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Fusarium Head Blight (FHB) is one of the most devastating diseases of cereals
worldwide, threatening both crop production by affecting cereal grain development,
and human and animal health by contaminating grains with mycotoxins. Despite that
maize residues constitute the primary source of inoculum for Fusarium pathogenic
species, the structure and diversity of Fusarium spp. and microbial communities
in maize residues have received much less attention than in grains. In this study,
a metabarcoding approach was used to study the bacterial, fungal and Fusarium
communities encountered in maize stalks collected from 8 fields in Brittany, France,
after maize harvest during fall 2015. Some predominant genera found in maize residues
were cereal or maize pathogens, such as the fungal Fusarium, Acremonium, and
Phoma genera, and the bacterial Pseudomonas and Erwinia genera. Furthermore,
a high predominance of genera with previously reported biocontrol activity was found,
including the bacterial Sphingomonas, Pedobacter, Flavobacterium, Pseudomonas,
and Janthinobacterium genera; and the fungal Epicoccum, Articulospora, Exophiala,
and Sarocladium genera. Among Fusarium spp., F. graminearum and F. avenaceum
were dominant. We also found that the maize cultivar and previous crop could influence
the structure of microbial communities. Using SparCC co-occurrence network analysis,
significant negative correlations were obtained between Fusarium spp. responsible for
FHB (including F. graminearum and F. avenaceum) and bacterial OTUs classified as
Sphingomonas and fungal OTUs classified as Sarocladium and Epicoccum. Considering
that isolates belonging to these taxa have already been associated with antagonist effect
against different Fusarium spp. and/or other pathogenic microorganisms and due to
their predominance and negative associations with Fusarium spp., they may be good
candidates as biocontrol agents. Combining the use of Fusarium-specific primers with
universal primers for bacteria and fungi allowed us to study the microbial communities,
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but also to track correlations between Fusarium spp. and other bacterial and fungal
genera, using co-occurrence network analysis. Such approach could be a useful tool as
part of a screening strategy for novel antagonist candidates against toxigenic Fusarium
spp., allowing the selection of taxa of interest.

Keywords: maize residues, bacterial communities, fungal communities, Fusarium communities, biocontrol
agents, co-occurrence network

INTRODUCTION

Fusarium Head Blight (FHB) of cereals (Nazari et al.,
2014) is caused by several Fusarium species among which
F. graminearum, F. culmorum, F. avenaceum, and F. poae are
the main causal agents in Europe (Xu et al., 2005; Hellin et al.,
2016). FHB is one of the most important diseases affecting
cereals worldwide (Ramirez et al., 2006; Bateman et al., 2007;
Gong et al., 2015) and represents a threat to human and animal
health due to the possible production of mycotoxins by Fusarium
species (Desjardins and Proctor, 2007). Crop rotation, and in
particular maize as previous crop, can increase the risk of FHB
incidence as previous crop infected residues are the primary
source of pathogenic species (Shaner, 2003; Bateman et al., 2007;
Fernandez et al., 2008). A high incidence of Fusarium species
was found in the first internode-stalk of maize plants (Scauflaire
et al., 2011), which is usually left in the field, turning into a
main inoculum source for the following crop (Maiorano et al.,
2008). Current crop, cropping history and tillage system have
a significant influence on Fusarium and fungal communities of
crop residues (Fernandez et al., 2008), on maize rhizospheric
microbiome (Benitez et al., 2017) and on bulk soil microbial
communities (Legrand et al., 2018). Although the plant genotype
affects the rhizosphere microbial communities in maize (Aira
et al., 2010), no studies have focused on how maize genotype
affect the phyllosphere or the crop residue microbiome.

The low efficacy of current control strategies, mainly based
on agricultural practices including tillage and the use of less
sensitive cultivars, is prompting the scientific community to seek
alternatives. Among them, the application of biocontrol agent
against Fusarium species has been one of the major focuses of
current research due to their compliance with environmental
standards. Several candidate antagonists have been developed
after isolation of microbial strains from different parts of cereals,
such as root rhizosphere from maize (Abiala et al., 2015) and
barley (Abd El Daim et al., 2015), wheat anthers (Palazzini et al.,
2007), seed endophytes from wheat (Díaz Herrera et al., 2016),
endophytes from maize (Mousa et al., 2015), or even from maize
residues (Luongo et al., 2005; Singh et al., 2009), agricultural soils
(He et al., 2009), silages and forest soils (Baffoni et al., 2015).
Generally, the isolation of antagonistic candidates is empirical
and needs confrontation tests under laboratory conditions which
are used to screen a high number of candidates before field
evaluations (He et al., 2009; Schöneberg et al., 2015). The efficacy
of antagonists is usually reduced under field conditions compared
to laboratory conditions (Luongo et al., 2005; Crane et al., 2013;
Schisler et al., 2015; Legrand et al., 2017), mainly because of the
complex interactions of antagonists with their biotic and abiotic

environment in the field. Alternatively, this stepwise approach
may also result in the possible loss of isolates that does not
pass laboratory selection step but have good efficacy under field
conditions (Schöneberg et al., 2015). In the latter study, they
found that Clonostachys rosea, a weak competitor in in vitro
co-culture with two F. graminearum and one F. crookwellense
strains, showed the best antagonist potential of the total 12 strains
screened in the field and was the only one able to reduce FHB
incidence when inoculated after the pathogen. To increase the
efficacy, recent studies demonstrated a synergistic/antagonistic
activity of cocktail strains, such as the use of seven species
isolated from maize roots to increase the efficacy of protection
against F. verticillioides in maize kernels (Niu et al., 2017); similar
results have been reached using a consortium of individually
non-antagonistic bacteria of F. oxysporum in Arabidopsis thaliana
(Fujiwara et al., 2016). Such isolation approach, however, is time-
consuming, and still lack of efficacy. Despite some promising
results, only a limited number of FHB biocontrol agents are
commercially available (Legrand et al., 2017).

These approaches could undoubtedly benefit from the use of
-omics technologies to better describe the microbial community
functioning and improve the screening of antagonist organisms.
Indeed, we must first gain a deeper understanding of the
microbiota to which pathogens are confronted, and study the
diversity and structure of pathogens themselves, especially for
complex pathosystems such as FHB. Such knowledge may help
select more appropriate biocontrol strategies, adapted to the
Fusarium and microbial communities, which may vary according
to the pedo-climatic environment of the agroecosystem. Specific
primers designed to track Fusarium communities in soils
and in wheat kernels using Next Generation Sequencing
(NGS) approaches have already been developed (Edel-Hermann
et al., 2015; Karlsson et al., 2016) but no studies combined
this approach with the use of universal primers for fungal
and/or bacterial species. A few metabarcoding studies aimed at
describing the microbial communities in maize crop bulk soils
and/or rhizospheric soils (Peiffer et al., 2013; Li et al., 2014;
Zhao et al., 2016), while other focused on the influence of the
presence of maize residues on soil microbiota (Chen et al., 2015;
De la Cruz-Barrón et al., 2017) but none were dedicated to
the microbial communities found on maize crop residues. Yet,
since the primary source of Fusarium spp. inoculum originates
from infected maize crop residues, it is important to deepen
the knowledge of microbial communities associated with maize
stalks. Those communities may contribute to soil suppressiveness
against Fusarium pathogenic species and may be a good source
of potential antagonists. Such approaches have already been
undertaken in suppressive soils to vanilla and banana Fusarium
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wilt disease (Fu et al., 2017; Xiong et al., 2017) and in suppressive
maize stalks to Fusarium ear rot (Köhl et al., 2015).

In this context, the aims of the present study were to
(i) describe the bacterial, fungal and Fusarium communities
found in maize stalks collected from fields after harvest in
Brittany, France, using a metabarcoding approach; (ii) determine
whether agronomic factors including the cultivar and/or the
previous crop influence the microbial community structure and
diversity; (iii) correlate the abundance of Fusarium pathogenic
species with other bacterial and fungal taxa, using SparCC co-
occurrence network analysis, as a preliminary step to identify
potential antagonist microorganisms.

MATERIALS AND METHODS

Maize Stalk Sampling
Maize stalks were collected from eight agricultural fields across
Brittany, France in November 2015. In total, seven fields
were surveyed in Finistère (Gouesnou, Saint-Renan, Locmaria-
Plouzané and Plouzané) and one in Ille-Et-Vilaine (Gennes sur
Seiche) located approximately 300 km away from the other fields
(Figure 1). Field characteristics including the maize types and
varieties, the previous crop and tillage practices were recorded
(Figure 1). In each field, the above-ground parts of 15 maize
stalks with nodal region were randomly sampled. Stalks were
sampled within 3 days after maize harvest and were stored
at −80◦C until DNA extraction, except the one in Ille-Et-
Vilaine, which was sampled within a month after maize harvest.
P1 was chosen as an outgroup to help interpret the degree
of variability observed within the maize kernel silage fields
from Finistère.

DNA Extraction
For each field, 15 stalks were randomly chosen and 3 groups of
3 stalks were randomly selected at laboratory with each group
corresponding to a biological replicate. For each replicate, four
different portions of approximately 1 cm (nodal, internodal
without leave, internodal with leave, and the external part) were
cut with a sterilized scalpel from each stalk, mixed altogether
and ground with liquid nitrogen in an autoclaved mortar and
pestle. The pulverized tissues were stored in 1.5 mL Eppendorf
tubes at 4◦C until DNA extraction, performed within 4 h.
DNA was extracted from 200 mg of pulverized maize stalks
using FastDNA R©SPIN kit (MP Biomedicals, Santa Ana, CA,
United States) following the manufacturer’s instructions. Quality
and concentration of purified DNA were determined using
a UV spectrophotometer (NanoDrop 1000, Thermo Scientific,
United States), and dilutions of at least 10 ng/µl were prepared
for each DNA sample.

PCR Amplification and MiSeq
Sequencing
A total of 24 samples (8 fields × 3 replicates) were selected for
amplicon PCRs and high-throughput sequencing. Preparation
of 16S rRNA, ITS and TEF1 libraries, and Illumina MiSeq
300 PE sequencing were performed at the McGill University
and Génome Québec Innovation Centre, Montreal, Canada.
Primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R
(5′-GACTACHVGGGTATCTAATCC-3′) (Herlemann et al.,
2011) were used to amplify the variable regions V3 and V4 of the
16S rRNA gene; primers ITS1F (5′-CTTGGTCATTTAGAGGAA
GTAA-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′)
(White et al., 1990; Gardes and Bruns, 1993) to amplify
the internal transcribed spacer; and primers TEF_FUS_F6

FIGURE 1 | Field characteristics. (A) Location of the sampled fields; (B) agronomic characteristics of the fields.
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(5′-CCGGTCACTTGATCTACCAG-3′) and TEF_FUS_R7
(5′-ATGACGGTGACATAGTAGCG-3′) (Cobo-Diaz,
Baroncelli, Le Floch, Picot, unpublished) to amplify a
430 bp region of the translation elongation factor (TEF1) of
Fusarium species.

16S rRNA Read Filtering
The raw sequences were processed and analyzed with
QIIME v1.9.1 (Quantitative Insights Into Microbial Ecology)
(Caporaso et al., 2010). After joining the paired-end reads
using the multiple_join_paired_ends.py and multiple_split_
libraries_fastq.py scripts with default parameters, the chimeric
sequences were then removed using UCHIME algorithm
(Edgar et al., 2011) implemented in VSEARCH v1.1.31 against
the ChimeraSlayer reference database (Haas et al., 2011).
UCLUST algorithm (Edgar, 2010) was used for OTU picking and
taxonomic assignment, which was made against GreenGenes
v13.5 database (McDonald et al., 2012). To minimize the inflation
of rare OTUs in the community analysis, we include only OTUs
with sequence count greater than 10 (Brown et al., 2015; Oliver
et al., 2015). Also, chloroplast, mitochondria and “No assigned”
OTUs were discarded.

ITS Read Filtering
Although expected, a low level of joined paired-end reads was
obtained for the ITS dataset, leading us to choose a different
approach using QIIME v1.9.1 (Caporaso et al., 2010). The
forward and reverse files were merged independently, using
multiple_split_libraries_fastq.py. ITS1 and ITS2 regions were first
extracted separately from forward and reverse non-chimera-fasta
files, respectively, using ITSx v1.0.11 (Bengtsson-Palme et al.,
2013) before being concatenated in a new file. A chimera filtering
was made on concatenated file using the UCHIME algorithm
(Edgar et al., 2011) with VSEARCH v1.1.3 see text footnote1 and a
modified version of the UNITE/INSDC representative/reference
sequences version 7.2 (UNITE Community, 2017) as reference
database. The modification consisted in extracting ITS1 and ITS2
regions by ITSx software and concatenated them in the modified
version of the database.

The ITS1-ITS2 concatenated file of non-chimeric sequences
was used for OTU picking running the QIIME script
pick_open_reference_otus.py, with BLAST (Altschul et al.,
1990) as taxonomic assignment method and a modified version
of UNITE plus INSD non-redundant ITS database version 7.1
(Kõljalg et al., 2013). Again, the modified version consisted in
concatenating ITS1 and ITS2 regions after extracting them using
ITSx software.

To minimize the overestimation of rare OTUs in the
community analysis, we include only OTUs with sequence
count greater than 10 (Brown et al., 2015; Oliver et al., 2015).
Only OTUs assigned to kingdom Fungi were used for further
analysis. The taxonomy for fungi known to have both sexual
and asexual stages was replaced by accepted names according to
Chen et al. (2018).

1https://github.com/torognes/vsearch

TEF1 Read Filtering
Paired-end reads were processed with QIIME (Caporaso
et al., 2010), using the multiple_join_paired_ends.py and
multiple_split_libraries_fastq.py scripts with default parameters.
Pick de novo strategy was then employed to cluster the sequences
into OTUs using pick_de_novo_otus.py, at 97% similarity cutoff.
A first taxonomic assignment was performed using BLAST
(Altschul et al., 1990) against NCBI non-redundant nucleotide
database (nt)2. Only sequences assigned to Fusarium or the
teleomorph name (Gibberella and Nectria), longer than 360 bp
and with a percentage of identity higher than 97% were selected
for further analysis, and only OTUs with sequence count greater
than 10 were selected to minimize the inflation of rare OTUs in
the community analysis (Brown et al., 2015; Oliver et al., 2015).

A second step of taxonomic assignment was done using
the Fusarium MLST database web3, with the “pairse DNA
alignments” tool, and compared with that provided by nt
database. TEF1 sequences obtained along with references were
aligned using MAFFT v7.304 (Katoh et al., 2017). Multiple
sequence alignments were exported to MEGA7 (Kumar et al.,
2016) and the best-fit substitution model was calculated for
each separate sequence dataset. Using MrBayes 3.2.6 (Ronquist
et al., 2012), the Markov chain Monte Carlo (MCMC) algorithm
was performed to generate phylogenetic trees with Bayesian
posterior probabilities for combined sequence datasets using the
nucleotide substitution models determined by MEGA7 (Kimura
2-parameter with gamma distributed rate variation among sites
[K2-G]). Four MCMC chains were run simultaneously for
random trees for 2,000,000 generations (standard deviation of
split frequencies between runs reached <0.01). Samples were
taken every 500 generations. The first 25% of trees were discarded
as burn-in phase of each analysis and posterior probabilities were
determined from the remaining trees.

Alpha and Beta-Diversity Analysis
Metabarcoding datasets obtained after filtering (V3-V4 region
of 16S rRNA, ITS1-ITS2 concatenated regions and Fusarium
TEF1 sequences) were processed equally. A single rarefaction,
based on the sample with the lowest number of reads, was used
for alpha-diversity analysis using single_rarefaction.py QIIME
script. OTUs richness (observed_otus) and evenness (equitability
or Pielou’s index) were calculated with alpha_diversity.py
QIIME script. The statistical software R v2.9.10 was used to
perform one-way ANOVA with Tukey HSD post hoc test, for
statistical analysis. Differences with p < 0.05 were regarded as
statistically significant.

Taxa relative abundances across samples were compared
with STAMP (Statistical Analysis of Metagenomic Profiles)
bioinformatics software v 2.1.3 (Parks et al., 2014), using the OTU
table from QIIME pipeline without any rarefaction. Statistical
significance of the differences between multiple group-samples
were calculated using ANOVA test, Tukey-Kramer post hoc
test at 0.95 confidence interval, and corresponding p-values

2ftp://ftp.ncbi.nlm.nih.gov/../blast/db/
3http://www.westerdijkinstitute.nl/fusarium/
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FIGURE 2 | Alpha-diversity indices. Richness index (Observed OTUs) and evenness index (equitability or Pielou’s index) per sample for (A,B) 16S rRNA data, (C,D)
ITS data, and (E,F) TEF1 data. Letters indicate statistical differences between samples (p < 0.05). Telexx variety samples are plotted in green and P8600 variety
samples are plotted in blue.

were corrected by Benjamini-Hochberg FDR (Benjamini and
Hochberg, 2000).

Canonical Correspondence Analysis (CCA) were made at
OTU level using four different datasets: (i) grouping the replicates
by field samples, (ii) removing sample P1, (iii) grouping only
maize varieties Telexx and P8400, and (iv) grouping previous
crop forage rapeseed, wheat and mustard; using R package Vegan.
Analyses of variance (ANOVA) were made between fields, variety
or previous crop.

Significant correlations between the relative abundance of
bacterial, fungal and Fusarium OTUs were made using Sparse
Correlations for Compositional data algorithm implemented
in SparCC python module (Friedman and Alm, 2012) and
corresponding networks were plotted using the R package qgraph
(Epskamp et al., 2012). Only correlations with a R-corr absolute
value greater than 0.3 and p-value less than 0.05 were plotted. For
correlation analysis, the relative abundance per bacterial, fungal
or Fusarium OTUs was calculated by dividing the number of
sequences per OTU by the total number of amplicon sequences
for each sample. Additionally, relative abundance of Fusarium
OTUs obtained with TEF1 primers, was also divided by the
percentage of ITS sequences assigned to Fusarium genus, in
order to have an estimated relative abundance (percentage) of
each Fusarium species (determined by TEF1) in the total fungal
community (determined by ITS).

Accession Numbers
All the raw reads have been deposited at the NCBI and
are available under the Bioproject ID PRJNA3940634,
with BioSample accession numbers from SAMN07348271
to SAMN07348278.

RESULTS

Microbial Community Structure
A total of 1,041,456 sequences of 16S rRNA gene were clustered
into 2,334 OTUs after filtering raw reads from 24 maize residue
samples (8 fields × 3 biological replicates) and 12,936 sequences
per sample were randomly extracted for alpha-diversity analysis.
Only 1.98 and 4.54 % of the sequences were assigned to
mitochondria and chloroplast, respectively, and removed along
filtering step. Richness and evenness indices were significantly
found the lowest in P1, with 488 observed OTUs, vs. 771 to 1,025
in the other samples, and with evenness value of 0.65 vs. 0.74 to
0.83. P2 also had significantly lower values compared to P3 and P4
for richness (771 OTUs vs. 964 OTUs in P4 and 1,025 in P3) and
compared to P7 for evenness (0.74 vs. 0.83 in P7) (Figures 2A,B).

4http://www.ncbi.nlm.nih.gov/
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For ITS, 1,129,203 sequences were clustered into 455 OTUs
and 29,319 sequences per sample were randomly extracted
for alpha-diversity analysis. No sequences belonging to plants
were detected. There were no significant differences for
alpha-diversity indices between fields, with average values of
richness between 88 and 159 OTUs, and 0.49 to 0.70 for
equitability, except for the significantly higher values of observed
richness found in P3 compared to P1 (159 vs. 88 OTUs,
respectively) (Figures 2C,D).

In the case of TEF1 sequences assigned to Fusarium, a total
of 1,023,229 sequences were clustered into 48 OTUs after raw
read filtering. The percentage of sequences not assigned to the
Fusarium genus was very low and only represented 0.039 %
of the total sequences after removing those corresponding to
phage phiX174, used for quality controls in Illumina sequencing.
Between 33,688 and 56,829 sequences per sample (except
replicate 1 from P1, which was removed for further analysis
because it only had 15 sequences) were obtained, and 33,693
sequences per sample were randomly extracted for alpha-
diversity analysis. Although P1 showed a higher value of evenness
(0.55) and richness (28 OTUs) than other fields (evenness from
0.34 to 0.43 and richness from 11 to 19 OTUs), these differences
were not statistically significant (Figures 2E,F).

Bacterial Community Composition
A total of 17 phyla and 143 genera were detected based
on 16S rRNA sequences. The most abundant phyla were
Proteobacteria (50.5–80.6%), Bacteroidetes (13.6–31.9%),
Verrucomicrobia (0.8–8.0%), Actinobacteria (2.7–5.1%), and
TM7 (0.2–4.4%), with Alphaproteobacteria (23.4–42.8%),
Gammaproteobacteria (7.7–32.2%), and Betaproteobacteria
(6.6–14.8%) as the main proteobacteria classes (Figure 3A). P1
had a significantly higher abundance of Proteobacteria (80.6%
vs. 50.5 to 67.7%) and a lower abundance of Betaproteobacteria
(6.6% vs. 11.4 to 31.9%), Bacteroidetes (13.6% vs. 21.9 to
31.9%), and Verrucomicrobia (1.3 and 0.8, vs. 4.1 to 5.1%)
compared to the other fields. Alpha and Gamma-proteobacteria
were also found to be higher in P1 although differences were
not significant. Other significant differences were found in
P3, where a higher abundance of Proteobacteria (67.7% vs.
50.5 to 62.8%) and Gammaproteobacteria (28.8% vs. 7.7 to
18.3%) and a lower abundance of Bacteroidetes (21.9% vs.
24.1 to 31.9%) were observed compared to the other samples,
except P1 (Figure 3A).

The most abundant genera were 4 proteobacteria:
Sphingomonas (9.6–27.9%), Pseudomonas (1.1–6.2%), Janthino-
bacterium (0.1–5.2%) and Sphingobium (1.3–2.4%); and 2
bacteroidetes: Pedobacter (2.1–9.8%) and Flavobacterium
(0.6–7.7%) (Figure 3B). In total, the abundance of 18 genera
was found to be significantly different between samples, with
some genera more abundant in P1, such as Adhaeribacter,
Phormidium, Stenotrophomonas, and Skermanella (Figure 4).
Some genera were also found to be significantly more
abundant in field P3 (Rodhoferax, Sporocytophaga, Buchnera,
and Sediminibacterium), P4 (Segetibacter and Paracoccus),
P6 (Paenibacillus and Mycobacterium), P7 (Polaromonas,
Bdellovibrio, and Gemmatimonas), and P9 (Kaistia) (Figure 4).

FIGURE 3 | Bacterial taxa distribution. Relative abundance of the
predominant (A) bacterial phyla (and Proteobacteria classes) and (B) genera
obtained by 16S rRNA amplicons.

Fungal Community Composition
A total of 16 classes and 124 genera were detected from ITS
sequences. The most abundant classes were Sordariomycetes
(20.3–63.1%), Dothideomycetes (12.5–39.6%), Leotiomycetes
(3.6–18.0%), Eurotiomycetes (1.8–13.8%), Tremellomycetes
(2.4–9.9%), and Saccharomycetes (0.0–33.0%), with
Sordariomycetes being the most abundant class in all samples
except in P1, which had Saccharomycetes as the main class
(Figure 5A). In addition, Saccharomycetes was the unique
class with different relative abundances between samples,
which was more abundant in P1 than the others (33.0%
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FIGURE 4 | Heatmap of bacterial genera with significant differences (p < 0.05) between samples. Relative abundance data were z-scored normalized by row. Plot
was made using pheatmap R package with the default parameters. Sample names have the format Pij, where i refers to the field site (i = 1–8) and j refers to the
replicate within the field (j = 1–3).

vs. up to 2.3%). The most abundant genera obtained were
Fusarium (6.1–44.8%), Epicoccum (1.4–27.1%), Articulospora
(3.5–16.6%), Microdochium (0.3–24.6%), Exophiala (1.0–12.9%),
Sarocladium (0.4–14.5%), Cryptococcus (2.1–7.7%), Candida
(0.0–30.0%), Acremonium (0.1–11.5%), and Phoma (0.0–9.2%)
(Figure 5B). Only 2 genera had significant different abundances
between fields: Candida (class Saccharomycetes) and Phoma
(class Dothideomycetes) were more abundant in P1 than
other fields (30.0% vs. up to 2.4% and 9.2 vs. up to 5.4%,
respectively) (Figure 5B).

Fusarium Community Composition
A total of 15 Fusarium species were detected according to
taxonomic assignment performed by phylogenetic tree, although
5 OTUs were not clearly assigned to species level (Figure 6
and Supplementary Table S1). Three of them (denovo419,
denovo339, and denovo314) were named as Fusarium sp. for
further analysis, while denovo380 and denovo779 were grouped
with the 2 OTUs assigned to F. equiseti (denovo921 and
denovo438) inside Fusarium sp. FIESC (Fusarium incarnatum-
equiseti species complex) for further analysis.

Major species were F. graminearum (18.9–71.9%), F. avena-
ceum (15.7–53.8%), F. poae (0.0–18.6%), F. oxysporum (0.002–
12.5%), F. verticillioides (0.0–13.4%), F. temperatum (0–10.1%),
and F. sporotrichioides (0.0–11.1%), which covered between 80.2
to 100% of the total Fusarium sequences per field (Figure 7).
The abundance of these species was unevenly distributed across
fields. However, whatever the field, the most abundant species
were F. graminearum and F. avenaceum, which sum accounted

for 68.9 to 90.1% of the total Fusarium sequences per field,
except in P1 (46.6%), and they were also the 2 Fusarium species
present in all the fields. It is noteworthy that F. avenaceum
outnumbered F. graminearum only in the three fields that had
Telexx as maize variety (P2, P6, and P9). Moreover, other species
were also subdominant depending on the field: F. poae in P4, P6,
P7, and P8 (from 9.2 to 18.6%); F. oxysporum in P1 and P8 (15.4
and 11.8%, respectively); F. sporotrichioides and F. temperatum
in P1 (16.6 and 15.2%, respectively); and F. verticillioides in P9
(13.4%); although there were not significant differences in relative
abundance of Fusarium species between samples (Figure 7).

Canonical Correspondence Analysis
Unsurprisingly, Canonical Correspondence Analysis (CCA)
showed that the composition and distribution of microbial
communities in the outgroup P1 was different from the others
samples. Bacterial, fungal and Fusarium communities presented
significant differences between fields (ANOVA: F = 1.6308,
Pr < 0.001 for bacteria; F = 2.0422, Pr < 0.001 for fungi;
F = 1.7723, Pr < 0.001 for Fusarium), with P1 as the most
different field in all 3 cases; and also P2, P3, and P9 for
bacteria, and P9 for Fusarium communities (Figures 8A–C).
The CCA excluding P1 showed similar degree of significance
between samples (F = 1.4219 and 1.6738, for bacterial and fungal,
respectively, Pr < 0.001), except for Fusarium (F = 1.3428,
Pr = 0.038). A clear separation of almost all fields was observed
for bacterial communities; P4 and P6 for fungal communities;
and P6 and P9 for Fusarium communities (Figures 8D–F). The
same analysis was done selecting the fields which had Telexx
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FIGURE 5 | Fungal taxa distribution. Relative abundance of the predominant
fungal (A) classes and (B) genera obtained by ITS amplicons.

and P8400 as maize varieties, obtaining significant differences
between varieties in bacterial (F = 1.5128, Pr = 0.002) and fungal
(F = 1.7022, Pr = 0.015) communities but not in Fusarium
communities (F = 1.2672, Pr = 0.214) (Figures 8G–I). Regarding
the previous crop, only forage rapeseed, mustard and wheat were
analyzed, resulting in significant differences between groups in
bacterial (F = 1.4201, Pr = 0.001), fungal (F = 1.7673, Pr = 0.001)
and Fusarium communities (F = 1.716, Pr = 0.01) (Figures 8J–L).

SparCC Correlation Network
In total, 26 positive and 13 negative significant correlations
(|coefficient correlation (=corr)|>0.3 and p-value < 0.05) were

found between 27 OTUs: 6 from 16SrRNA, 19 from ITS and
4 from TEF1 (Figure 9A). The highest positive correlations
were obviously found between F01 and Fs01, both assigned
to F. graminearum by ITS and TEF1 sequencing, respectively
(corr = 0.82); and between F02 and Fs02, both assigned to
F. avenaceum by ITS and TEF1 sequencing (corr = 0.51). There
were also significant positive correlations between Fs02 and
the 2 F. graminearum OTUs (F01 and Fs01, corr = 0.40 for
both) (Figure 9A). One fungal and one bacteria OTUs presented
negative correlations with some Fusarium OTU(s): F04, assigned
to Sarocladium strictum, against Fs03, assigned to F. oxysporum
(corr = −0.30); and B01, assigned to Sphingomonas, against F01,
Fs01, and Fs04, assigned to F. graminearum by ITS and TEF1, and
to F. poae by TEF1 (corr =−0.36,−032 and−0.32, respectively).
Moreover, B01 also presented negative correlations with B02,
B03, B04, F06, and F07, assigned to Pseudomonas, Luteolibacter,
family Xanthomonadaceae, Monographella cucumerina, and
F. poae, respectively (Figure 9A).

The same SparCC correlation analysis was done excluding
the results from the outgroup field P1, which fungal and
bacterial communities and distribution greatly varied from
the other fields. In total 28 OTUs (7 from 16SrRNA, 18
from ITS and 3 from TEF1) presented 20 positive and 16
negative significant correlations between them (Figure 9B). As
happened in the previous network analysis, the highest positive
correlations were between F01 and Fs01 (corr = 0.83), assigned
to F. graminearum by ITS and TEF1, respectively; between
F02 and Fs02 (corr = 0.53), assigned to F. avenaceum by ITS
and TEF, respectively; and between F02 and the two OTUs
assigned to F. graminearum (corr = 0.41 for both TEF1 and
ITS). Two fungal OTUs had negative correlations vs. some
Fusarium OTU: the same Sarocladium OTU identified before
(F04) vs. Fs03 and F08, assigned to F. oxysporum by TEF1 and
ITS sequences (corr = −0.31 and −0.35, respectively); and F05,
assigned to Epicoccum nigrum, vs. Fs04 and F10, assigned to
F. temperatum and Candida sake (corr = −0.34 and −0.35,
respectively) (Figure 9B).

DISCUSSION

By sequencing three different amplicons from 24 maize samples,
a total of 2,334 bacterial OTUs, 1,428 fungal OTUs and 48
Fusarium OTUs were obtained. This study is one of the first
metabarcoding studies on maize residues, resulting in a higher
diversity than previously found in other NGS studies of the maize
rhizosphere (Peiffer et al., 2013; Li et al., 2014).

Proteobacteria (mainly alpha and gamma-proteobacteria),
Bacteroidetes and Actinobacteria were found as the most
abundant phyla in maize stalk surface, the first two of which
have already been reported as the most abundant in the maize
rhizosphere (Peiffer et al., 2013; Li et al., 2014), in soil samples
after maize harvesting (Chen et al., 2015) and in the first stages
of maize straw decomposition (Sun et al., 2013). Although maize
residues can be considered as a separate compartment and a
particular ecological niche compared to soil samples, some of
the more abundant bacterial genera in the present study had
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FIGURE 6 | Phylogenetic tree of TEF1 sequences from Fusarium OTUs and reference isolates, which accession number was indicated. Bayesian posterior
probability (BPP) values (above 0.50) are shown at the nodes. The thickened nodes represent BPP values higher than 0.9.

also been found as predominant in maize rhizospheric soils,
including Sphingobium (Peiffer et al., 2013; Li et al., 2014),
Flavobacterium (Li et al., 2014; Yang et al., 2017; Correa-Galeote
et al., 2016) and Sphingomonas (Correa-Galeote et al., 2018).
Apart from these genera, the diversity of bacterial communities
found in our maize residues generally differed from that of

maize rhizospheric soils found in other studies (Peiffer et al.,
2013; Li et al., 2014; Correa-Galeote et al., 2016; Yang et al.,
2017). It should also be underlined that 2 of the over-represented
genera in P1, Adhaeribacter and Stenotrophomonas, were also
significantly more abundant in Fusarium wilt suppressive soils
(Siegel-Hertz et al., 2018).

Frontiers in Microbiology | www.frontiersin.org 9 February 2019 | Volume 10 | Article 261

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00261 February 14, 2019 Time: 19:3 # 10

Cobo-Díaz et al. Microbial Communities in Maize Residues

FIGURE 7 | Fusarium species distribution. Relative abundance of the
predominant Fusarium species obtained by TEF1 amplicons.

Some of the most abundant fungal genera found in the
present study, including Fusarium, Epicoccum, Acremonium,
Sarocladium, and Phoma had been reported as endophytes
isolated from maize (Pan and May, 2009; Amin, 2013; Xing
et al., 2018). In particular, Fusarium, Epicoccum, and Phoma
were reported as the most abundant endophytes isolated from
maize leaves, using two different lineages (Szilagyi-Zecchin et al.,
2016), while Acremonium was detected exclusively in Fusarium
wilt suppressive soils, but not in conducive soils (Siegel-Hertz
et al., 2018). It is important to highlight that, in our maize
samples, genera with reported biocontrol activity (Table 1)
were predominant and included several bacterial genera such
as Sphingomonas, Pedobacter, Flavobacterium, Pseudomonas,
Janthinobacterium, Sphingobium, Chryseobacterium, Luteibacter,
Dyadobacter, and Rhizobium; and fungal genera such as
Epicoccum, Articulospora, Exophiala, Sarocladium, Cryptococcus,
Candida, Acremonium, and Metschnikowia. On the other
hand, only two bacterial genera, Pseudomonas and Erwinia,
and three fungal genera, Fusarium, Acremonium, and Phoma,
within the most abundant ones are known to include maize
or cereal pathogens. A priori, although maize residues have
been reported as the primary source of pathogenic species
(Shaner, 2003; Bateman et al., 2007; Fernandez et al., 2008),
microbial communities obtained from maize crop residues
presented an important amount of organisms that could
increase the protection of future rhizospheric complexes
against pathogens. This hypothesis was corroborated with the
presence of one bacterial and two fungal OTUs, assigned to
Sphingomonas, Epicoccum nigrum, and Sarocladium strictum,
negatively correlated to some Fusarium OTUs; these three
genera were within the most abundant ones in the microbial
communities studied. Likewise, a lower increase of Fusarium
spp. colonization of maize stalks has also been reported when

Sphingomonas species were more abundant (Köhl et al., 2015) and
a strain of Sphingomonas was found to be antagonistic against
F. avenaceum, F. culmorum, F. tricinctum, and F. graminearum
(Wachowska et al., 2013). Acremonium spp. (basionym of
Sarocladium) (Summerbell et al., 2011) were also found to be
more abundant in maize stalks characterized by a lower increase
in Fusarium colonization, rendering it as a potential antagonist
of Fusarium spp. (Köhl et al., 2015). A better taxonomic
classification of the Acremonium species present in our samples
might be necessary as some species belonging to this genera
have been reported to be pathogenic on maize (Tagne et al.,
2002). Several Acremonium strains isolated from maize were
able to inhibit the growth of some pathogens, such as Pythium
ultimum, Sclerotium oryzae, Rhizoctonia solani, and Pyricularia
oryzae (Potshangbam et al., 2017) or produce pyrrocidines A
and B, which induce host defense mechanisms against microbial
pathogens (Wicklow and Poling, 2009). Some Sarocladium
endophytes isolated from wheat were also reported to inhibit
F. graminearum and F. culmorum growth (Comby et al., 2017).
It was also found that some strains of Epicoccum nigrum were able
to reduce the mycelial growth of F. graminearum, F. avenaceum,
and F. oxysporum on PDA (Ogórek and Plaskowska, 2011) and
also in sterile wheat grain assays with F. graminearum (Jensen
et al., 2016); or to reduce the sporulation of F. culmorum
and F. graminearum on wheat straw (Luongo et al., 2005).
Furthermore, E. nigrum has been used as a biological control on
peaches and nectarines orchards against Monilinia spp. (De Cal
et al., 2009) and against Pythium debaryanum and P. ultimum
on cotton seedlings (Hashem and Ali, 2004). Overall, the high
presence of these genera, previously reported as antagonists
and negatively correlated to toxigenic Fusarium species or
other pathogenic organisms, suggests that such taxa may be
of interest as part of biocontrol strategies against toxigenic
Fusarium spp.

The most abundant Fusarium species found in our maize
residues were F. graminearum, F. avenaceum, and F. poae,
with 41.3, 35.4, and 7.1% of the total sequences, respectively,
which are one of the main causal agents responsible for FHB
(Parry et al., 1995; Bottalico and Perrone, 2002). Likewise,
F. graminearum and F. avenaceum were also described as
the predominant species on maize stalks after a 6-month
exposure period in the field, as evaluated by qPCR (Köhl
et al., 2015) and are commonly found as the main Fusarium
species in wheat, using TEF1 as well as Fusarium spp. specific
primers (Karlsson et al., 2016, 2017) or using culture-dependent
approaches (Xu et al., 2005; Nicolaisen et al., 2014; Basler,
2016). F. avenaceum was also found as the dominant Fusarium
species in some soil samples associated to perennial plants
(LeBlanc et al., 2017). In opposite to our findings, F. culmorum is
commonly described as a dominant Fusarium species in maize
or cereals (Scauflaire et al., 2011; Basler, 2016; Hellin et al.,
2016). Mutual exclusion between strains of F. graminearum and
F. culmorum had been previously demonstrated (Siou et al.,
2015). This competition could account for the low abundance
of F. culmorum (0.05%) in maize stalks in our present study.
In addition, shifts from F. culmorum to F. graminearum
on wheat have been described in different European
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FIGURE 8 | Canonical correspondence analysis (CCA) calculated using OTUs relative abundance. Each dot represents a sample replicate for (A,D,G,J) bacterial,
(B,E,H,K) fungal, and (C,F,I,L) Fusarium communities, using (A,B,C) all sites, (D,E,F) all sites except P1, (G,H,I) samples grouped by maize variety and (J,K,L) by
previous crop.

countries, such as England and Wales (Jennings et al., 2004),
Netherlands (Waalwijk et al., 2003), Denmark
(Nielsen et al., 2011), and Belgium for maize ears and
stalks (Scauflaire et al., 2011). Climatic changes were the
main hypothesis put forward, although the increase in
maize-wheat rotation crops may also contribute to this

increase in F. graminearum and decrease in F. culmorum
(Dill-Macky and Jones, 2000; Cromey et al., 2002). The
distribution of the Fusarium communities also strongly depends
on the environmental conditions which would favor some
species over the others. For instance, Dorn et al. (2011) found
that F. graminearum, F. verticillioides, and F. proliferatum were
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FIGURE 9 | SparCC correlation networks observed between OTUs, obtained with 16S rRNA gene (Bacteria), ITS (Fungi), and TEF1 (Fusarium) sequences. Nodes
correspond to OTUs, and connecting edges indicate correlations between them. Only nodes with negative or positive correlations, with values less than –0.30 (red)
or larger than 0.30 (green), were represented. (A) SparCC correlation network using all the samples; (B) SparCC correlation network without the outgroup P1. OTUs
marked with asterisk had been reassigned taxonomically using blastn against nr/nt-NCBI database and Fusarium MLST web database (Supplementary Table S2).

the most dominant Fusarium species isolated from maize kernels
in Switzerland (22.3–81.6, 2.5–41.8, and 0.6–22.0% of occurrence
in kernels, respectively), while F. equiseti, F. proliferatum, and
F. verticillioides were the main Fusarium species in stalks (43.6,
16.3, and 11.5% of occurrence in nodes, and 27.6, 41.5, and
15.5% in internodes, respectively). In our study, F. graminearum
and F. avenaceum seem to be more adapted than species from
the Fusarium fujikuroi species complex (FFSC), including
F. verticillioides and F. temperatum, which were dominant in
maize kernels in Poland (Czembor et al., 2015) and in maize
kernels from Southern to Central Europe (Logrieco et al., 2002).
The mild and humid climatic conditions found in Brittany, which
are known to be favorable to F. graminearum and F. avenaceum
(Xu et al., 2008) may account for such observations. In contrast,
higher prevalence of Fusarium ear rot caused by FFSC including
F. verticillioides occurs under hot and dry conditions. For
instance, F. verticillioides incidence was found negatively
correlated to rainfall values in maize fields in Argentina (Pereira
et al., 2011) and to kernel moisture in maize fields in United States
(Bush et al., 2004). Moreover, we found that Telexx maize variety
had highest abundance of F. avenaceum than F. graminearum,
while the opposite was found for the other varieties used
in the study. These differences in Fusarium composition
could also induce differences in mycotoxin concentrations, as
deoxynivalenol and zearalenone are produced by F. graminearum
while moniliformin, enniatins and beauvericin can be produced
by F. avenaceum (Ferrigo et al., 2016).

Microbial communities found in the maize residues on field
P1 was the most different compared to the other fields. In
general, this field was characterized by both significant lower
bacterial and a higher Fusarium alpha-diversity indices, with a
higher abundance of the fungal Candida. Several factors differed
from the outgroup P1 compared to the other fields (Table 1)
including the maize type and cultivar, the agricultural practices,
the previous crop and the location. In addition, these samples
were collected 1 month after harvest, suggesting that maize
residues were already in the process of degradation. Maize
genotype has already been reported to influence the microbial
communities in rhizospheric samples (Li et al., 2014), it could
also have a strong influence in the microbial communities on
others parts of the plant including the residues. But due to
bias in the sampling design (because this study was rather
designed to estimate the diversity found in maize residues from
various fields in Brittany), we cannot conclude which factor(s)
contributed mainly to these differences between P1 and the other
fields. Additional sampling will be undertaken to further clarify
which factor(s) has(have) the higher influence on microbial
communities, with an emphasis to maize microbial dynamics
over the course of maize residue degradation.

The significance of this study first lies in its design of
a new specific pair of primers to identify Fusarium species
with metabarcoding approach. This new culture-independent
approach for Fusarium species identification could be adapted
to other genera, by the design of specific primers for Illumina
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TABLE 1 | Pathogen and antagonistic characteristics of species or strains belonging to the most abundant genus obtained in maize residues.

% of total Plant Wheat Maize Biocontrol

sequences pathogen pathogen pathogen activity Reference for biocontrol activity

Bacterial genus

Sphingomonas 16.0 Yes No No Yes Wachowska et al., 2013

Pedobacter 6.7 No No No Yes De Boer et al., 2007; Song et al., 2017

Flavobacterium 5.1 No No No Yes Gunasinghe et al., 2004

Pseudomonas 3.6 Yes Yes Yes Yes Hennessy et al., 2017

Janthinobacterium 2.5 No No No Yes Berg et al., 2001

Sphingobium 1.9 Yes No No Yes van Bruggen et al., 2014; Fu et al., 2017

Chryseobacterium 1.7 Yes No No Yes Yin et al., 2013; Sang et al., 2018

Luteibacter 1.7 No No No Yes De Boer et al., 2007

Luteolibacter 1.5 No No No No

Erwinia 1.3 Yes Yes Yes No

Agrobacterium 1.3 Yes No No (1)

Hymenobacter 1.2 No No No No

Dyadobacter 1.0 No No No Yes (2) Fu et al., 2017

Rhizobium 0.8 No No No Yes (3) Al-Ani et al., 2012

Fungal genus

Fusarium 17.1 Yes Yes Yes Yes (3,4) Ghini et al., 2000; Boari and Vurro, 2004

Epicoccum 13.1 Yes No No Yes Luongo et al., 2005

Articulospora 9.1 No No No Yes Sugahara et al., 2008

Microdochium 7.6 Yes Yes No No

Exophiala 7.0 No No No Yes Duvick et al., 1998

Sarocladium 5.7 Yes No No Yes Comby et al., 2017

Cryptococcus 4.4 Yes No No Yes Schisler et al., 2015

Candida 4.2 No No No Yes Calvo-Garrido et al., 2013

Acremonium 3.1 Yes Yes Yes Yes (3) Rajakumar et al., 2005

Phoma 2.4 Yes Yes Yes No

Xenobotryosphaeria 2.2 No No No No

Pyrenochaetopsis 2.2 No No No No

Ramularia 0.6 Yes No No No

Hannaella 0.5 Yes No No No

Metschnikowia 0.4 No No No Yes Manso and Nunes, 2011

(1) Used for Agrobacterium-mediated plant transformation (Genetically Modified Organisms).
(2) Associated to disease suppressiveness.
(3) Over-represented in Fusarium wilt suppressive soils (Siegel-Hertz et al., 2018).
(4) Non-pathogenic strains.

metabarcoding. In addition, the combined used of these primers
with universal primers for fungi and bacteria allowed, not
only to provide an accurate description of the microbiota as
well as the pathogenic Fusarium spp. under various agronomic
practices (maize cultivar, previous crop), but also to assess
the potential relationships between microorganisms using co-
occurrence network analysis. More particularly, we could
identify predominant taxa negatively correlated to toxigenic
Fusarium spp. Therefore, such approach could be used as
a pre-filtering for the selection of potential antagonists as
part of biocontrol strategies. Following this investigation,
culture-dependent approaches must be done to determine the
antagonistic potential of species identified by the co-occurrence
network analysis, both in laboratory and field experiments.
Illumina technology allows putting more than one amplicon
type and dozens of samples in only one run (Herbold et al.,
2015). This approach is time-saving compared to the empirical

BCA isolation strategies, and could have more importance in the
screening of antagonists.

Based on the results of this preliminary study, we also
suggest focusing on the microbial dynamics throughout the
plant cultivation cycle in maize-wheat rotations, taking also into
account the influence of plant cultivar on microbial communities.
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