB, nec1, and tomA (Bukhalid et al., 1998;
Wanner, 2006). PCR reaction conditions were same as above
except the annealing temperature was adjusted at 60◦C, 55◦C and
48◦C for nec1, tomA, and txtAB genes, respectively.

Disk Diffusion Assay
Antagonistic Streptomyces spp. were checked against PCS
pathogens by disk diffusion assay (Clinical and Laboratory
Standards Institute, 2015). Pure cultures of twelve antagonistic
Streptomyces spp. were prepared by inoculating few spores
into 100 mL YME broth and incubated at 28◦C in shaking
incubator at 180 rpm for 5–7 days. The broth culture was
centrifuged at 9,000 × g and supernatant were used for
preparation of methanol extract. Meanwhile, YME broth cultures
of PCS pathogenic Streptomyces strains were spread on YME
agar plates with RattlerTM plating beads (Zymo Research
Cooperation, United States), separately. 25 µL methanolic extract
of antagonistic Streptomyces were poured on filter paper disks and
placed on YME- agar plates previously spread with pathogenic
PCS suspension. The plates were incubated for 48–72 h at
28◦C. After incubation, clear zone around filter paper disks were
checked and results were recorded in mm.

Plant Growth Promotion
Twelve antagonistic Streptomyces spp. were evaluated for
plant growth attributes including indole-3-acetic acid (IAA)
production, phosphate solubilization, siderophores production
and in vitro nitrogen fixation. IAA production was estimated
by colorimetric method (Gordon and Weber, 1951; Amin and
Latif, 2017) and confirmed by HPLC-DAD-MS as mentioned by
Sarwar et al. (2018). The IAA production titer from antagonistic
Streptomyces spp. was performed by observing optical density
(O.D530nm) against standard curve of IAA and recorded in µg
mL−1 (Bric et al., 1991). Phosphate solubilization was assessed
by the method previously described by Sylvester-Bradley et al.
(1982). Glucose yeast medium (GY) along with two solutions; one
containing 10% 50 mL K2HPO4 and second solution containing
10% 100 mL CaCl2 were prepared and added in 1 L GY medium
(Ambrosini et al., 2012). The medium was autoclaved and poured
into petri plates after cooling. The addition of two solutions made
an opaque insoluble layer of CaCl2. The plates were inoculated
with antagonistic Streptomyces isolates, separately and incubated
for 7 days at 28◦C. After incubation, inhibition zone was observed
and recorded.

Siderophores production was checked by inoculating bacterial
spores on chrome azurol S (CAS) agar plates as mentioned by

Schwyn and Neilands (1987). After the incubation of 5–7 days at
28◦C, development of yellow to orange color was observed.

Nitrogen fixation potential of antagonistic Streptomyces spp.
was examined by acetylene reduction assay (ARA) as described
by Rice and Paul (1971). Nitrogen free mannitol (NFM) medium
(Doty et al., 2009) slants were prepared in glass tubes and
inoculated with antagonistic Streptomyces spp., separately. The
tubes were sealed with a stopper and head space was filled with 2%
oxygen. About 10% head space was exchanged with equal amount
of acetylene. The tubes were placed in an incubator at 28◦C for
2 weeks. Reduction of acetylene to ethylene was measured by
gas chromatography (Agilent technologies 7890A GC system),
which was equipped with flame ionizing detector and Agilent
CP7348 column (25m × 0.25mm). As a positive control,
two bacterial strains belonged Bacillus amyloliquefaciens (ZM2;
accession number JX185642) and Pseudomonas aerouginosa
(ZS24; accession number JQ990311) were used (kindly provided
as positive control by Dr. ZL, University of the Punjab, Pakistan).

Extraction and Analysis of Bioactive
Compounds by HPLC-DAD-MS
Antagonistic Streptomyces strains were inoculated in 150 mL
YME broth in a 500 mL shaking flask. The flasks were incubated
for 3 days at 28◦C in an incubator shaker with 180 rpm. After
incubation, the culture was centrifuged, pellet was discarded,
and supernatant was undergone twice extraction with equal
amount of ethyl-acetate. The extract was concentrated in-vacuo
and re-suspended in methanol. For the HPLC-DAD-MS analysis,
Agilent 1100 system was used equipped with a XBridge C-18
(3.5 mm, 100 mm× 4.6 mm) reverse phase column, a diode array
detector and a quadrupole mass detector. An aliquot of 20 µL
diluted crude extract was injected into the HPLC system and
eluted isocratically with 95:5 methanol/water at a 0.5 mL min−1

flow rate.

Purification and Structural Elucidation of
Azalomycin
Culture of S. violaceusniger strain AC12AB (100 mL) was used to
inoculate in 10 L YME broth at 28◦C for 5 days in an incubator
shaker with 150 rpm. After incubation, the culture was sonicated
for half an hour. The culture was then centrifuged at 11,200 × g,
supernatant was used for extraction with equal amount of ethyl
acetate. The ethyl acetate extract was concentrated in-vacuo and
powdered extract was re-suspended in methanol. The methanolic
extract was used for thin layer chromatography (TLC) and
silica gel column chromatography with 5:1 dichloromethane and
methanol buffer system. All the fractions were analyzed for their
biological activity against S. scabies and most active fraction was
further purified by Sephadex LH-20 column chromatography
system with methanol as mobile phase. The fraction was
analyzed by HPLC-DAD-MS system and further purification was
performed by SPE Oasis R© HLB20 35 cc cartridge (6 g). Fractions
were eluted in SPE column with step gradient (20–100%) of
methanol. Purified fraction was obtained after final purification
with semi-preparative HPLC.
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Final purification was achieved with help of semi-preparative
HPLC system (Agilent 1100 Series). In HPLC system, as a
stationary phase Zorbax B-C C18 (9.4 mm × 20 mm) main
column and Zorbax B-C18 (9.4 mm× 150 mm) pre-column was
used. The compound was eluted with buffer A (acetonitrile/acetic
acid 0.5%) and buffer B (water/acetic acid 0.5%) with 2 mL
min−1. Methanolic extract purified from SPE Oasis R© HLB20 35
cc cartridge was spiked on the column. 6mg purified azalomycin
obtained from semi-preparative HPLC system, was dissolved in
CD3OD and analyzed for one dimensional NMR including 1H
(400 MHZ) and 13C-NMR (100 MHZ) and 2-D NMR including
HMQC, 1H/1H-COSY and HMBC on a Bruker DRX-500 NMR
spectroscopy (Bruker, Karlsruhe, Germany).

Plant Growth Promotion and
Pathogenicity Assay on Potato Tubers
Greenhouse Assay
Pathogenicity assay on tubers was performed in greenhouse
assay (Wanner, 2006). From eighteen isolates of pathogenic
Streptomyces spp., two isolates namely S. scabies strain AJ-
7 (Accession number MG725948.1) and AJ-10 were selected
whereas S. violaceusniger strain AC12AB (Accession number
MH388022.1) was used as antagonistic and plant growth
promoter strain. As a positive control PCS pathogenic S. scabies
strain AC-46 (Accession number KU560917.1) was also used.
To observe normal growth pattern, tubers were also inoculated
without any bacterial inoculation. The greenhouse assay was
performed twice at greenhouse facility, University of Maine,
Orono, United States during 2016-2017. Pathogenic S. scabies
AJ-7, AJ-10, AC-46, and antagonistic S. violaceusniger AC12AB
were cultivated separately in YME broth for 3–5 days at 28◦C
in incubator with shaking at 150 rpm, until they attained 106

CFU mL−1 conc. After incubation, cultures were separately
centrifuged at 9,000 × g. Supernatant was discarded, and
bacterial cell mass was re-suspended in sterile distilled water
to prepare inocula with 106 CFU mL−1 conc. Pots were filled
with compo Sana Universal R© (Munster, Germany). Tubers were
surface sterilized with 5% NaOCl for 5–10 min and washed
with sterilized water. Washed tubers were sown into respective
five pots as replicates. After 2–3 weeks of sowing, pots were
inoculated by drenching with 100 mL bacterial suspension. The
average temperature was maintained between 25 and 28◦C. The
plants were kept hydrated and continuously monitored for the
increase in shoot, root length, tuber weight and decrease in PCS
symptoms for 3 months. After harvesting, potato tubers were
evaluated against growth and disease parameters. The results
were recorded and pathogenic Streptomyces spp. was re-isolated
from CS infected tubers to confirm the source of CS infection.

Field Trial
Field trial was conducted to determine disease suppression
and plant growth promotion of antagonistic S. violaceusniger
AC12AB. Field trial was conducted in a field available at
University of the Punjab, Lahore Pakistan. Indigenous CS
pathogen S. scabies AC-46 and antagonistic S. violaceusniger
AC12AB were used. Inoculum of pathogenic and antagonistic
strains were prepared as mentioned above. Disease free tubers

(cv. Berna; Purchased from Punjab Seed Corporation, Pakistan)
were disinfected with 5% NaOCl and washed with sterile
water. Tubers were sown in a randomized complete block
design in duplicates.

Each block (62 square feet) contained four rows; the length
of each row was 1.5 m with 2.5 m distance between each
block. Six potato seeds were implanted into each row. After 2–
3 weeks of plantation, bacterial spore suspension (prepared as
described above) was drenched 20–30 cm deep into the plant’s
roots. Plants were watered as required under natural light and
temperature. Plants were monitored for growth in shoots and
roots length. After harvesting, tubers were evaluated for decrease
in CS symptoms, increase in tuber weight and yield acre−1

were recorded.

Statistical Analysis
All the experiments were performed in triplicates and P < 0.05
was considered as statistically significant. The results were subject
to one-way analysis of variance (ANOVA) and compared means
were separated by Tukey’s test. Statistical analysis was performed
by using SPSS software (IBM SPSS Statistics, version 21).

RESULTS

Identification and Molecular
Characterization of Streptomyces
Causing PCS
Eighteen bacterial isolates were analyzed by PCR amplification
of 16S rRNA gene, out of which, all isolates were confirmed

FIGURE 1 | Inhibition of S. scabies (AJ-7) by disk diffusion assay.
Streptomyces scabies (AJ-7) was grown on YME agar plates with filter paper
disks containing (A) purified azalomycin dissolved in methanol;
(B) Streptomyces violaceusniger AC12AB crude extract; (C) methanol only.
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as Streptomyces. Streptomyces isolates were further identified
by PCR amplification with using species specific primers, PCR
amplification of 16-23S ITS region with ITS primers and
digesting the amplicon with Hpy99I enzyme. After RFLP pattern
analysis, all eighteen Streptomyces isolates were found to belong
S. scabies (Flores-González et al., 2008).

PCR was also performed to identify the pathogenicity-related
genes in Streptomyces isolates, which were subject to PCR
amplification of txtAB, nec1 and tomA genes. All Streptomyces
isolates were found to contain txtAB, nec1, and tomA genes.
Antagonistic bacterial isolates were also screened for txtAB,
nec1 and tomA genes; but, did not test positive for those genes

FIGURE 2 | HPLC chromatogram of S. violaceusniger AC12AB showing indole-3-acetic acid (IAA) peak at 2.84 min retention time.

FIGURE 3 | Predicted structure of azalomycin RS-22A purified and isolated from Streptomyces AC12AB.
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which showed that antagonistic bacterial isolates do not produce
thaxtomin A and are non-pathogenic. Among antagonistic
bacterial isolates, one bacterial strain AC12AB was identified
as S. violaceusniger after 16S rRNA analysis with MH388022.1
accession number.

Antagonistic Potential and Isolation of
Azalomycin From Streptomyces
violaceusniger AC12AB
Disk diffusion assay was performed to determine the antibacterial
potential of antagonistic Streptomyces isolates. The bacterial
extract from S. violaceusniger AC12AB had high inhibitory
activity (18 mm) against S. scabies (AJ-7) (Figure 1 and
Supplementary Table S1).

Plant Growth Promoting Potential of
Streptomyces violaceusniger AC12AB
Streptomyces violaceusniger AC12AB was analyzed to produce
plant growth promoting attributes including IAA, phosphate
solubilization, siderophores production and in vitro nitrogen
fixation. With colorimetric method, the highest potential of
IAA production was estimated in case of S. violaceusniger
AC12AB as 17 µgmL−1 after 4 days of incubation at
28◦C. Production of IAA was also confirmed by HPLC
analysis (Figure 2). From twelve antagonistic bacterial strains,
three antagonistic Streptomyces isolates (Streptomyces A1RT,
S. violaceusniger AC12AB and Streptomyces A-1; data not
shown except S. violaceusniger AC12AB) were positive for
siderophores production by producing blue color around
bacterial cultures in NFM medium (Supplementary Figure S1).
Phosphate solubilization test was performed with antagonistic
bacterial strains and only S. violaceusniger AC12AB and
Streptomyces A1RT exhibited clear zone around bacterial colonies
(Supplementary Figure S2). ARA was performed against
antagonistic bacterial isolates. The maximum value for ARA
4351.0 nMole/24h was recorded from S. violaceusniger AC12AB.
However, 2278 and 1549 nMole/24h ethylene production were
estimated from Streptomyces A1RT and Streptomyces A-1 strains,
respectively (Supplementary Table S2).

Purification and Structural Elucidation of
Bioactive Compound
Through a targeted mass fractionation, a white colored
amorphous powder was purified having strong antibacterial
activity against S. scabies. The molecular mass of the compound
was predicted to be C54H91N3O17 based on observed molecular
ion [M-H]−; m/z 1054.5 (Supplementary Figure S3). Analysis
of one-dimensional NMR (1H and 13C NMR spectra) indicated
ten olefinic carbons, twelve oxy-methine and one quaternary
hemiacetal carbon (Supplementary Figures S4, S5). Analysis
of 2D-NMR revealed the characteristic guanidine carbon
(Supplementary Figures S6–S8 and Supplementary Table S3).
The absorbance spectrum of compound (Supplementary
Figure S9) exhibited distinct maxima 250–300 nm closely related
to azalomycin (Figure 3) analog RS-22A (Ubukata et al., 1995).

Plant Growth Promotion and PCS
Disease Suppression Under Greenhouse
and Field Conditions
In greenhouse assay, pathogenic S. scabies isolates (AJ-7, AJ-10,
and AC46) caused CS lesions on potato tubers (Figures 4A,B
and Table 1). The inoculation with antagonistic S. violaceusniger
AC12AB significantly reduced DS index (P < 0.05) (Table 1).
There were 47, 24.6, and 41% increases in shoot length, root
length and tuber weight, respectively, when S. scabies AJ10 was
used in combination with S. violaceusniger AC12AB (P < 0.05)
(Figures 5, 6). Field trial using S. violaceusniger AC12AB revealed
83% disease reduction (Figures 4C,D and Table 1), 26.8%
yield increase (Table 1), and significant (P < 0.05) increase in

FIGURE 4 | Tubers harvested from greenhouse assay and field trial.
(A) Tubers harvested from after inoculation with S. scabies AJ-7 in
greenhouse assay. (B) Tubers harvested after inoculation with S. scabies AJ-7
+ S. violaceusniger AC12AB in greenhouse assay. (C) Tubers harvested after
inoculation with S. scabies AC-46 in field trial. (D) Tubers harvested after
inoculation with S. scabies AC-46 + S. violaceusniger AC12AB in field trial.
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TABLE 1 | Effect of growth promoting Streptomyces on potato (Solanum tuberosum) grown under greenhouse at the University of Maine, Maine, United States and field
conditions in University of the Punjab, Lahore, Pakistan.

Treatment Greenhouse Field trial Field trial

DS Index % decrease DS index % decrease Yield (Kg/h) % increase

Streptomyces
scabies (AJ-7)

153 ± 1f – N/A N/A N/A N/A

Streptomyces
scabies (AJ-10)

181 ± 1g – N/A N/A N/A N/A

Streptomyces
scabies (AC-46)

96 ± 1e – 78 ± 0.5 c – 7,650 ± 1 b 3.37 a

Streptomyces
violaceusniger
(AC12AB)

0.2 ± 0.01a – 0 ± 0.01 a – 9,100 ± 1 c 18.8 b

AJ7+AC12AB 12.6 ± 0.01c 91.70 b N/A N/A N/A N/A

AJ10+AC12AB 7.9 ± 0.01b 91.77 b N/A N/A N/A N/A

AC46+ AC12AB 17.4 ± 0.1d 90.30 a 13.2 ± 0.4 b 83.07 9,701 ± 1 d 26.8 c

Control 0.3 ± 0.01a – 1 ± 0.01 a – 7,400 ± 1 a –

The results are presented as mean of three independent experiments ± SE. N/A, not applicable. Means followed by different letters are significantly different detected by
Tukey’s test at a significance level P < 0.05.

FIGURE 5 | Effect of S. violaceusniger AC12AB on potato growth. (A) Root and shoot growth in greenhouse trial. (B) Root and shoot growth in field trial. Error bars
representing ± SE. Measurement was represented by mean ± SE of triplicates. Means followed by different letters show significant differences detected by Tukey’s
test at a significance level P < 0.05.

plant growth attributes (including increase in shoot/root length,
number of tubers and tuber weight) (Figures 5, 6).

DISCUSSION

In this research, S. violaceusniger AC12AB was assessed for its
efficacy in suppressing CS disease and plant growth promotion in
potato crop. The results indicated that although S. violaceusniger
AC12AB application reduced the PCS disease up to 83%, their
efficacy of plant growth promotion in field trial varied as
compared to greenhouse assay.

Field soil is a complex environment that contains multiple
factors which are difficult to control. CS development is not only

dependent upon bacterial inoculum, but also by other physical
and biological factors, including soil condition, irrigation
strategy, plant variety, and weather conditions (Lazarovits et al.,
2007). In the current study, field trial was conducted in the soil,
and the average disease severity index was recorded as 1.1 (in the
control). Moreover, dry and hot weather conditions of Pakistan
may favor the development of CS infections in the tubers. All
these factors could affect the disease outcome and may hinder
the disease management under natural conditions. Previously,
disease management remained dependent upon the use of
chemical pesticides (Hvězdová et al. , 2018), maintaining high
soil moisture level (Powelson and Rowe, 2008), use of resistant
cultivars (Dees and Wanner, 2012) and crop rotation (Larkin
et al., 2011). Biological control agents have been extensively
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FIGURE 6 | Effect of S. violaceusniger AC12AB on potato tuber, which were inoculated with one of S. scabies isolates (AJ10, AJ7, and AC46) in greenhouse and
field trials. Statistical analysis for greenhouse and field trial was calculated separately. Tuber weight was represented by mean ± SE of triplicates. Means followed by
different letters show significant differences detected by Tukey’s test at a significance level P < 0.05.

studied to control plant pathogens and simultaneously reducing
environmental pollution and ecological distribution due to the
irrational use of pesticides in fumigation.

Eckwall and Schottel (1997) used Streptomyces
diastatochromogenes PonSSII as biocontrol agent against
PCS by demonstrating antibiosis and competition mechanism.
Similarly, Han et al. (2005) and Singhai et al. (2011) used Bacillus
sp. sunhua and Pseudomonas spp. to control CS infections,
respectively. Moreover, antimicrobial agents from bacterial
spp. such as macrolactin A, iturin A, surfactin, bacillaene,
fengycin, isatropolone C and difficidin (Schneider et al., 2007;
Chowdhury et al., 2015; Lin et al., 2018; Sarwar et al., 2018)
have been used against plant pathogens. In this study, we have
identified a novel plant growth promoting S. violaceusniger
AC12AB, which was confirmed to be an effective and inexpensive
method to control PCS and simultaneously enhance the crop
yield. PCS management remains unsolved as there is lack of
chemical products. In this study, S. violaceusniger AC12AB
exhibited strong antibacterial activity against S. scabies. Further
analysis by NMR revealed that the main bioactive compound
produced by S. violaceusniger AC12AB was azalomycin RS-
22A, which has been previously used as a broad-spectrum
antibiotic, antifungal and also as a moderate antitumor agent
(Cheng et al., 2010; Yuan et al., 2013). To our knowledge,
this is the first report of using S. violaceusniger AC12AB
producing azalomycin as biological control agent in an
agriculture system.

For a successful biocontrol agent, it is important to acquire
root colonization ability so that the secondary metabolites
produced by microorganisms would be available to the plant
roots system (Johnston-Monje and Raizada, 2011; Larkin
et al., 2011). Plant growth promoting Streptomyces (PGPS) are
important microorganisms to develop a successful beneficial
interaction between plants and microbes in a rhizoplane. PGPS
are preferred over other plant growth promoting bacteria due to
their enhanced colonization ability, their effect as biofertilization,

biostimulation, and bioprotection (Saharan and Nehra, 2011;
Rajput et al., 2013; Jog et al., 2014; Qiao et al., 2014). In
current study, we demonstrated that S. violaceusniger AC12AB
had the ability to produce plant growth hormone IAA along with
its ability to produce siderophores and solubilize phosphates.
Therefore, potato tubers treated with S. violaceusniger AC12AB
developed in terms of root and shoot growth, tuber weight and
better yield.

Results of greenhouse and field trials showed up to 90
and 80%, respectively, decrease in CS disease severity was
observed when potato tubers inoculated with S. violaceusniger
AC12AB. These results coupled with agar plate assay may
explain the role of azalomycin as an antagonistic agent against
PCS pathogens. Moreover, more than 25% increased yield was
observed which could be attributed to the enhanced colonization
ability of Streptomyces, production of plant growth hormones,
siderophores, nitrogen fixation, and phosphate solubilization
potential. Application of this type of bacteria will greatly enhance
the production of potato and profit, which is especially important
in developing countries.
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