

Commentary: Genome-Based Taxonomic Classification of the Phylum Actinobacteria

Radhey S. Gupta*

Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada

Keywords: family *Mycobacteriaceae* and the order *Mycobacteriales*, genus *Mycobacterium*, order *Corynebacteriales*, division of the family *Mycobacteriaceae* into five genera, prokaryotic taxonomy, Priority of taxonomic names

A Commentary on

Genome-Based Taxonomic Classification of the Phylum Actinobacteria

by Nouioui, I., Carro, L., García-López, M., Meier-Kolthoff, J. P., Woyke, T., Kyrpides, N. C., et al. (2018). Front. Microbiol. 9:2007. doi: 10.3389/fmicb.2018.02007

OPEN ACCESS

Edited by:

lain Sutcliffe, Northumbria University, United Kingdom

Reviewed by:

Vartul Sangal, Northumbria University, United Kingdom Pierre-Edouard Fournier, Aix-Marseille Université, France

> *Correspondence: Radhey S. Gupta gupta@mcmaster.ca

Specialty section:

This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

Received: 23 November 2018 Accepted: 24 January 2019 Published: 22 February 2019

Citation:

Gupta RS (2019) Commentary: Genome-Based Taxonomic Classification of the Phylum Actinobacteria. Front. Microbiol. 10:206. doi: 10.3389/fmicb.2019.00206 Nouioui et al. (2018) have recently reported comprehensive phylogeny and taxonomy of members from the phylum Actinobacteria. Based on genomic-scale analyses, this study makes proposals for many new taxa of Actinobacteria. A significant portion of this study concerns the classification of species from the order *Corynebacteriales*. This study and another study by Goodfellow and Jones (2012) indicate the order *Corynebacteriales* as containing several families including *Mycobacteriaceae*. However, *Mycobacteriaceae* is a part of the validly published order *Mycobacteriales* as proposed by Janke (1924) and included in the Approved Lists of bacterial names (Skerman et al., 1980). In contrast, the order *Corynebacteriales* was proposed in 2012 (Goodfellow and Jones, 2012) and validly published in 2015 (Oren and Garrity, 2015). Thus, according to Rules 23a and 24a of the International Code of Nomenclature of Prokaryotes (Parker et al., 2015), the order name *Mycobacteriales* Janke 1924 has priority over the name *Corynebacteriales* should be embedded within the order *Mycobacteriales*. To correct this anomaly, an emended description of the order *Mycobacteriales*, based partially on the description of the *Corynebacteriales* by Goodfellow and Jones (2012) and Nouioui et al. (2018), is provided below.

The genus *Mycobacterium* previously consisted of 188 named species (Parte, 2014). Our recent comprehensive phylogenomics and comparative analyses of 150 mycobacterial genomes robustly demonstrated the grouping of these species into five distinct clades (Gupta et al., 2018). Besides their distinct separation in genomic-scale phylogenetic trees and in average amino acid identity matrices, the members of these clades were also reliably demarcated based on multiple molecular synapomorphies uniquely shared by members from each clade (**Figure 1A**). The compelling evidence from these studies formed the basis for our division of the genus *Mycobacterium* into five genera. In this classification, the genus name *Mycobacterium* is retained for the clade containing all major human and animal pathogens (e.g., *M. tuberculosis, M. leprae, M. bovis*, etc.), whereas species from other clades, harboring mainly non-pathogenic species, are transferred into four new genera viz. *Mycolicibacterium, Mycolicibacter, Mycolicibacillus*, and *Mycobacteroides* (**Figure 1A**).

Nouioui et al. (2018) commend our work for identifying molecular synapomorphies for the five mycobacterial clades and their phylogenetic analysis and those by Tortoli et al. (2017), also support the existence of these clades. However, while not questioning any aspects of our results, Nouioui et al. (2018) question our division of the genus *Mycobacterium* into five genera for two reasons. First, they indicate that our identification of several synapomorphies for all mycobacteria makes further division of this group into multiple genera arbitrary.

•			Outgroup Species
A	24 CSPs, 27 CSIs	100 Ge	enus <i>Mycobacteroides</i> (Rapid-growers)
	10 CSPs, 100	4 CSIs	Genus Mycolicibacterium (Rapid-growers)
	Family Mycobacteriaceae 9 CSPs, 10 CSIs 100	2 CSPs, 6 CSIs 100 100 15 CSPs 26 CSIs	Genus <i>Mycolicibacter</i> (Intermediate growth rate)
	4 CSIs	100 22 CSPs	Genus <i>Mycolicibacillus</i> (Intermediate growth rate)
	4 CSPs, 3 CSIs	100	Delimited Genus <i>Mycobacterium</i> (Slow-growers; All major human and animal pathogenic species)
	3 CSPs,	, 3 CSIs	
в			
Corynebacterium	Corynebacterium accolens	WP_039885644	1 MIVTNDFEVRVGARTLLD AP GQHLRVQPGDRIGLVGRNGA
(144/144) Dietzia (11/11)	Dietzia lutea	WP_108847365	TID-LA-VH MD -SS
Gordonia (29/29)	Gordonia bronchialis	WP_012834193	TAT-LASDAI
Hoyosella (2/2)	Hoyosella subflava	WP_013806709	TAT-LA-MASASASASASASA
Millisia (1/1) Mycobacterium (170/170)	Millisia brevis Mycobacterium tuberculosis Mycobacterium uberis	WP_066903669 WP_031728961 WP_116540104	TAT-LAVISSA
Mycobacteroides (5/5)	_ <i>Mycobacteroides abscessus</i>	WD 040404504	
-	Musshaataanidaa Emanlelinii	WP_019164584	TAT-LAVYPAI
Mycolicibacillus (2/2)	►Mycobacteroides franklinii Mycolicibacillus trivialis	WP_019164584 WP_078335432 WP_085108267	TAT-LAVYPAI
Mycolicibacillus (2/2) Mycolicibacter (12/12)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae	WP_078335432 WP_078335432 WP_085108267 WP_065022710 WP_085259527	TAT-LAVYPAI TAT-LAVYPAI TAT-LAA -E -PAI TAT-LA
Mycolicibacillus (2/2) Mycolicibacter (12/12) Mycolicibacterium	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium fortuitum	WP_019164584 WP_078335432 WP_085108267 WP_065022710 WP_085259527 WP_064850872 WP_15307355	TAT-LAYY PAI TAT-LAYY PAI TAT-LA
Mycolicibacillus (2/2) Mycolicibacter (12/12) Mycolicibacterium (57/57)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium gilvum Nocardia abscessus	WP_019164584 WP_078355432 WP_085108267 WP_065022710 WP_085259527 WP_064850872 WP_115327356 WP_043693920	- TAT - L A
Mycolicibacter (12/12) Mycolicibacter (12/12) Mycolicibacterium (57/57) Nocardia (73/74)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium gilvum Nocardia abscessus Nocardia acidivorans Rhodococcus rhodochrous	WP_019164384 WP_0835432 WP_085108267 WP_065022710 WP_064850872 WP_0143693920 WP_043693920 WP_067568547 WP_016691733	TAT-LAVYPA-I
Mycolicibacillus (2/2) Mycolicibacter (12/12) Mycolicibacterium (57/57) Nocardia (73/74) Rhodococcus (50/50)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium gilvum Nocardia abscessus Nocardia abidivorans Rhodococcus ruber	WP_019164384 WP_0835432 WP_085108267 WP_065022710 WP_064850872 WP_043693920 WP_043693920 WP_067568547 WP_016691733 WP_017682210	TAT-LAVY PAI TAT-LA
Mycolicibacillus (2/2) Mycolicibacter (12/12) Mycolicibacterium (57/57) Nocardia (73/74) Rhodococcus (50/50) Segniliparus (2/2) Skermania (1/1)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium gilvum Nocardia abscessus Nocardia acidivorans Rhodococcus ruber Segniliparus rugosus Skermania piniformis	WP_018164384 WP_0835432 WP_065022710 WP_064850872 WP_043693920 WP_043693920 WP_016691733 WP_017682210 WP_007471275 WP_068469753	TAT-LAVY PAI
Mycolicibacillus (2/2) Mycolicibacter (12/12) Mycolicibacterium (57/57) Nocardia (73/74) Rhodococcus (50/50) Seguiliparus (2/2) Skermania (1/1) Smargdicoccus (1/1)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium gilvum Nocardia abscessus Nocardia abscessus Rhodococcus ruber Segniliparus rugosus Skermania piniformis Smaragdicoccus niigatensis	WP_018164384 WP_06335432 WP_065022710 WP_064850872 WP_043693920 WP_043693920 WP_016691733 WP_016691733 WP_017682210 WP_006469753 WP_018162537	- TAT - L A
Mycolicibacillus (2/2) Mycolicibacter (12/12) Mycolicibacterium (57/57) Nocardia (73/74) Rhodococcus (50/50) Segniliparus (2/2) Skermania (1/1) Smargdicoccus (1/1) Tomitella (1/1) Tsukam merla (5/5)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium gilvum Nocardia abscessus Nocardia abscessus Rhodococcus rhodochrous Rhodococcus ruber Segniliparus rugosus Skermania piniformis Smaragdicoccus nilgatensis Tomitella biformata Tsukamurella paurometabola	WP_019164384 WP_06335432 WP_065022710 WP_064850872 WP_115327356 WP_043693920 WP_016691733 WP_016691733 WP_017682210 WP_006469753 WP_018162537 WP_018162537 WP_024796412 WP_013126693	TAT-LAVY PAI
Mycolicibacillus (2/2) Mycolicibacter (12/12) Mycolicibacterium (57/57) Nocardia (73/74) Rhodococcus (50/50) Segniliparus (2/2) Skermania (1/1) Smargdicoccus (1/1) Tomitella (1/1) Tsukam mella (5/5) Williamsia (7/7)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium gilvum Nocardia abscessus Nocardia acidivorans Rhodococcus rhodochrous Rhodococcus ruber Segniliparus rugosus Skermania piniformis Smaragdicoccus niigatensis Tomitella biformata Tsukamurella paurometabola Williamsia faeni	WP_019164384 WP_07835432 WP_085108267 WP_065022710 WP_064850872 WP_115327356 WP_064850872 WP_016691733 WP_016691733 WP_007471275 WP_06482537 WP_01782210 WP_006469753 WP_018162537 WP_018126693 WP_013126693 WP_110259832	TAT-LAVY PAI
Mycolicibacillus (2/2) Mycolicibacter (12/12) Mycolicibacterium (57/57) Nocardia (73/74) Rhodococcus (50/50) Seguiliparus (2/2) Skermania (1/1) Smargdicoccus (1/1) Tomitella (1/1) Tsukæmurella (5/5) Williamsia (7/7) Lawsonella (1/1)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium gilvum Vocardia abscessus Vocardia acidivorans Rhodococcus rhodochrous Rhodococcus ruber Segniliparus rugosus Skermania piniformis Smaragdicoccus niigatensis Tomitella biformata Tsukamurella paurometabola Williamsia faeni Lawsonella clevelandensis	WP_019164384 WP_07835432 WP_085108267 WP_065022710 WP_064850872 WP_115327356 WP_043693920 WP_067568547 WP_016691733 WP_016691733 WP_016691733 WP_017882210 WP_007471275 WP_066469753 WP_018162537 WP_018162537 WP_018162537 WP_018162537 WP_018126693 WP_110259832 PZB89957 WP_002027865	
Mycolicibacillus (2/2) Mycolicibacter (12/12) Mycolicibacterium (57/57) Nocardia (73/74) Rhodococcus (50/50) Segniliparus (2/2) Skermania (1/1) Smargdicoccus (1/1) Tomitella (1/1) Tsukamurella (5/5) Williamsia (7/7) Lawsonella (1/1)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium fortuitum Nocardia abscessus Nocardia abscessus Nocardia acidivorans Rhodococcus rhodochrous Rhodococcus ruber Segniliparus rugosus Skermania piniformis Smaragdicoccus niigatensis Tomitella biformata Tsukamurella paurometabola Williamsia faeni Lawsonella clevelandensis Actinopolyspora alba Arthrobacter castelli	WP_019164384 WP_07835432 WP_085108267 WP_065022710 WP_085259527 WP_064850872 WP_015327356 WP_043693920 WP_067568547 WP_017682210 WP_017682210 WP_017682210 WP_007471275 WP_008469753 WP_013126693 WP_110259832 PZ89957 WP_02287889 WP_028818500	
Mycolicibacillus (2/2) Mycolicibacter (12/12) Mycolicibacterium (57/57) Nocardia (73/74) Rhodococcus (50/50) Seguiliparus (2/2) Skermania (1/1) Smargdicoccus (1/1) Tomitella (1/1) Tsukamurella (5/5) Williamsia (7/7) Lawsonella (1/1)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium gilvum Vocardia abscessus Nocardia acidivorans Rhodococcus rhodochrous Rhodococcus ruber Segniliparus rugosus Skermania piniformis Smaragdicoccus niigatensis Tomitella biformata Tsukamurella paurometabola Williamsia faeni Lawsonella clevelandensis Actinopolyspora alba Arthrobacter castelli Frankia alni	WP_019164384 WP_078335432 WP_085108267 WP_065022710 WP_065022710 WP_064650872 WP_01327356 WP_043693920 WP_017682210 WP_007668547 WP_017682210 WP_007471275 WP_068469753 WP_018162537 WP_0018162537 WP_013126693 WP_110259832 PZP89957 WP_092827889 WP_026818500 WP_011605662 WP_011605662	
Mycolicibacillus (2/2) Mycolicibacter (12/12) Mycolicibacterium (57/57) Nocardia (73/74) Rhodococcus (50/50) Segniliparus (2/2) Skermania (1/1) Smargdicoccus (1/1) Tomitella (1/1) Tsukamnrella (5/5) Williamsia (7/7) Lawsonella (1/1) Other Bacteria (1/>1000)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium gilvum Vocardia abscessus Nocardia acidivorans Rhodococcus rhodochrous Rhodococcus ruber Segniliparus rugosus Skermania piniformis Smaragdicoccus niigatensis Tomitella biformata Tsukamurella paurometabola Williamsia faeni Lawsonella clevelandensis Actinopolyspora alba Arthrobacter castelli Frankia alni Geodermatophilus sabuli Glycomyces xiaoerkulensis	WP_019164384 WP_078335432 WP_085108267 WP_065022710 WP_064650872 WP_01327356 WP_043693920 WP_01568210 WP_017682210 WP_017682210 WP_007471275 WP_06469753 WP_018162537 WP_0018162537 WP_018162537 WP_013126693 WP_110259832 PZP89957 WP_092227889 WP_026818500 WP_011805662 WP_011805662 WP_097205976 WP_100444983	TAT-LAVY PA-I TAT-LAVY PA-I TAT-LAVY PA-I TAT-LASV SV TAT-LASV SV
Mycolicibacillus (2/2) Mycolicibacter (12/12) Mycolicibacterium (57/57) Nocardia (73/74) Rhodococcus (50/50) Segniliparus (2/2) Skermania (1/1) Smargdicoccus (1/1) Tomitella (1/1) Tsmkamnrella (5/5) Williamsia (7/7) Lawsonella (1/1) Other Bacteria (1/>1000)	Mycobacteroides franklinii Mycolicibacillus trivialis Mycolicibacter sinensis Mycolicibacter terrae Mycolicibacterium fortuitum Mycolicibacterium fortuitum Nocardia abscessus Nocardia acidivorans Rhodococcus rhodochrous Rhodococcus ruber Segniliparus rugosus Skermania piniformis Smaragdicoccus niigatensis Tomitella biformata Tsukamurella paurometabola Williamsia faeni Lawsonella clevelandensis Actinopolyspora alba Arthrobacter castelli Frankia alni Geodermatophilus sabuli Glycomyces xiaoerkulensis Nonomuraea wenchangensis	WP_019164384 WP_07835432 WP_085108267 WP_085259527 WP_06450872 WP_01527356 WP_0156827 WP_0156827 WP_0156827 WP_0156827 WP_017682210 WP_017682210 WP_017682210 WP_007471275 WP_06469753 WP_013126693 WP_110259322 PZP89957 WP_026818500 WP_011605662 WP_09705976 WP_091087368	TAT-LAVY PA-I TAT-LAVY PA-I TAT-LAVY PA-I TAT-LASV SV TAT-LASV SV

FIGURE 1 | (A) A summary diagram showing the five main clades within the family *Mycobacteriaceae*, now recognized as distinct genera, seen in different phylogenetic trees. The molecular synapomorphies consisting of conserved signature indels (CSIs) and conserved signature proteins (CSPs), which distinguish different clades are marked on the nodes. The members of these clades/genera also differ in their growth rates. (B) Partial sequence alignment of the ABC-F family ATP-binding cassette domain-containing protein showing a 2 aa insert in a conserved region that is commonly and uniquely present in different members of the order *Mycobacteriales*. The dashes (–) in the alignment show identity with the amino acids shown on the top line. The numbers with the genus name refer to different unique strains for which sequences were examined. The sequence information is shown for only 1–2 representative species from different genera that are part of this order and very few outgroup species. However, this CSI is not found in other Actinobacteria or other examined bacteria (see Figure S1) with the possible exception of *Kroppenstedtia sanguinis* (a Firmicute). This CSI as well as a number of other CSIs and CSPs for this order were described in our earlier work (Gao and Gupta, 2012) based on limited sequence information and most of them are still distinctive characteristics of this order.

However, molecular synapomorphies can exist at different phylogenetic/taxonomic levels ranging from phylum to the genus levels (Gupta, 2016). We have previously identified synapomorphies for the phylum Actinobacteria as well as several classes/orders within this phylum (Gao and Gupta, 2012). For the class Coriobacteriia, synapomorphies were identified for the entire class along with its two orders and three families (Gupta et al., 2013). In fact, we have also described a number of CSIs and CSPs specific for the order Corvnebacteriales (now emended order Mycobacteriales) (Gao and Gupta, 2012). Updated sequence information show that all three described CSIs and two CSPs are uniquely shared by different Mycobacteriales species with only isolated exceptions (see Figure 1B). Therefore, the existence of molecular synapomorphies for a higher taxonomic clade should not preclude its further division into lower level taxa, whose monophyly is strongly supported by independent means.

Nouioui et al. (2018) are also critical of our proposal on the grounds that some Mycobacteriales genera viz. Rhodococcus, Gordonia, Nocardia, and Corynebacterium are more divergent than Mycobacterium. However, in comparison to these genera, interspecies relationships within the genus Mycobacterium are now much better understood, because of our comprehensive genomic analyses. Additionally, Mycobacterium species also differ in their growth rates and this distinction is also supported by our classification scheme. Another important rationale for dividing the genus Mycobacterium is that it contains some of the most important human pathogens, including M. tuberculosis, the causative agent of tuberculosis (TB). For developing improved means for detection and treatment of TB, it is crucial to understand how the TB-causing group of bacteria differ from other related bacteria (Gupta, 2018; Gupta et al., 2018). In this context, our classification scheme, which separates all major human and animal pathogenic species (retained within the genus Mycobacterium) from other mycobacteria, constitutes an important step. With this division, attention can be focused on the unique genetic and molecular characteristics of the clinically important group of mycobacteria (Gupta, 2018; Gupta et al., 2018). Thus, we emphasize here that the reservations expressed by Nouioui et al. (2018) of our proposed division of the genus Mycobacterium are not justified.

EMENDED DESCRIPTION OF THE ORDER MYCOBACTERIALES JANKE 1924 (APPROVED LISTS 1980)

The order is comprised of aerobic or facultatively anaerobic, chemoorganotrophic species exhibiting Gram-positive or

REFERENCES

- Gao, B., and Gupta, R. S. (2012). Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. *Microbiol. Mol. Biol. Rev.* 76, 66–112. doi: 10.1128/MMBR.05011-11
- Goodfellow, M., and Jones, A. L. (2012). "Order V. Corynebacteriales ord.nov," in Bergey's Manual of Systematic Bacteriology, Vol. 5, Actinobacteria, eds M.

acid-fast staining response. Most members are catalase- positive and form a branched substrate mycelium that fragments into coccoid- to rod-shaped elements or present as branched filaments, cocci, or as pleomorphic forms. Some strains form aerial hyphae. The wall peptidoglycan contains mesodiaminopimelic acid and is of the A1g type. Arabinose and galactose are major wall sugars. Fatty acid profiles are rich in saturated and unsaturated components and usually contain tuberculostearic acid. Mycolic acids are important constituents of the cell envelopes of most members. Members of this order form a monophyletic clade in phylogenetic trees based on 16S rRNA and large datasets of protein sequences. In addition, the following conserved signature indels (CSIs), viz. 2 aa insert in ABC-F family ATP-binding protein (Uup), 1 aa insert in chromosome partitioning protein ParB, and 1 aa deletion in alpha-ketoglutarate decarboxylase (KGD) and the homologs of the two conserved signature proteins (CSPs) with accession numbers NP_301197.1 and NP_301204.1 are also primarily found in the members of this order (Gao and Gupta, 2012). The order contains the families Corynebacteriaceae, Dietziaceae, Gordoniaceae, Lawsonellaceae, Mycobacteriaceae, Nocardiaceae, Segniliparaceae, and Tsukamurellaceae.

Type genus: *Mycobacterium* Lehmann and Neumann, 1896 (Approved Lists 1980) emend. Gupta et al. 2018

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and has approved it for publication.

FUNDING

This work was supported by the research grant No. 249924 from the Natural Science and Engineering Research Council of Canada awarded to RG.

ACKNOWLEDGMENTS

I thank Dr. Aharon Oren for confirming that the placement of the family *Mycobacteriaceae* within the order *Corynebacteriales* contravenes the Code for the Nomenclature of Prokaryotes.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb. 2019.00206/full#supplementary-material

Goodfellow, P. Kampfer, H. J. Busse, M. E. Trujillo, K. Suzuki, W. Ludwig, and W. Whitman (New York, NY: Springer), 235–243.

- Gupta, R. S. (2016). Impact of genomics on the understanding of microbial evolution and classification: the importance of Darwin's views on classification. *FEMS Microbiol. Rev.* 40, 520–553. doi: 10.1093/femsre/fuw011
- Gupta, R. S. (2018). Impact of genomics on clarifying the evolutionary relationships amongst Mycobacteria: identification of molecular

signatures specific for the tuberculosis-complex of bacteria with potential applications for novel diagnostics and therapeutics. *High Throughput* 7:E31. doi: 10.3390/ht7040031

- Gupta, R. S., Chen, W. J., Adeolu, M., and Chai, Y. (2013). Molecular signatures for the class *Coriobacteriia* and its different clades; Proposal for division of the class *Coriobacteriia* into the emended order *Coriobacteriales*, containing the emended family *Coriobacteriaceae* and *Atopobiaceae* fam. nov., and *Eggerthellales* ord. nov., containing the family *Eggerthellaceae* fam. nov. *Int. J. Syst. Evol. Microbiol.* 63, 3379–3397. doi: 10.1099/ijs.0.048371-0
- Gupta, R. S., Lo, B., and Son, J. (2018). Phylogenomics and comparative genomic studies robustly support division of the genus *Mycobacterium* into an emended Genus *Mycobacterium* and four novel genera. *Front. Microbiol.* 9:67. doi: 10.3389/fmicb.2018.00067
- Janke, A. (1924). Allgemeine Technische Mikrobiologie. I. Teil. Die Mikroorganismen. Dresden; Leipzig: T.Steinkopf.
- Lehmann, K. B., and Neumann, R. O. (1896). Atlas und Grundriss der Bakteriologie und Lehrbuch der Speziellen Bakteriologischen Diagnostik.. München: J. F. Lehmann.
- Nouioui, I., Carro, L., García-López, M., Meier-Kolthoff, J. P., Woyke, T., Kyrpides, N. C., et al. (2018). Genome-based taxonomic classification of the phylum Actinobacteria. *Front. Microbiol.* 9:2007. doi: 10.3389/fmicb.2018. 02007
- Oren, A., and Garrity, G. M. (2015). Validation list no. 164. List of new names and new combinations previously effectively, but not validly, published. *Int. J. Syst. Evol. Microbiol.* 65, 2017–2025. doi: 10.1099/ijs.0.000317

- Parker, C. T., Tindall, B. J., and Garrity, G. M. (2015). International code of nomenclature of prokaryotes. *Int. J. Syst. Evol. Microbiol.* 69, S1–S111. doi: 10.1099/ijsem.0.000778
- Parte, A. C. (2014). LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 42, D613–D616. doi: 10.1093/nar/gkt1111
- Skerman, V. B. D., McGowan, V., and Sneath, P. H. A. (1980). Approved lists of bacteria names. *Int. J. Syst. Evol. Microbiol.* 30, 225–420. doi: 10.1099/00207713-30-1-225
- Tortoli, E., Fedrizzi, T., Meehan, C. J., Trovato, A., Grottola, A., Giacobazzi, E., et al. (2017). The new phylogeny of the genus *Mycobacterium*: the old and the news. *Infect. Genet. Evol.* 56, 19–25. doi: 10.1016/j.meegid.2017.10.013

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer VS and handling editor declared their shared affiliation at the time of the review.

Copyright © 2019 Gupta. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.