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Fungi and bacteria are the main terrestrial decomposers as they act in virtually all ecological
niches (Ivarsson et al., 2016). Fungi are also widely used in human activities in the production of
beverages, food, and high-value biotechnological molecules such as enzymes, pigments, vitamins,
and antibiotics (Polizeli et al., 2005; Narsing Rao et al., 2017). Beyond that, fungi are model
organisms for basic and applied research from genetics to ecology (dos Santos Castro et al., 2016;
Peay et al., 2016). However, they can also be a threat as many of them are pathogens of plants,
invertebrates, humans, and other vertebrates (Arvanitis et al., 2013; Hohl, 2014; Peay et al., 2016).
Undoubtedly, rapid and accurate identification of fungi is fundamentally important.

Megadiverse countries, such as Brazil (Mittermeier et al., 2005), have underutilized biological
resources embedded in a microbial diversity that is poorly studied (Pylro et al., 2014). This diversity
has immeasurable societal value (Bodelier, 2011), but the paucity of taxonomic knowledge on
microbial species hinders bioprospection projects (Paterson and Lima, 2017), ultimately affecting
biotechnology, conservation ecology, medicine, and public health (Hawksworth, 1991). The
scarcity of specialized microbial culture collections, particularly in hot spot areas (Lourenço and
Vieira, 2004), makes microbial surveys a daunting, but necessary task.

Culture collections identify, catalog, store, and supply microorganisms to end users (Simões
et al., 2016). Through those activities, they train scientists and shape the development of
microbial taxonomy. Historically, fungal taxonomy and identification have been based mainly on
morphological traits (Guarro et al., 1999). However, morphology proved to be insufficient given
intraspecific variation and interspecific similarities (Geiser et al., 2007). A polyphasic approach
using as many traits as possible seemed to be the best alternative, as the combination of diverse
characters could provide a better representation of similarities and robust identifications (Samson
and Varga, 2009). Biochemical and physiological characters, such as secondary metabolites and
growth profiles, were used, followed by molecular data from multiple housekeeping genes, such
as ITS, calmodulin, and beta-tubulin (Frisvad et al., 2007). In the new era of spectral techniques
in microbial identification using the matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF MS), mycologists have added spectral data to their polyphasic
approach (Lima and Santos, 2017). MALDI-TOF MS proved to be a suitable method to identify
fungi as it generates species-specific spectral data of large organic molecules, such as proteins
(Santos et al., 2010). Santos et al. (2017) and Lima and Santos (2017) have described MALDI-
TOF MS’ basic principles that can be summarized as follows: the fungal sample is covered with
an organic matrix, which functions as an energy mediator, and then subjected to a pulsed laser.
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When the laser shuts the sample, the matrix mixture generates
a gas-phase ions plume.The ions will fly separately according to
their ionic mass and eventually they will reach the detector.

Rapidly, MALDI-TOF MS revolutionized clinical
microbiology and streamlined the polyphasic approach as
being accurate, rapid, and cost-effective. The technique has
been successfully applied in the identification of filamentous
fungi (Santos et al., 2010), yeasts (Lima-Neto et al., 2014),
bacteria (Rodrigues et al., 2014), and viruses (Calderaro et al.,
2014). Yet, MALDI-TOF MS has limited capacity in identifying
closely related fungal taxa, such as the dimorphic fungi with
mycelial-to-yeast phase transitions or highly encapsulated yeasts
(Lima and Santos, 2017). Another drawback is the quality and
the extension of spectra from microbial taxa that each database
delivers (Santos et al., 2017).

FUNGAL COMMUNITY ECOLOGY USING

MALDI-TOF MS REQUIRES

COLLABORATIVE EFFORTS TOWARD

CURATED MASS SPECTRAL DATABASES

Traditional polyphasic identifications may not always be
appropriate for strictly clinical settings, because they are
time-consuming and onerous. Taking a long time to identify
a pathogen can ultimately cost the life of patients (Brown
et al., 2012). That is why rapid and accurate methods such
as MALDI-TOF MS (Alanio et al., 2011) or sequence-based
analyses (Balajee et al., 2009) are attractive. Conversely,
microbial surveys in ecological studies should aim to identify
and characterize microorganisms in a more complete
manner (Hanemaaijer et al., 2015). A polyphasic approach
is therefore suitable, as it not only reduces misidentifications,
but it also gives a more holistic picture of the organisms
sampled (Samson and Varga, 2009).

MALDI-TOF MS has potential use in microbial ecology
studies (Santos et al., 2016) given adequate data handling. The
main obstacle is the lack of reference databases for non-medical
strains (Rahi et al., 2016). Every single study on MALDI-
TOF MS species identification points to the importance of
reference databases, as sample preparation methods, matrix
components, and even type of material analyzed (either whole
cell or supernatant) may influence the quality and accuracy
of spectra (Santos et al., 2017). Accordingly, databases need
standardization for as many microbial groups as possible.

As different taxa can demand different protocols, generating
new reference spectra should be a cooperative work among
different laboratories to generate standardized (and comparable)
public databases (Sauget et al., 2017). Other public databases,
such as the National Center for Biotechnology Information–
Sequence Read Archive (NCBI-SRA), can provide excellent
material for comparative studies (Sanitá Lima and Smith,
2017a,b), because they are teeming with high quality genomic
and transcriptomic data (Smith and Sanitá Lima, 2016). Hitherto,
gene and protein databases are also crammed with poorly
annotated sequences and datasets (Sanitá Lima and Smith,

2017c), so their spectral counterpart should avoid running into
the same problem.

CHALLENGES OF STUDYING

EUKARYOTIC MICROBIAL COMMUNITIES

Characterizing and identifying the constituents of microbial
assemblages unravel surprising ways microorganisms affect
ecosystems and human activities (Peay et al., 2016). For
instance, belowground microbial decomposer communities
respond to ecosystem engineers in Boreal peatland (Palozzi
and Lindo, 2017a) suggesting local adaptation to plant litter
nutrients (Palozzi and Lindo, 2017b). Microbial co-cultures also
produce synergistic enzymatic mixtures widely used in industrial
fermentative processes (Lima et al., 2016). Yet, the diversity
of microbial communities is mostly unknown, particularly
in megadiverse countries (Scheffers et al., 2012). The “meta-
omics” approach, namely metagenomics, metatranscriptomics,
metaproteomics, and metabolomics, changed our understanding
of microbial communities (Jansson and Baker, 2016), mainly
for prokaryotes. Eukaryotic microorganisms impose greater
challenges to community-level studies because their genomes do
not robustly predict their ecological roles as in bacteria (Keeling
and del Campo, 2017). Traditional transcriptomics and the more
recent approach of single-cell genomics/transcriptomics can aid
in the characterization of eukaryotic microbial communities
(Kolisko et al., 2014), but better understanding the ecology
of eukaryotic microbes will only be possible if organisms are
isolated, cultured, and studied at the cellular level (Keeling and
del Campo, 2017). Reiterative pipelines of phylogenomics and
sub-culturing studies can then help to disentangle microbial
communities (Cibrián-Jaramillo and Barona-Gómez, 2016)
facilitating their final identification through MALDI-TOF MS,
for instance.

Estimates on the number of fungi species vary considerably
and even as many as 1.5 million species seems to be a
conservative number (Hawksworth and Lücking, 2017). Fungi
are everywhere, from the bottom of the oceans (Richards et al.,
2012) to the alpine glaciers (Brunner et al., 2011). Identifying
these fungal communities will then shape our understanding
of evolution, ecosystems services, and biogeochemical cycles
as well as influence human progress (Hawksworth, 2009).
Given the dimension of fungi diversity, the demand for skilled
personnel is high (Hibbett and Taylor, 2013). Indeed, the
deluge of genomic and transcriptomic data from all sorts of
organisms, requires traditional taxonomists like never before
and calls back the old-school naturalist approach to Biology
(Keeling and del Campo, 2017). Culture collections together
with their broader counterpart, microbial Biological Resource
Centers (mBRCs), will play fundamental roles in this process,
as they are hubs for taxonomic training and long-term
preservation of microorganisms. Standardized identification
methods and catalogs of microbial strains (Stackebrandt and
Smith, 2018) will assist microbial ecology, whereas MALDI-
TOF MS has the potential to become a unifying method
of identification. However, integration among laboratories
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to standardize protocols and to improve databases is the
main bottleneck.
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