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Transposons are invaluable biological tools for the genetic manipulation of
microorganisms. ISY100 from Synechocystis sp. PCC6803 is a member of the
Tc1/mariner/IS630 superfamily, and is characterized by high transposition efficiency
and a strong preference for TA target sequences. In this paper, we describe the
design and application of a mini-ISY100 suicide vector for the in vivo creation of stable
random transposon insertion libraries. The system was successfully applied in seven
species belonging to four different orders of γ proteobacteria. In all cases, delivery
using conjugation consistently showed the highest transposition efficiency compared to
chemical transformation or electroporation. We determined the frequency of transposon
insertions in all the species and proved the utility of the system by identifying genes
involved in colony coloration in Shewanella oneidensis. The ease and the efficiency of
the protocol developed here allow the creation of complete knock-out libraries in an
extensive range of host microorganisms in less than a week with no requirement for
preparatory modification.

Keywords: ISY100, transposon mutagenesis, knock-out library, 8C31 integrase, cytochrome c

INTRODUCTION

Transposon insertion mutagenesis is a powerful technique to interrogate the entire genome of an
organism, especially when other genetic manipulation tools are not available (van Opijnen and
Camilli, 2013). The applications of this approach include the definition of essential genes (Akerley
et al., 1998; Glass et al., 2006; Freed et al., 2016), determination of the underlying genetic causes
of specific phenotypes (Rollefson et al., 2009; Ding and Tan, 2017) and the creation of complete
non-redundant knock-out libraries for genetic studies in less-known species (Gallagher et al., 2013).
All these studies take advantage of the ability of transposons to create a large pool of mutants by
inserting at random sites, ideally covering the entire genome.

Transposons can also be used to insert a genetic cargo in the chromosomal DNA at random
locations (Ehrmann et al., 1997), or to generate portable regions of homology that can act as
substrate for other recombination enzymes to generate deletions or duplications (Hughes, 2007).

The majority of the transposon mutagenesis protocols described in the literature rely on
members of the DD[E/D] family of transposases (Nesmelova and Hackett, 2010), which catalyze
transposition via a cut-and-paste mechanism. Among these, derivatives of Tn5, Tn7, Mu, Tn10,
and Himar1 represent a common choice for the mutagenesis of prokaryotes (Choi and Kim, 2009;
Picardeau, 2010), while at least ten transposons, including Sleeping Beauty, Himar1, and PiggyBac
have been exploited for gene transfer applications in eukaryotes (Ni et al., 2008). The use of
heterologous transposons has generally been preferred to avoid possible interference from related
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mobile elements in the host genome (Rubin et al., 1999). The
complete lack of host requirements of mariner transposons of
eukaryotic origin, like Himar1, allows their routine use in bacteria
(Rubin et al., 1999), while in some cases transposons of bacterial
origin (e.g., Tn5) have been used to mutagenize eukaryotic
organisms with complete functionality (Suganuma et al., 2005).

Although lack of insertion site preference is desirable for
mutagenesis experiments, all transposons display a certain degree
of target site selectivity, and none of them can be truly defined
as “random” (Liu et al., 2005). Target site preferences vary for
different transposons and can be guided by requirement for a
specific sequence (Wolkow et al., 1996), by the transcriptional
status of a genomic region (Fraser et al., 1996) or by topological
factors like the bending of the DNA in GC rich sequences (Green
et al., 2012). These deviations from the assumed randomness can
influence the result of an experiment, and limit coverage of the
library (Kimura et al., 2016). The use of different transposons
in the same species can lead to different and complementary
results (Jacobs et al., 2003; Liberati et al., 2006). Furthermore, a
particular transposon system could have a limited efficiency or
not work at all in a species of interest (Bouhenni et al., 2005),
or show an insertion site preference in a specific host (Bardarov
et al., 1997), creating the need for an alternative method. It is,
therefore, desirable to have multiple options to choose from. To
expand the range of tools available for the genetic manipulation
of different organisms, we set up a system relying on the use of
the ISY100 (ISTcSA) transposon from Synechocystis sp. PCC6803
(Feng and Colloms, 2007).

ISY100 transposon is a member of the Tc1/mariner/IS630
family with a size of 947 bp and a single open reading frame
coding for its own transposase (Urasaki et al., 2002). The
transposase from ISY100 recognizes two 24 bp imperfect inverted
repeats at the transposon ends, and has a marked preference
for TA insertion sites (Feng and Colloms, 2007). ISY100 was
isolated from the chromosome of Synechocystis sp. PCC6803,
where it is present in 20 copies (Cassier-Chauvat et al., 1997;
Urasaki et al., 2002). Its cut-and-paste reaction mechanism was
studied both in vivo (Urasaki et al., 2002) and in vitro (Feng and
Colloms, 2007), and showed a high transposition efficiency into
the chromosome of Escherichia coli (Urasaki et al., 2002). To take
advantage of these qualities, we designed a mini-ISY100 delivery
system based on a R6K suicide vector and compared the efficiency
of different delivery methods. Mini ISY100 transposition was
tested in multiple strains of E. coli and in six other species
of γ proteobacteria, producing insertion libraries that could be
screened for mutant phenotypes.

MATERIALS AND METHODS

Bacterial Strains
A list of the bacterial strains used in this study is shown in
Table 1. All species were grown in LB medium (Sambrook
and Russell, 2001), supplemented when necessary with
0.3 mM thymidine, 0.3 mM 2,6-diaminopimelic acid (DAP),
chloramphenicol (25 µg/ml) or kanamycin (50 µg/ml for
all; except for Pseudomonas aeruginosa 300 µg/ml). Solid

TABLE 1 | Bacterial strains used in this study.

Bacterial strain Genotype Source or
reference

E. coli DH5α (F−) supE44 1(lac)U169
(ϕ80lacZ1M15) 1(argF )
hsdR17 recA1 endA1 gyrA96
thi-1 relA1

Taylor et al., 1993

E. coli TOP10 (F−) mcrA
1(mrr-hsdRMS-mcrBC)
ϕ80lacZ1M15 1(lac)X74 nupG
recA1 araD139 1(ara-leu)7697
galE15 galK16 rpsL(StrR)
endA1 λ−

(Invitrogen)
Presumed identical
to DH10B (Grant
et al., 1990)

E. coli MG1655 K-12 F− λ− ilvG rfb-50 rph-1 Bachmann, 1996

E. coliπ3 TG1 (F−) 1thyA::(erm-pir116)
[EmR]

Demarre et al.,
2005

E. coli MFDpir MG1655
RP4-2-Tc::[1Mu1::aac(3)IV-
1aphA-1nic35-1Mu2::zeo]
1dapA::(erm-pir) 1recA

Ferrières et al.,
2010

S. oneidensis MR-1 Wild-type Venkateswaran
et al., 1999

P. ananatis Wild-type DSMZ collection
No.30071

P. fluorescens
SBW25

Wild-type Rainey and Bailey,
1996

A. baumannii
ATCC19606

Wild-type Bouvet and
Grimont, 1986

A. baylyi ADP1 Wild-type Metzgar et al.,
2004

P. aeruginosa PAO1 Wild-type Holloway, 1975

medium was obtained by adding 15 g/l of agar. Bacteria
were incubated at 37◦C (Escherichia coli, Acinetobacter
baumannii, Acinetobacter baylyi, and Pseudomonas aeruginosa)
or 30◦C (Shewanella oneidensis, Pantoea ananatis and
Pseudomonas fluorescens).

pISY100mini Plasmid Construction
The pISY100mini suicide plasmid was created by inserting
a synthetic DNA sequence into the R6K γ origin plasmid
pSW23T (Demarre et al., 2005) between the SalI and the SacI
restriction sites. The inserted DNA sequence includes ISY100
inverted repeats IRL and IRR flanking the aminoglycoside
phosphotransferase gene (kanamycin resistance, KanR) from Tn5
(Beck et al., 1982), forming the mini-ISY100 transposon, followed
by the T7 g10-L ribosome binding site (Olins and Rangwala,
1989) and the ISY100 transposase gene (Feng and Colloms, 2007).
The pISY100mini-LP plasmid contained a8C31 integrase-based
“landing pad” in pISY100mini, and was constructed by inserting
synthetic DNA sequences containing a 8C31 attBTT site
(GTGCCAGGGCGTGCCCTTGGGCTCCCCGGGCGCG) and
the counter-selectable E. coli rpsL gene between the AatII and
BsaI sites of pISY100mini, and a fragment containing an attBTC

site (GTGCCAGGGCGTGCCCTCGGGCTCCCCGGGCGCG),
in the opposite orientation, between the NheI and the SpeI
sites. Replication of these ISY100 donor plasmids requires
the pir gene, therefore both plasmids were maintained in

Frontiers in Microbiology | www.frontiersin.org 2 February 2019 | Volume 10 | Article 280

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00280 February 25, 2019 Time: 16:18 # 3

Conte et al. Mini-ISY100 Transposon Delivery System

E. coli π3 (Demarre et al., 2005). All plasmids were verified
by DNA sequencing.

Chemical Transformation and
Electroporation
Suicide plasmids were introduced into bacteria using chemical
transformation or electroporation. Chemical transformation
of E. coli, P. ananatis, P. fluorescens, S. oneidensis used a
standard heat-shock protocol with calcium chloride treated cells
(Sambrook and Russell, 2001). To prepare electro-competent
cells, 200 ml of exponentially growing culture (OD600 = 0.4)
was centrifuged for 7 min at 8000 g then resuspended in 100 ml
pre-chilled 10% glycerol. Centrifugation was repeated three more
times with cells resuspended first in 50 ml and then in 25 ml
of 10% glycerol, before final resuspension in 500 µl of 10%
glycerol. Electroporation was performed in 0.2 cm cuvettes at
2.5 kV (0.55 kV for S. oneidensis) using 40 µl of cells mixed
with 165 ng of plasmid DNA. After electroporation, 1 ml of LB
(with thymidine for π3) was added and cells were incubated
with shaking for 1.5 h at 37◦C or 30◦C as appropriate. After
this, an aliquot of cells was spread on selective plates. All the
experiments were repeated in triplicate, and results reported as
mean± standard deviation.

Conjugation
The donor strain for the conjugation experiments was obtained
by introducing pISY100mini or pISY100mini-LP into E. coli
MFDpir (Ferrières et al., 2010) by chemical transformation.
Overnight cultures of donor and recipient strains (1 ml each)
were pelleted by centrifugation (3000 g – 5 min) and washed
twice in 500 µl of dilution buffer (10 mM Tris pH 7.5, 10 mM
MgSO4, 68 mM NaCl2) before final resuspension in 500 µl of
dilution buffer. The donor strain (100 µl) was mixed gently with
50 µl of the recipient cells (100 µl for E. coli) by pipetting up and
down. The mixture was pipetted without spreading at the center
of a LB/DAP agar plate and incubated at 30◦C for 5 h (A. baylyi,
A. baumannii, and P. aeruginosa), 8 h (E. coli and S. oneidensis) or
overnight (16 h; P. ananatis, P. fluorescens). Cells were washed off
the plate with 3 ml of LB (700 µl for the experiments conducted
with pISY100-LP-mini) and serial dilutions were spread on plates
containing kanamycin and no DAP, and incubated at 30 or 37◦C
for 48 h to select for recipient cells containing a mini-ISY100
transposon inserted into the chromosome. Each experiment was
repeated independently three times to determine the mean and
standard deviation.

Arbitrary PCR
The protocol for colony arbitrary PCR was adapted
from Das et al. (2005) using the primers KanR_3
GACCGCTTCCTCGTGCTTTAC, KanR_4 TCTATCGCCTTC
TTGACGAGTTC, Arb1 GGCCACGCGTCGACTAGTCANN
NNNNNNNNGATAT, and Arb2 GGCCACGCGTCGACTA
GTCA. A single colony was picked from a plate, resuspended in
50 µl of distilled water and heated at 95◦C for 15 min. An aliquot
of this suspension (5 µl) was added to a PCR mixture containing
25 µl Taq 2X Master Mix (New England BioLabs), 2.5 µl each of

primer Kanr-3 (10 µM) and ARB1-1 (50 µM) and 15 µl dH2O.
This was subjected to an initial denaturation at 95◦C for 5 min,
followed by 6 cycles of 95◦C – 30 s, 30◦C – 30 s, 72◦C – 1.5 min,
and then 30 cycles of 95◦C – 30 s, 45◦C – 30 s, 72◦C – 2 min,
with a final elongation at 72◦C for 4 min. Five microliter of
this PCR product was used as DNA template in a second PCR
mixture containing 25 µl Taq 2X Master Mix (New England
BioLabs), 2.5 µl each of primer Kanr-4 and Arb2 (10 µM each)
and 15 µl dH2O and subjected to the following program: initial
denaturation 95◦C – 5 min, then 30 cylcles of 95◦C – 30 s, 52◦C –
30 s, 72◦C – 2 min, followed by 72◦C – 4 min. The PCR products
were purified using a Qiagen PCR cleanup kit and 15 µl of each
reaction was sequenced with primer Kanr-4.

Estimation of the Mutant Library
Coverage
The completeness of a transposon insertion mutant library can be
predicted by assuming a Poisson distribution for the frequency
of the transposon insertions in the genome (Baym et al., 2016).
Essential genes will not be represented in the library, and are
excluded from the calculations. Assuming a genome with N
non-essential genes, all with an equal probability of insertion,
any single gene will be targeted by the transposase with a
probability of:

P(x, k,N) = e−k/N
( k

N

)x( 1
x!

)
Where x represents the number of insertions in the gene

and k the number of mutants in the collection. From this, the
probability of no insertion in any given gene is:

P(0, k,N) = e−k/N

Meaning that the total number of genes that will not have any
insertions is:

nno insertions = Ne−k/N

By complementarity, the total number of genes that will have
at least one transposon insertion is:

ninsertions = N(1− e−k/N)

To estimate the number of essential genes, we referred to
the empirically determined relationship of Gao et al. (2015).
According to this, the percentage of essential genes y in a
bacterium decays exponentially in relation to the length x of the
genome following the equation:

y = 144e−x/719649
+ 12

The information on the size of the genome and the number
of genes for the analyzed bacteria was derived from the
KEGG database1.

1http://www.genome.jp/kegg/kegg2.html
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RESULTS

Plasmid Design
The aim of this work was to design and test a suicide plasmid
for the delivery of ISY100 mini-transposon insertions to
the genomes of a variety of bacterial species. The suicide
plasmid (pISY100mini; Figure 1A) contains a mini transposon
(mini-ISY100), consisting of the Tn5 aminoglycoside

phosphotransferase gene (KanR) between ISY100 inverted repeat
sequences (IRL and IRR), and has an R6K γ origin of replication.
Replication of pISY100mini is strictly dependent on the R6K
pir-encoded 5 protein, which is not encoded on the plasmid
but can be provided in trans allowing replication in pir+ host
strains. ISY100 transposase is encoded on pISY100mini outside
the mini-ISY100 transposon. After introducing pISY100mini
into a pir− recipient strain, the plasmid cannot replicate, and

FIGURE 1 | Mini-ISY100 delivery system. (A) Map of the pISY100mini suicide vector, including the R6K γ origin of replication (purple), the origin of transfer oriT (light
blue), the chloramphenicol resistance gene (yellow), the ISY100 transposase gene (blue), the ISY100 inverted repeat sequences IRL and IRR (dark orange) and the
kanamycin resistance gene (green). (B) mini-ISY100 inserted in the host chromosome. The primers used in the arbitrary PCR to identify the mini-ISY100 transposon
insertion site in the chromosomal DNA (light gray) are represented in orange (KanR_3 and Arb1, first amplification step) or yellow (KanR_4 and Arb2, second
amplification step).
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kanamycin resistant colonies will arise only if the mini-ISY100
transposes to the chromosome. Insertions should be stable as
the transposase gene is left behind on the non-replicating donor
plasmid. pISY100mini carries a gene conferring resistance to
chloramphenicol (CmR) outside the mini-ISY100 so that colonies
arising from transposition should be kanamycin resistant but
chloramphenicol sensitive.

The suicide plasmid could be delivered to recipient cells by
transformation, however, conjugation might be a more efficient
delivery system. An IncP origin of transfer (oriT) was therefore
included on the pISY100mini backbone to allow mobilization of
pISY100mini using the RP4 conjugative machinery.

Transposition in E. coli
To test the function and the efficiency of our mini-ISY100
delivery system, transposition was assayed in two commonly used
(pir−) strains of E. coli: DH5α and TOP10. The pISY100mini
suicide plasmid was introduced into these strains using a simple
chemical transformation protocol. No colonies were obtained
when samples were spread on plates containing chloramphenicol,
confirming that the suicide plasmid cannot replicate in these
host strains. The number of cells in which transposition had
taken place was determined by counting the number of colonies
on LB plates containing kanamycin. This number ranged from
an average of 18 per transformation for DH5α, to about 120
for TOP10 (Table 2). The total number of cells surviving
the transposition procedure was determined by plating on
non-selective plates, and the transposition frequency was then
calculated by dividing the number of kanamycin resistant
colonies by the total number of colony forming units (Table 2).
The results show that approximately 1 in 800,000 (DH5α)
to 1 in 280,000 (TOP10) cells in the transformation undergo
transposition onto their chromosome.

Production of a transposon insertion by transformation with
pISY100mini requires two successful steps: delivery of DNA into
the cell, followed by transposition from the suicide plasmid
to the host genome. To separate these two different events,
we defined the transposition “activity” (Table 2) as the ratio
between the transposition frequency of pISY100mini, depending
on both transposition and DNA uptake, and the transformation
frequency of the cells which depends just on delivery of the DNA.
The transformation efficiency cannot be measured in DH5α and

TOP10 using pISY100mini, as this plasmid cannot replicate in
these cells. Instead, the efficiency of DNA delivery by chemical
transformation was measured for each batch of competent cells,
using the plasmid pUC71K (Taylor and Rose, 1988). This plasmid
is comparable in size to pISY100mini and carries the same KanR

gene, but can be maintained in a pir− host due to its pMB1/ColE1
origin of replication. The results indicate that after chemical
transformation, in the order of 1 in 1000 cells takes up plasmid
DNA, and of these about 1 in 1000 has a transposition event to
the chromosome (Table 2).

To increase the transformation frequency, electroporation
was then tested to deliver pISY100mini for transposition.
In these experiments, the transformation frequency increased,
but the transposition activity decreased, so that the overall
transposition frequency was similar to that obtained with
chemical transformation (Table 2). Because of the large number
of cells used in the electroporation reactions, significantly more
transposition events were obtained by electroporation than by
chemical transformation; ∼2000 colonies were obtained by
electroporation with both DH5α and TOP10 (Table 2). Thus,
a library large enough to have nearly full coverage of all
non-essential genes in E. coli (requiring ∼12,000 insertions
mutants) could be produced by combining colonies from several
electroporation reactions.

Conjugation is a highly efficient method of delivering plasmid
DNA to bacterial cells, so we tested it as an alternative delivery
method for pISY100mini. The suicide plasmid pISY100mini
was introduced into E. coli MFDpir (Ferrières et al., 2010) by
chemical transformation. This strain expresses the pir gene for
replication of pISY100mini and the RP4 conjugative proteins,
allowing mobilization of pISY100mini. MFDpir also contains a
mutation in the dapA gene, allowing easy counterselection after
conjugation using media lacking diaminopimelic acid (DAP).

A plate-based mating reaction was set up between the MFDpir
pISY100mini donor strain and the two different recipient strains,
DH5α and TOP10, as described in the Materials and Methods
section. After 8 h of co-incubation of donor and recipient
strains on LB DAP plates, cells were washed off and dilutions
were plated on different media. No colonies were obtained on
LB Cm plates, confirming that pISY100mini cannot replicate
in the recipients, and that there is no reversion of the dapA
mutation in the donor. LB plates lacking DAP were used to

TABLE 2 | Delivery of the mini-ISY100 transposon in E. coli via chemical transformation and electroporation.

pISY100mini pUC71K (control)

Strain KanR colonies/reactiona Transposition frequencyb Transformation frequencyb Mini-ISY100 activityc

Chemical transformation

DH5α 17.5 ± 3.54 1.29 × 10−6
± 2.95 × 10−7 1.40 × 10−3

± 2.71 × 10−4 9.21 × 10−4
± 2.76 × 10−4

TOP10 117 ± 28.9 3.57 × 10−6
± 9.47 × 10−7 7.32 × 10−3

± 7.43 × 10−4 4.88 × 10−4
± 1.39 × 10−4

Electroporation

DH5α 1730 ± 297 3.95 × 10−6
± 1.28 × 10−6 5.49 × 10−2

± 6.45 × 10−3 7.19 × 10−5
± 2.50 × 10−5

TOP10 2280 ± 254 1.10 × 10−5
± 2.14 × 10−6 7.03 × 10−2

± 1.72 × 10−2 1.56 × 10−4
± 4.89 × 10−5

aNumber of KanR colonies obtained from a single reaction. bNumber of colonies on LB/Kan divided by the number of colonies on LB. cTransposition frequency divided
by transformation frequency.
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count the total number of recipient cells, while LB lacking DAP
but containing kanamycin was used to select for transposition
events in DH5α or TOP10. Libraries of 105 transposon insertion
mutants were routinely obtained from each conjugation reaction
(Table 3), although it should be noted that due to the
extended incubation times during the conjugation, these colonies
probably do not all represent independent transposition events.
The transposition frequency after conjugation, ∼10−2–10−3,
calculated as the proportion of recipient cells that became
kanamycin resistant, was significantly higher than obtained by
transformation,∼10−5–10−6 (compare Tables 2, 3).

The conjugation frequency of pISY100mini from MFDpir
was measured by mating MFDpir/pISY100mini with the pir+
E. coli strain π3, allowing replication of pISY100mini in the
recipient. Cells were plated on LB, to count the total number of
recipient cells, and LB/Kan+Cm, to determine the number of
transconjugants, giving a conjugation frequency of ∼4 × 10−2.
The transposition activity of the mini-ISY100 transposon after
conjugation in the E. coli pir− strains was then estimated
by dividing the transposition frequency by the conjugation
frequency of pISY100mini from MFDpir to π3 (Table 3).
These calculations indicate that a substantial proportion of
cells that receive pISY100mini by conjugation (as high as 40%
for DH5α) undergo transposition from pISY100mini to the
host chromosome.

Creation of Knock-Out Libraries in γ

Proteobacteria
To show that pISY100mini can be used to create transposon
insertion libraries in other bacterial species, we tested
transposition in S. oneidensis, P. ananatis, and P. fluorescens.
These species have all shown biotechnological potential
(Fredrickson et al., 2008; Silby et al., 2009; Hara et al., 2012), and
are representatives of three different orders of γ proteobacteria.
Our first attempts to deliver pISY100mini in these species using
chemical transformation and electroporation were unsuccessful,
producing no KanR colonies. Therefore, we attempted to
deliver pISY100mini by inter-species conjugation, using E. coli
MFDpir/pISY100mini as donor. Conjugation was conducted on
LB DAP plates by mixing donor and recipient strains as described
in the Materials and Methods section, and leaving them to
incubate at 30◦C for 8–16 h. No colonies were obtained when
the conjugations were plated on LB Cm plates, demonstrating
that pISY100mini cannot replicate in any of these species, and
controls with individual parental strains produced no colonies
on LB Kan plates. Conjugation between MFDpir/pISY100mini
and the different recipient species yielded from 103 to 105 KanR

colonies, depending on the recipient species. Transposition
frequencies (the fraction of recipient cells that had become KanR)
were in the order of 10−6 for P. fluorescens, 10−5 for P. ananatis
and 10−4 for S. oneidensis (Table 4).

To confirm that the observed KanR colonies were due to
mini-ISY100 transposon insertions in the recipient host genome,
arbitrary PCR was used to amplify the DNA flanking transposon
insertion sites (Das et al., 2005). Five KanR colonies produced
by conjugation of MFDpir/pISY100mini with each species were
randomly selected and subjected to colony PCR using a forward
primer specific for the kanamycin resistance gene and a reverse
“arbitrary” primer containing a 10 bp random sequence at its 3′
end. The products of this reaction were further amplified by PCR
using a nested primer from the kanamycin resistance gene and
a reverse primer matching a fixed region from the 5′end of the
degenerate primer (Figure 1B). PCR products were sequenced
by dideoxy sequencing using a primer from the kanamycin
resistance gene, allowing unique determination of the mini-
ISY100 transposon insertion site (Supplementary Table S1). All
the transposon insertions could be identified in the genomic
sequence of the target organism and were at TA dinucleotides,
as expected for ISY100.

To create a useful insertional knock-out library in the species
studied, the library should be large enough for nearly full
coverage of the genome. A practical target to aim for is for
>95% of non-essential genes to have at least one insertion.
From the Poisson distribution (see the Materials and Methods
section), this requires approximately 3N insertions, where N is
the number of non-essential genes in the genome. The number
of non-essential genes has been determined for S. oneidensis
as Noneidensis∼=3700 genes (Baym et al., 2016), and can be
estimated from the annotated genome sequences of P. ananatis
(Hara et al., 2012) and P. fluorescens (Silby et al., 2009).
P. ananatis has a genome of 4.88 Mbp, with 4067 protein-
coding genes, while P. fluorescens has a genome of 6.72 Mbp,
with 5921 protein-coding genes. Based on their genome sizes,

TABLE 4 | mini-ISY100 transposition frequency in different species.

Recipient
strain

KanR colonies/reactiona Transposition frequencyb

S. oneidensis 1.94 × 105
± 2.38 × 104 2.48 × 10−4

± 1.42 × 10−4

P. ananatis 2.18 × 104
± 1.87 × 103 1.04 × 10−5

± 1.4 × 10−6

P. fluorescens 7.04 × 103
± 3.80 × 102 1.80 × 10−6

± 6.14 × 10−7

aTotal number of KanR colonies obtained from a single plate mating between
MFDpir and the indicated recipient bacteria, calculated from plating appropriate
dilutions. bNumber of colonies on LB/Kan divided by the number of colonies on LB.

TABLE 3 | mini-ISY100 transposon activity in E. coli after conjugation.

Strain KanR colonies/reactiona Transposition frequencyb Mini-ISY100 activityc

DH5α 1.05 × 105
± 2.12 × 104 1.54 × 10−2

± 8.25 × 10−3 4.20 × 10−1
± 3.70 × 10−1

TOP10 3.50 × 105
± 1.71 × 105 1.75 × 10−3

± 9.71 × 10−4 4.78 × 10−2
± 4.26 × 10−2

aNumber of KanR colonies obtained from a single reaction. bNumber of colonies on LB/Kan divided by the number of colonies on LB. cTransposition frequency divided
by frequency of conjugation using E. coli π3 as recipient (3.66 × 10−2

± 2.55 × 10−2).
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FIGURE 2 | Genetic screen for genes involved in S. oneidensis colony color.
A mini-ISY100 insertion library was generated and plated on LB/Kan to screen
for mutants that had lost the red-brown coloration. (A) Close-up of kanamycin
resistant S. oneidensis colonies obtained after conjugation with
MFDpir/pISY100mini. Heterogeneity in colony size might be due to fitness
differences caused by transposon insertions. Alternatively, small colonies
might reflect late (post-plating) transposition events. A mutant with pale colony
color is circled in red. (B) Pellets obtained after centrifuging 2.8 ml LB liquid
cultures (30◦C, overnight) showing the difference in color between the
wild-type S. oneidensis (left) and a pale mutant (right).

about 12% of these genes are expected to be essential (Gao
et al., 2015) resulting in Nananatis∼=3600 and Nfluorescens∼=5200.
Thus, libraries ranging from 12,000 to 16,000 mutants are
required for 95% genomic coverage of S. oneidensis, P. ananatis
and P. fluorescens. Therefore, the numbers of mini-ISY100
transposition events obtained with our delivery system are
sufficient to create knock-out libraries with 95% coverage in
S. oneidensis and P. ananatis in a single experiment, while
two independent conjugation reactions of this scale would be
required for P. fluorescens (Table 4).

Identification of Genes Involved in
Colony Color in Shewanella oneidensis
Having proved the efficiency of transposition using pISY100mini,
we wished to demonstrate the utility of ISY100 for genetic
screens. S. oneidensis produces colonies with a pale brown
coloration on LB agar plates and we decided to screen
for mutations in genes required for this colony color.
A library of S. oneidensis mutants was created by mating
MFDpir/pISY100mini with S. oneidensis and selecting on LB
Kan plates. From a library of approximately 12,000 mutants,
four white colonies were identified (Figure 2) and streaked to
single colonies. Arbitrary PCR was used to amplify the DNA
flanking the mini-ISY100 insertions in these mutants, and the
insertion site was determined by DNA sequencing. Three of the
mutants had insertions in the ccmF gene of S. oneidensis, at three
different locations within this gene, while the fourth colony had
an insertion in the dsbD gene (Table 5). The product of ccmF,
a cytochrome c maturation protein, has a role in the reduction
of heme for its transfer to the apocytochrome c (Verissimo and
Daldal, 2014). The dsbD gene encodes a membrane protein
belonging to the thioredoxin family, whose function in bacteria
is to maintain apocytochrome c in a reduced form by acting
on the assembly protein CcmG (Verissimo and Daldal, 2014).
Both of these proteins are therefore involved in the biogenesis
and maturation of cytochrome c, indicating that a defect in
this pathway might underlie the observed pale colony color
phenotype. Indeed, a pale colony phenotype has previously been
observed for mutants in ccmF in S. oneidensis (Fu et al., 2015).
A causal relationship between the mini-ISY100 insertion in dsbD

TABLE 5 | Genome insertion sites of the mini-ISY100 in S. oneidensis pale colored colonies.

Mutant ID Sequencea Locus tag Gene product Genome
insertion site

Shewanella oneidensis – NCBI: NC_004347.2

So_pale-1 (mini-ISY100)TACTAATCGGA
TCGCC (plus/minus)

SO_0266 Cytochrome c-type biogenesis
protein CcmF

267,474

So_ pale-2 (mini-ISY100)TAAATGAAGCG
TTTTC (plus/minus)

SO_0266 Cytochrome c-type biogenesis
protein CcmF

266,418

So_ pale-3 (mini-ISY100)TAATACGCCCA
CCAAG (plus/minus)

SO_0266 Cytochrome c-type biogenesis
protein CcmF

266,362

So_ pale-4 (mini-ISY100)TATGGGCATGG
GCGTG (plus/minus)

SO_0696 Protein-disulfide reductase
DsbD

714,906

aThe orientation of the transposon relative to the genomic sequence is indicated in brackets (plus/plus indicates that the coding strand of the kanR gene is in the same
orientation as the reported genome sequence; plus/minus indicates they are in opposite directions).
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and pale colony color should be confirmed by complementation
and/or gene knockout experiments.

Delivery of a Genetic Cargo
Next, we investigated the use of mini-ISY100 to deliver a genetic
cargo to the genomes of different bacterial species. The sequence
of pISY100mini was modified so that it could be used to deliver

a chromosomal “landing pad” for 8C31 integrase-mediated
cassette exchange (Fogg et al., 2014). 8C31 integrase catalyzes
efficient unidirectional recombination between short DNA sites
knows as attP and attB (Thorpe and Smith, 1998). A 8C31
attB site with a TT central dinucleotide (attBTT) together
with the rpsL streptomycin sensitivity gene from E. coli was
placed at one end of the mini-ISY100 just inside the left

FIGURE 3 | Delivery of a chromosomal “landing pad.” (A) Map of the pISY100mini-LP vector, designed to deliver a “landing pad” for 8C31 integrase-mediated
cassette exchange. The same color scheme as in Figure 1 was used for the plasmid backbone. Two 8C31 attB sites (light-brown) and the rpsL gene (E. coli 30S
ribosomal subunit protein S12 – light-orange) conferring streptomycin sensitivity to an otherwise streptomycin resistant E. coli rpsL mutant strain, were added in the
mini-ISY100 transposon sequence. (B) Mini-ISY100-LP integrated on the chromosome and genetic cassette exchange attB/attP recombination. The two attB sites
inserted in the landing pad can be used to integrate a gene cassette (dark gray) flanked by two attP sites (pink) via 8C31 integrase-mediated recombination.
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TABLE 6 | mini-ISY100-LP transposition frequency in different species.

Strain KanR

colonies/reactiona
Transposition frequencyb

Escherichia coli MG1655 4.2 × 104 4.1 × 10−5
± 9.20 × 10−6

Acinetobacter baumannii 8.75 × 102 1.2 × 10−6
± 6.4 × 10−8

Acinetobacter baylyi 1.4 × 105 9.8 × 10−5
± 3. 0 × 10−5

Pseudomonas aeruginosa 1.05 × 106 1.5 × 10−3

aTotal number of KanR colonies obtained from a single plate mating between
MFDpir and the indicated recipient bacteria, calculated from plating appropriate
dilutions. bNumber of colonies on LB/Kan divided by the number of colonies on LB.

inverted repeat, and attB with a TC central dinucleotide
(attBTC) was placed at the other end, just inside IRR, creating
pISY100mini-LP (Figure 3A). These changes add 684 bp to
mini-ISY100, bringing the total size of the genetic cargo
carried by mini-ISY100-LP to 1,679 bp. pISY100mini-LP can be
delivered by conjugation as before, and transposon insertions
can be selected using the kanamycin resistance gene. Once
on the chromosome of a bacterial host, a genetic cassette
flanked by attPTT and attPTC recombination sites could be
integrated into the landing pad using 8C31 integrase-mediated
recombination (Figure 3B; S. D. Colloms, unpublished results).
This cassette exchange could be selected for by loss of
the rpsL (Reyrat et al., 1998) or gain of a marker carried
on the cassette.

The ability of this larger landing pad ISY100 to transpose was
tested in the following bacteria: E. coli MG1655, A. baumannii
ATCC19606, A. baylyi ADP1 and P. aeruginosa PAO1. MG1655
was used as a wild-type E. coli control. P. aeruginosa
and A. baumannii are human pathogens of high clinical
importance – both are listed within the top three species where
urgent need for additional research is required (World Health

Organization, 2017). A. baylyi is a genetically tractable relative
of A. baumannii. New genetic tools that work in these species
could help identify genes required for their virulence and/or
new drug targets.

MFDpir/pISY100mini-LP was used as a donor for
conjugation. Conjugations were plated on LB to count
recipient cells, LB Cm to verify that the donor plasmid
cannot replicate in the recipient strains, and LB Kan
to determine the number of transposition events. No
colonies were obtained on LB Cm plates, whereas
hundreds (A. baumannii) to over a million (P. aeruginosa)
kanamycin resistant colonies were obtained from the
conjugations (Table 6). Using arbitrary PCR and DNA
sequencing, the locations of transposon insertions
were determined in three random kanamycin resistant
colonies for each species. Insertions were in apparently
random TA dinucleotides in the genomes of all species
(Supplementary Table S2).

DISCUSSION

The use of transposons as tools for genetic engineering has
recently undergone a large expansion. Here we describe
the design and application of a new mini transposon
insertion mutagenesis tool based on the ISY100 (ISTcSA)
transposon from Synechocystis sp. PCC6803. In comparison
with other members of the same mariner family, the
advantages of the ISTcSA transposase are its small size
(only 282 amino acids) and the possibility to be modified
to specifically target precise sequences without a loss of
functionality (Feng et al., 2010).

Like other members of the Tc1/mariner family, including
Sleeping Beauty and Himar1, ISY100 inserts almost exclusively

FIGURE 4 | ISY100 target site preference. The sequences of 21 ISY100 insertions in the Synechocystis PCC6803 genome, three in large Synechocystis plasmids,
19 insertions isolated in plasmid targets in E. coli, and 58 different insertion sites generated by in vivo and in vitro transposition into the target plasmid pH2 were
previously analyzed (Feng et al., 2010). The 28 insertions isolated in this work were added to this alignment and analyzed for conserved sequence features.
(A) WebLogo (Crooks et al., 2004) showing sequence information content 14 nucleotides on either side of the target TA. (B) Base frequencies 5 nucleotides on
either side of the target TA.

Frontiers in Microbiology | www.frontiersin.org 9 February 2019 | Volume 10 | Article 280

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00280 February 25, 2019 Time: 16:18 # 10

Conte et al. Mini-ISY100 Transposon Delivery System

into TA dinucleotides. To see if there is any target site
preference outside this TA, the sequences of 101 previously
reported insertions sites (Feng et al., 2010) were combined
with the 28 new insertion sites reported in this study
(Figure 4). Analysis of these sequences suggests that there
is a slight preference for insertion sites that are A/T-rich in
the three nucleotides on either side of the TA target. This
specificity differs from other transposases commonly used in
prokaryotes, such as Mu {5′ CPy (G/C)PuG} or Tn5 {5′
GPyPyPy(A/T)PuPuPuC} (Green et al., 2012), but might be
similar to other mariner transposons such as Sleeping Beauty (5′
ATATATAT) (Liu et al., 2005) and Himar1, where no consensus
target sequence has been detected but sites with the sequence
(C/G)GNTANC(C/G) have been found to be non-permissive for
insertion (DeJesus et al., 2017).

The frequency of the mini-ISY100 transposition was shown
to be affected by the method used to deliver the pISY100mini
suicide plasmid to recipient cells. Conjugation was found to
result in the most efficient transposition for all species tested
and is thus our method of choice, as previously shown for
other transposons (Christie-Oleza et al., 2009). Conjugation
also represents the best technique to overcome the barriers
to genetic exchange between different species, expanding the
adaptability of our pISY100mini vector delivery system. Using
the conjugation delivery system, we were able to obtain large
libraries of knock-out mutants in seven different species of γ

proteobacteria, belonging to four different orders. These results
show the lack of requirement of any specific co-factor for
the transposition of the mini-ISY100 transposon and open the
possibility of a successful application of the delivery system
in other species.

We applied our protocol to create and characterize a mini-
ISY100 knock-out library in S. oneidensis, screening the mutants
for loss of colony color. The analysis of the mini-ISY100 insertion
sites in the chromosome of the pale colored S. oneidensis colonies
led to the putative identification of two genes involved in this
phenotype, ccmF and dsbD. While mutations in ccmF were
previously associated with the appearance of pale colonies on LB
media (Fu et al., 2015), this is the first time such a phenotype
is reported for a mutation in dsbD, proving the utility of our
system. The fact that four, rare, pale colored colonies from a
library of ∼12,000 mutants all had different insertion sites, is

convincing evidence that a large proportion of colonies in this
S. oneidensis library were not siblings but came from independent
insertion events.

We also created a modified version of the mini-ISY100
transposon, named mini-ISY100-LP, designed to deliver a landing
pad in a random location of the host chromosome to allow the
insertion of genetic cassettes mediated by the integrase from
bacteriophage 8C31. While the transposition frequency of the
mini-ISY100-LP transposon in E. coli is reduced in comparison
with the mini-ISY100 transposon, probably due to the presence
of a larger genetic cargo, the efficiency of the system still yields
large libraries of transposon insertions in all four species tested.
We have yet to determine if there is an upper limit to the size of
the genetic cargo.

The addition of ISY100 to our microbial genetic tool box
complements existing transposon delivery systems and might
facilitate development of new technologies that could for instance
require orthogonal transposons, or different sequences in the
inverted repeats. The high efficiency and the flexibility of
pISY100mini should make it a valuable tool for genetic studies
in a broad range of bacterial species.
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