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Strains of Clostridioides difficile cause detrimental diarrheas with thousands of deaths 
worldwide. The infection process by the Gram-positive, strictly anaerobic gut bacterium 
is directly related to its unique metabolism, using multiple Stickland-type amino acid 
fermentation reactions coupled to Rnf complex-mediated sodium/proton gradient 
formation for ATP generation. Major pathways utilize phenylalanine, leucine, glycine and 
proline with the formation of 3-phenylproprionate, isocaproate, butyrate, 5-methylcaproate, 
valerate and 5-aminovalerate. In parallel a versatile sugar catabolism including pyruvate 
formate-lyase as a central enzyme and an incomplete tricarboxylic acid cycle to prevent 
unnecessary NADH formation completes the picture. However, a complex gene regulatory 
network that carefully mediates the continuous adaptation of this metabolism to changing 
environmental conditions is only partially elucidated. It involves the pleiotropic regulators 
CodY and SigH, the known carbon metabolism regulator CcpA, the proline regulator 
PrdR, the iron regulator Fur, the small regulatory RNA CsrA and potentially the NADH-
responsive regulator Rex. Here, we describe the current knowledge of the metabolic 
principles of energy generation by C. difficile and the underlying gene regulatory scenarios.

Keywords: Clostridioides (Clostridium) difficile, metabolism, fermentation, TCA cycle, Wood-Ljungdahl pathway, 
Stickland reactions

CLOSTRIDIOIDES (CLOSTRIDIUM) DIFFICILE

Clostridioides (Clostridium) difficile (Lawson et  al., 2016) was discovered in 1935 as a commensal 
of healthy newborns (Hall and O’Toole, 1935). It was only in the late 1970s that C. difficile was 
recognized as a severe pathogen, responsible for antibiotic-related pseudomembranous colitis 
(Bartlett et  al., 1978). In the last 20  years, an emerging number of nosocomial and community-
acquired infections with symptoms ranging from mild diarrhea to pseudomembranous colitis and 
toxic megacolon was documented (Bartlett, 2006; Rupnik et  al., 2009; Knight et  al., 2015; Lessa 
et  al., 2015). Major risk factors are antibiotic therapy, age and immunosuppression (Bignardi, 
1998). The symptoms including severe intestinal damage are believed to be  mainly caused by the 
two large clostridial toxins A (TcdA) and B (TcdB) and the binary toxin Cdt (Carter et  al., 2010; 
Carman et  al., 2011). In vitro, the toxins are predominantly produced in the stationary phase. 
Toxin production directly depends on the metabolic state of C. difficile (Karlsson et  al., 2008; 
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Neumann-Schaal et al., 2015; Hofmann et al., 2018). The number 
of genome-sequenced C. difficile strains with short-read sequences 
has increased up to 7000 (https://enterobase.warwick.ac.uk/, 
Alikhan et al., 2018), while the number of closed genomes remains 
at about 50 (e.g. Sebaihia et  al., 2006; He et  al., 2010; Riedel 
et  al., 2017). Currently, several high quality annotations of the 
C. difficile genome are available, which serve as a solid basis 
for a systematic investigation of the transcriptome, proteome, 
metabolome, and for the construction of genome-scale metabolic 
models (Sebaihia et al., 2006; Monot et al., 2011; Larocque et al., 
2014; Pettit et  al., 2014; Dannheim et  al., 2017a,b; Jenior et  al., 
2017; Kashaf et  al., 2017).

FERMENTATION PATHWAYS

Stickland Metabolism
C. difficile harbors multiple pathways to utilize amino acids 
and sugars as energy sources (Mead, 1971; Elsden et  al., 1976; 
Elsden and Hilton, 1979). The fermentation of amino acids 
via the so-called Stickland pathway occurs in three stages that 
ultimately couple the oxidation and reduction of amino acids 
to the formation of ATP (Stickland, 1934; Nisman, 1954). The 
first step is the transamination of an amino acid to its 
corresponding 2-oxo-acid (O’Neil and DeMoss, 1968; Barker, 
1981) which yields NADH once coupled to the glutamate 
dehydrogenase reaction (Figure 1). In addition, serine, threonine, 
methionine, and cysteine are subject to deamination (Hofmeister 
et  al., 1993; Morozova et  al., 2013). The second part is either 
an oxidative or a reductive pathway. In the oxidative pathway, 
the formed 2-oxo acid gets oxidized by ferredoxin with the 
formation of a CoA thioester and the release of CO2 (Mai 
and Adams, 1994; Heider et  al., 1996; Lin et  al., 2015). The 
final steps of the pathway (encoded by vorCBA, iorBA) include 
the cleavage of the CoA thioester with subsequent ATP formation 
(Nisman, 1954; Valentine and Wolfe, 1960; Cary et  al., 1988; 
Wiesenborn et  al., 1989; Musfeldt and Schönheit, 2002). In 
the reductive pathway, the 2-oxo acid is reduced employing 
NADH with the formation of a 2-hydroxy acid (Hetzel et  al., 
2003; Martins et al., 2005; Kim et al., 2006). The dehydratation 
to enoyl-CoA (Dickert et  al., 2002; Kim et  al., 2004, 2005, 
2008) in a CoA transferase reaction follows this (Kim et  al., 
2006). The reduction of the enoyl-CoA to acyl-CoA is catalyzed 
by an electron bifurcating acyl-CoA dehydrogenase (see below). 
The final step of the pathway is the transfer of the coenzyme 
A to the 2-hydroxy acid of the reductive path releasing the 
carboxylic acid (Kim et  al., 2006) (Figure 1A). Genes of the 
reductive path are organized in the hadAIBC-acdB-etfBA operon 
with the exception of the ldhA gene which is localized upstream 
of the operon in the opposite direction. Interestingly, C. difficile 
revealed only a limited spectrum of amino acids utilized in 
the reductive pathway, while multiple amino acids can be used 
in the oxidative pathway (Figure 1B) (Elsden et  al., 1976; 
Elsden and Hilton, 1978, 1979; Neumann-Schaal et  al., 2015; 
Rees et  al., 2016; Dannheim et  al., 2017b; Riedel et  al., 2017). 
Some amino acids are degraded by a modified Stickland pathway 
like the reduction of proline and glycine or the degradation 

of arginine via ornithine (Schmidt et  al., 1952; Mitruka and 
Costilow, 1967; Hodgins and Abeles, 1969; Turner and Stadtman, 
1973; Cone et  al., 1976; Kabisch et  al., 1999; Jackson et  al., 
2006; Fonknechten et  al., 2009).

Central Carbon Metabolism-Associated 
Fermentation
Besides the branched-chain and aromatic products of the Stickland 
reactions, C. difficile produces a number of straight-chain organic 
acids including acetate, lactate, propionate and butyrate (Neumann-
Schaal et  al., 2015; Rees et  al., 2016; Dannheim et  al., 2017b). 
Key metabolites for their formation are pyruvate and acetyl-CoA. 
With the exception of acetate, reducing equivalents are oxidized 
during the formation of the organic acids.

Pyruvate, derived from carbohydrates and amino acids, is a 
key metabolite in both fermentation and the central carbon 
metabolism. It is fermented in two ways in C. difficile. It can 
be transformed to propionate via the reductive Stickland pathway 
as was observed in Clostridium propionicum (Hetzel et al., 2003; 
Schweiger und Buckel, 1984; Selmer et  al., 2002). Or, it can 
be  degraded to acetyl-CoA and produce butyrate via 
acetoacetyl-CoA and crotonyl-CoA (Figure 2). Clostridia typically 
use NADH to reduce acetoacetyl-CoA to 3-hydroxybutyryl-CoA 
(von Hugo et  al., 1972; Sliwkowski and Hartmanis, 1984; 
Aboulnaga et al., 2013). The second reduction step of crotonyl-CoA 
to butyryl-CoA includes an electron bifurcating step (Aboulnaga 
et  al., 2013) (see below). The enzymes of butyrate fermentation 
are organized in two operons (bcd-etfBA-crt2-hbd-thlA and ptb1-
buk). Other products such as valerate and 5-methylhexanoate 
can be  formed combining acetyl-CoA with propionyl-CoA or 
isovaleryl-CoA via the identical set of enzymes (Dannheim 
et  al., 2017b). These reactions play a major role as a sink for 
reducing equivalents when favored substrates such as proline 
and leucine are not available (Neumann-Schaal et  al., 2015).

Electron Bifurcation and the Rnf Complex
Beside substrate-level phosphorylation, C. difficile couples several 
of the described fermentation pathways to the generation of a 
sodium/proton gradient using electron bifurcation in combination 
with the membrane spanning Rnf complex (Figure 1A). The 
Rnf complex was originally discovered in Rhodobacter capsulatus 
and catalyzes the reduction of NAD+ by ferredoxin (Schmehl 
et  al., 1993; Biegel and Müller, 2010). Reduced ferredoxins can 
be produced through several ways. For instance, via ferredoxin-
dependent oxidoreductases of the oxidative Stickland pathway 
or via dehydrogenases coupled to an electron bifurcation complex. 
Electron bifurcation couples the NADH-dependent reduction 
of a substrate (often CoA-derivatives) to the reduction of 
ferredoxin (Bertsch et al., 2013). This unique coupling is possible 
as the redox potential of enoyl-CoA (around 0 mV) is significantly 
higher than that of NAD+ (−280 mV) and ferredoxin (−500 mV) 
(Buckel and Thauer, 2013). Two electrons derived from NADH 
are distributed to two different electron acceptors, here an 
enoyl-CoA and ferredoxin. In C. difficile, electron bifurcating 
enzymes are found in several pathways including the reductive 
Stickland pathways (Figure 1A) and the butyrate/propionate 
fermentation pathways (butyryl-CoA und acryloyl-CoA 
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dehydrogenases, Figure 2) (Hetzel et al., 2003; Aboulnaga et al., 
2013; Bertsch et  al., 2013). Finally, the free energy resulting 
from redox potential difference between ferredoxin (−500  mV) 
and NAD+ (−280  mV) is used to transport ions across the 
membrane (Buckel and Thauer, 2018). The nature of transported 
ions has not been studied in C. difficile. However, the transport 
of protons was observed for other clostridia (Biegel and Müller, 

2010; Tremblay et  al., 2012; Hess et  al., 2013; Mock et  al., 
2015). Already in the 1980s, it was shown that also proline 
reduction is coupled to proton motive force generation (Lovitt 
et  al., 1986), most likely via a direct interaction of the proline 
reductase with the Rnf complex. The generated ion gradient 
is used for either transport processes, motility, or for ATP 
generation via ATP synthase (Figure 1A).

A

B

FIGURE 1 | Overview of the fermentation metabolism in Clostridioides difficile. (A) Schematic overview of Stickland reactions showing the reaction steps of classical 
reductive and oxidative pathways and of the Rnf complex and the connection to the electron bifurcating enzymes. Products are shown at the end of the arrow and in 
boxes alongside the arrows, * Serine, threonine, methionine and cysteine are also subject to deamination by lyases. (B) Overview of amino acids and glucose as 
representative sugar and their fermentation products. The figure summarizes published fermentation products and substrates omitting alcohols and intermediates of 
the pathways for reasons of clarity. Corresponding alcohols are only minor products. (-OH: -hydroxy, Fdox: Ferredoxin oxidized form, Fdred: Ferredoxin reduced form). 
Green: oxidative Stickland reactions and their products, gray: reductive Stickland reactions and their products, orange: central carbon metabolism-associated 
fermentation products, black: Stickland products (oxidative and/or reductive) and central carbon metabolism-associated fermentation products.
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FIGURE 2 | Glycolysis, gluconeogenesis, the fragmented TCA cycle, anaplerotic reactions and global regulators involved in metabolism. Schematic overview of the 
glycolysis, gluconeogenesis, the fragmented TCA cycle showing the oxidative and the reductive pathway, including anaplerotic reactions as well as global regulators 
controlling the central metabolism. Global regulators are marked by colored dots, ATP producing and reducing equivalent consuming/producing reactions are 
marked by colored arrows. (BP: bisphosphate, P: phosphate, Ac: Acetyl, -OH: -hydroxy). Dashed arrows represent multiple reactions.
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What is the ATP recovery of the overall process? Usually 
organic acids are secreted in a protonated state. ATP synthase 
requires four ions for the generation of one molecule ATP 
(Dannheim et  al., 2017b). The oxidative path reduces two 
molecules of NAD+ to NADH and phosphorylates 1.5 ADP. 
The reductive pathway regenerates one molecule NAD+ and 
produces 0.5 ATP. For leucine as substrate, the redox balance 
requires the reduction of two molecules leucine per one 
molecule oxidized leucine (Britz and Wilkinson, 1982; Kim 
et  al., 2005). Overall, this leads to a production of 0.83 
molecules ATP per molecule amino acid. Under the same 
conditions, the formation of acetate from acetyl-CoA yields 
1.25 molecules ATP per molecule acetyl-CoA. The fermentation 
of two molecules acetyl-CoA to butyrate yields 1.75 molecules 
ATP and regenerates two reducing equivalents (Dannheim 
et  al., 2017b).

CENTRAL CARBON METABOLISM

Glycolysis and Gluconeogenesis and the 
Incomplete TCA Cycle
Pyruvate and acetyl-CoA are key metabolites used for a variety 
of different metabolic reactions in C. difficile. Pyruvate is 
produced via glycolysis and amino acid degradation (e.g. cysteine 
or alanine). Interestingly, cysteine and also pyruvate inhibit 
toxin production in C. difficile (Bouillaut et  al., 2015; Dubois 
et  al., 2016) emphasizing the tight connection of metabolism 
and pathogenicity. While glycolysis and gluconeogenesis follow 
classical pathways, acetyl-CoA can be produced via the Wood-
Ljungdahl-pathway, via pyruvate synthase and via pyruvate 
formate-lyase.

For Clostridium acetobutylicum an incomplete TCA cycle 
was described (Amador-Noguez et  al., 2011; Crown et  al., 
2011; Au et al., 2014). Based on genome annotation, C. difficile 
might also possess a truncated TCA cycle which is still sufficient 
for the production of biomass precursors and the degradation 
of nutrients (Dannheim et al., 2017b) (Figure 2). In Clostridium 
kluyveri, a citrate-(Re)-synthase is catalyzing the acetylation 
of oxaloacetate to form citrate replacing the common citrate-
(Si)-synthase (Li et  al., 2007). Citrate is further metabolized 
to 2-oxoglutarate (α-ketoglutarate), the precursor of the 
glutamate metabolism. Further oxidation of 2-oxoglutarate to 
succinyl-CoA is impaired as the 2-oxoglutarate synthase is 
missing. The reductive path is already interrupted at the level 
of oxaloacetate since a non-decarboxylating malate dehydrogenase 
is missing in C. difficile (Dannheim et  al., 2017b). However, 
oxaloacetate is connected to fumarate via pyruvate and malate 
or aspartate. Aspartate serves as ammonium donor for arginine- 
and purine biosynthesis with the formation of fumarate. 
Fumarate can be  degraded to pyruvate to refill the pyruvate 
pool or it can serve as electron acceptor for aspartate oxidase 
to produce iminosuccinate as a precursor of NAD biosynthesis 
(Senger and Papoutsakis, 2008; Dannheim et  al., 2017b). The 
resulting succinate is a substrate of succinyl-CoA:acetate CoA 
transferase. The succinyl-CoA formed is used for methionine 
biosynthesis or is degraded to butyrate via crotonyl-CoA 

(Amador-Noguez et  al., 2011; Crown et  al., 2011; Au et  al., 
2014). In summary, the only reaction that contributes to the 
production of NADH in the truncated TCA cycle is the 
oxidation of isocitrate to 2-oxoglutarate (Figure 2). Other 
bacteria harboring a complete TCA cycle produce 3 NADH 
per acetyl-CoA, which is used for proton gradient formation 
and ATP generation. Since C. difficile is missing the classical 
electron transport chains, the TCA cycle is mainly used for 
the production and degradation of various metabolically 
important intermediates (Sebaihia et  al., 2006).

The Wood-Ljungdahl Pathway
Beside the already described reductive Stickland reactions and 
the butyrate fermentation, the Wood-Ljungdahl pathway also 
allows re-oxidation of NADH in C. difficile. In this pathway, 
which is also known as the reductive acetyl-CoA pathway, two 
molecules CO2 are used as terminal electron acceptors and 
reduced to acetate (Ragsdale, 1997). First CO2 gets reduced 
with NADPH to formate or directly into a formyl group by 
formate dehydrogenase. In a second step catalyzed by the 
carbon-monoxide dehydrogenase/acetyl-CoA synthase complex 
the formyl group is reduced to a methyl group and combined 
with CO and coenzyme A to acetyl-CoA (Ragsdale, 1997). 
Köpke et  al. (2013) showed that the pathway is present in all 
28 sequenced C. difficile strains available at that time. Moreover, 
they showed that the clinical isolate C. difficile 630 and closely 
related strains are capable of growing autotrophically on 
CO2  +  H2. However, only slight growth was observed probably 
due to the lack of tryptophan biosynthesis (Sebaihia et  al., 
2006). Compared to true acetogens like Clostridium ljungdahlii 
(Köpke et al., 2010), Moorella thermoacetica (Pierce et al., 2008), 
and Acetobacterium woodii (Poehlein et  al., 2012), C. difficile 
genomes only harbor an orphan acetate kinase gene. No obvious 
gene for a phosphotransacetylase was detected. However, this 
reaction might be  catalyzed by the phosphotransbutyrylase 
(Köpke et  al., 2013). In summary, fixation of the glycolysis-
derived CO2 via the Wood-Ljungdahl pathway might be  also 
a metabolic advantage for C. difficile in the human gut (Köpke 
et  al., 2013).

Pyruvate Utilization via Pyruvate  
Formate-lyase
C. difficile is utilizing pyruvate via the radical enzyme pyruvate 
formate-lyase, which forms the products acetyl-CoA and 
formate in the presence of coenzyme A (Figure 2). Pyruvate 
formate-lyase (PflD) requires an [4Fe-4S] cluster containing 
activating enzyme (PflC) for the formation of the catalytic 
glycyl radical (Crain and Broderick, 2014). The formate 
generated gets subsequently oxidized to CO2 and an electron 
by the formate dehydrogenase, a MoCo-containing selenoprotein 
(Pinske and Sawers, 2016). The electrons formed are transferred 
to a [NiFe] hydrogenase (Shafaat et  al., 2013; Pinske and 
Sawers, 2016). Overall, the central metabolism in C. difficile 
mainly serves as an anabolic and catabolic hub and for CO2 
fixation, avoiding the generation of NADH due to the lack 
of classical respiratory chains.
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REGULATION OF C. DIFFICILE ENERGY 
METABOLISM

Currently, only a partial view of the regulation of the C. difficile 
energy metabolism at the transcriptional and post-transcriptional 
level is available (Bouillaut et  al., 2015). Clearly, the major 
regulator is the catabolite control regulator CcpA (Antunes et al., 
2012). In Bacillus subtilis the LacI/GalR type regulator forms a 
complex with phosphorylated form of Hpr or Crh, which in 
turn is generated in the presence of high cellular glucose or 
fructose-1,6-bisphosphate concentrations (Fujita, 2009). In C. 
difficile about 140 genes are directly controlled by CcpA including 
genes of glycolysis, proline reduction, glycine reduction, butanol 
and butyrate formation (Figure 2; Antunes et  al., 2012). In 
parallel, CcpA controls the expression of the toxin genes tcdA 
and tcdB in response to fructose-1,6-bisphosphate without 
phosphorylated Hpr, providing a strong link between metabolism 
and toxin production (Antunes et al., 2011). The proline-dependent 
regulator PrdR activates genes for proline reductase and represses 
the genes for glycine reductase (Figure 2; Bouillaut et al., 2013). 
The global regulator CodY provides a link to sporulation and 
another connection of the metabolism to toxin production 
(Dineen et al., 2007; Nawrocki et al., 2016; Ransom et al., 2018). 
In close cooperativity with the SinR and SinR’ proteins and the 
corresponding genes, CodY controls the toxin off state during 
the exponential growth phase (Girinathan et  al., 2018; Ransom 
et  al., 2018). Interestingly, culture heterogeneity caused by a 
bistable switch was observed (Ransom et al., 2018). CodY regulates 
also the energy metabolism via binding to promoters of genes 
involved in glycogen formation, the pyruvate formate-lyase path 
to hydrogen and butanol/butyrate generation (Figure 2; Dineen 
et  al., 2010). The sigma factor SigH, controlling the genes of 
the glycogen metabolism and for formate dehydrogenase, represents 
another connection of the metabolism with sporulation (Saujet 
et  al., 2011). The function of the NADH/NAD+-responsive 
regulator Rex in the fermentative metabolism of C. acetobutylicum 
was described before (Wietzke and Bahl, 2012). Participation 
in the regulation of butanol and butyrate formation in C. difficile 
was proposed (Figure 2; Bouillaut et al., 2015). The ferric uptake 
regulator Fur also directly influences glycine reduction and 
hydrogen formation from pyruvate in response to low iron 
condition (Figure 2; Ho and Ellermeier, 2015; Berges et  al., 
2018). Finally, the small regulatory RNA CsrA serves as carbon 
storage regulator influencing the genes of glycogen mobilization 
(Figure 2; Gu et  al., 2018). Obviously, a complex regulatory 
network headed by the pleiotropic regulators CcpA and CodY 
co-regulates metabolism and toxin production. Similarly, CodY 
and SigH connect sporulation with the metabolism at the 
transcriptional level (Martin-Verstraete et  al., 2016).

CONCLUSION AND FUTURE 
PERSPECTIVES

In Western countries, hypertoxic C. difficile strains are causing 
several thousand deaths per year especially after antibiotic 

treatments. In this context, the mystery of the ecological success 
of this pathogenic bacterium is closely related to its unique and 
highly adaptive metabolism. Amino acids as building blocks of 
proteins are integral parts of our nutrition and thus available 
in access in our gut. Similarly, sugars from sugar polymers like 
starch constitute the carbohydrate part of our food. Both are 
the major energy sources of C. difficile. The versatile organism 
possesses multiple pathways for amino acid fermentation. However, 
normal substrate level phosphorylation suffers from very low 
ATP recoveries and the need to utilize parts of this ATP for 
ion gradient formation via a reverse ATPase reaction. Thus, 
smart C. difficile couples amino acid fermentation via electron 
bifurcation to membrane potential generating processes at the 
Rnf complex. Similarly, the central metabolism was modified 
to prevent unnecessary NADH generation, which usually has 
to be  re-oxidized via energetically cost-intensive reactions. The 
organism uses an incomplete TCA cycle, generating one instead 
of three NADH. Furthermore, pyruvate formate-lyase instead 
of pyruvate dehydrogenase produces acetyl-CoA and formate, 
which gets transformed into protons by formate dehydrogenase 
and finally to hydrogen by a hydrogenase. Nevertheless, major 
metabolic fluxes have to be  determined. Most likely, additional 
principles of energy generation will be  uncovered. We  are at 
the beginning of an exciting period of systems biology, allowing 
the integration of the different levels of cellular control represented 
by transcriptional control, RNA stability, translational control, 
metabolic control and coordinated degradation.

Currently, we know that this complex metabolism is controlled 
by a network of regulatory proteins, which directly connects it 
to toxin formation and sporulation. Major players are the catabolite 
regulator CcpA, the sporulation sigma factor SigH, the pleiotropic 
transcription factor CodY, the proline regulator PrdR, the iron 
responsive Fur and potentially the NADH/NAD+-ratio measuring 
Rex. Here, SigW and CodY are important players during the 
onset of sporulation. Similarly, CcpA and CodY regulate toxin 
gene transcription. A first small regulatory RNA (CsrA) was found 
involved in flagella formation, toxin production and host cell 
adherence. Most likely, this is only a small part of the yet unknown 
regulatory network underlying the efficient adaptation of the 
metabolism to changing environmental conditions. Novel regulatory 
principles including new regulators, novel small regulatory RNA 
and proteins, unknown changes in the protein–protein network 
with controlled proteolysis, direct metabolic regulation, control 
of RNA stability to name a few, have still to be  elucidated.
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