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Enzymatic degumming is an effective approach to produce nutritional, safe, and
healthy refined oil. However, the high cost and low efficiency of phospholipase limit
the application of enzymatic degumming. In this study, an 879 bp outer membrane
phospholipase A (A1) (OM-PLA1) gene encoding 292 amino acid residues was isolated
from the genome of Serratia marcescens. The recombinant OM-PLA1 profile of
appropriately 33 KDa was expressed by the engineered Pichia pastoris GS115. The
OM-PLA1 activity was 21.2 U/mL with the induction of 1 mM methanol for 72 h.
The expression efficiencies of OM-PLA1 were 0.29 U/mL/h and 1.06 U/mL/OD600.
A complex of magnetic graphene oxide (MGO) and OM-PLA1 (MGO-OM-PLA1) was
prepared by immobilizing OM-PLA1 with graphene oxide-based Fe3O4 nanoparticles by
cross-linking with glutaraldehyde. The content of phosphorus decreased to 5.1 mg/kg
rapeseed oil from 55.6 mg/kg rapeseed oil with 0.02% MGO-OM-PLA1 (w/w) at 50◦C
for 4 h. MGO-OM-PLA1 retained 51.7% of the initial activity after 13 times of continuous
recycling for the enzymatic degumming of rapeseed oil. This study provided an effective
approach for the enzymatic degumming of crude vegetable oil by developing a novel
phospholipase and improving the degumming technology.

Keywords: phospholipase, enzymatic degumming, immobilization, graphene oxide, magnetic nanoparticle, Pichia
pastoris

INTRODUCTION

High-quality edible oils should meet the requirements of good stability, long shelf life,
bland odor and taste, good nutritional quality, abundant vitamins, and no contaminants
(Nykter et al., 2006; Goyal et al., 2014). Most types of crude vegetable oils extracted using
traditional pressing or extraction technology contain colloidal substances, mainly phospholipids
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(Gofferje et al., 2014). Phospholipids are usually combined
with impurities, such as proteins, mucus, and trace metals,
in crude vegetable oils (Elena et al., 2016). These colloidal
substances directly reduce the quality of oils and affect
subsequent refining processes (Elena et al., 2017). Water
degumming removes 88.5% and retains 51.1 ppm of phosphorus
in oil (Zufarov et al., 2009). The residual phosphorus in
hydrated oil could be removed by using acid and enzymatic
degumming approaches. Enzymatic oil degumming was
industrially proven and well accepted for its advantages
of energy saving and environmental protection compared
with acid degumming (Sampaio et al., 2015). However, the
current high cost of phospholipase increases the production
cost of oil and limits the wide application of enzymatic
degumming. In addition, the residual phospholipase cannot
be recovered and reused and still remain in the oil by free
phospholipase degumming. Therefore, the preparation of
high-quality phospholipase and its reuse by immobilization
determine the application degree of enzymatic degumming
(Sampaio et al., 2015).

Outer-membrane phospholipase A (A1) (OM-PLA1)
is an enzyme present in the outer membrane of Gram-
negative bacteria (Dekker, 2000). OM-PLA1 hydrolyzes the
acylester bonds in phospholipids and lysophospholipids.
OM-PLA1 possesses a more conserved and specific
determinant in the lipid headgroup compared with other
phospholipases (Martin et al., 2000). In the glyceryl
complexes, OM-PLA1 has high tolerance to the headgroups
of triglyceride, phosphatidylglycerol, phosphatidylcholine,
and phosphatidylethanolamine (Stanley et al., 2007). In
addition, crude vegetable oils widely contain the glyceryl
complexes of glycerophosphate, glycerophosphatidyl choline,
and glycerophosphatidyl ethanolamine (Sampaio et al., 2015).
OM-PLA1 is an effective alternative for the degumming of
crude plant oil (Manjula et al., 2010). Therefore, in this study,
a novel OM-PLA1 from S. marcescens was applied to crude
rapeseed oil degumming.

The protein loading of magnetic graphene oxide (MGO)
is much higher than that of granular activated carbon,
diatomite and powdered activated carbon (Deng et al.,
2013). Graphene oxide is an important derivative of
graphene. The surface of graphene oxide has many oxygen-
containing functional groups (hydroxyl, epoxy, carboxyl,
carbonyl) and can be loaded with metal or metal oxides
(Deng et al., 2008). The surface of graphene oxide Fe3O4
nanocomposite is adhering to magnetic nanoiron with
superparamagnetism, which makes it have good magnetic
separation characteristics and strong adsorption capacity.
In addition, graphene oxide Fe3O4 nanocomposite also has
advantages of high specific surface area, super strength, high
activity recovery, and immobilization efficiency of enzyme
compared to other immobilization approaches (Huang et al.,
2014; Xie and Huang, 2018).

As an edible vegetable oil, crude rapeseed oil contains
substantial phospholipids and causes oil discoloration and
low oil quality (Yang et al., 2013; Jiang X. et al., 2014).
Engineered P. pastoris can effectively express exogenous protein

(Tolner et al., 2006). In this study, the S. marcescens OM-PLA1
expression vector was transformed into the cells of P. pastoris
GS115. The gene expression and OM-PLA1 immobilization for
crude rapeseed oil degumming were investigated to develop an
effective approach for the enzymatic degumming of vegetable
oil (Figure 1).

MATERIALS AND METHODS

Materials
S. marcescens isolated from the intestine of smelly mandarin
fish (Siniperca chuatsi) was preserved in College of Food and
Biological Engineering, Hefei University of Technology. The
smelly mandarin fish is a processed food product sold in
market using traditional fermentation technology (Yang et al.,
2017). The use of the dead mandarin fish is not unnecessary
to obtain the approval from the institutional review board or
ethics committee prior to commencing this study. P. pastoris
GS115 and plasmid pPIC9K were provided by Dr. Huang
from Qingdao Vland Biotech Company. Chemical reagents were
from Beijing Transgen Biotech Company. Gene sequencing and
primer synthesis were performed by Shanghai Sangon Biotech.

OM-PLA1 Cloning and Engineered
P. pastoris Construction
According to the gene sequences of OM-PLA1 in the NCBI
database (HG326223.1), primer pair Us-OM-PLA1 and Ds-
OM-PLA1 was synthesized to amplify the S. marcescens genome
for OM-PLA1 cloning using PCR amplification instrument
(TOMOS, United States) (Table 1). A phylogenetic tree was
drawn by using Lagergene MegAlign software. The OM-PLA1
gene was inserted into plasmid pEASY-E1. The recombinant
plasmid was named pEASY-OM-PLA1 after sequencing
confirmation. Then, pEASY-OM-PLA1 was used to amplify
OM-PLA1 with upstream primer Us-SnabI-OM-PLA1 and
downstream primer Ds-AvrII-OM-PLA1. OM-PLA1 carrying
cohesive ends was inserted into the pPIC9K plasmid digested by
SnabI and AvrII (Gohel and Singh, 2012; Gamerith et al., 2017).
The recombinant plasmid was named pPIC9K-OM-PLA1 by
sequencing confirmation. pPIC9K-OM-PLA1 was transformed
into P. pastoris GS115 by electroporation (Guo et al., 2015). The
electrophoresis device and gel imaging system for DNA test were
from Bio-Rad Company (United States).

OM-PLA1 Inducible Expression and
Purification
The inducible expression of OM-PLA1-engineered P. pastoris
GS115 was investigated under different methanol concentrations
and induction times (Bredell et al., 2018). Fermentation
media were prepared by yeast extract 1% (w/v), peptone
2% (w/v), 100 mM pH6 potassium phosphate buffer, YNB
1.34% (w/v), biotin 4 × 10−5 % (w/v), and glycerol 1%
(w/v). The engineered P. pastoris colony was cultured in
fermentation media at a shaking speed of 200 rpm at 30◦C
for 36 h. The collected P. pastoris cells were inoculated
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FIGURE 1 | Technical path of this study.

TABLE 1 | Primers for gene cloning and vector construction.

Primer name Sequences

Us-OM-PLA1 5′-TATGCGCATTTTGTCAGGGA-3′

Ds-OM-PLA1 5′-GATTACATAATATCGTTCAGC-3′

Us-SnabI- OM-PLA1 5′-GGGAAATACGTATATGCGCATTTTGTCAGGGA-3′

Ds-AvrII- OM-PLA1 5′-GGGAAACCTAGGGATTACATAATATCGTTCAGC-3′

into the fermentation media added with 1 mM methanol.
The final cell concentration at OD600 of 20 was cultured
with a shaking speed of 200 rpm at 30◦C. A Ni2+-chelating
affinity chromatography column (Amersham Pharmacia
Biotech, United Kingdom) was pre-equilibrated by a pH 8
buffer prepared by 20 mM imidazole, 50 mM NaH2PO4,
and 300 mM NaCl. After the recombinant OM-PLA1 was
purified by the column (Wang et al., 2009), OM-PLA1
profile analysis was performed by SDS-PAGE (Bio-Rad,
United States) (Bredell et al., 2018).

Fe3O4/Graphene Oxide Preparation and
OM-PLA1 Immobilization
Magnetic Fe3O4/graphene oxide (MGO) was prepared by mixing
1.5 g of freeze-dried graphene oxide, 0.3 g of FeSO4·7H2O, and
0.4 g of FeCl3·6H2O in 50 mL of deionized water (Hasanzadeh
and Shadjou, 2013; Amirbandeh and Taheri-Kafrani, 2016;
Zhuang et al., 2016). OM-PLA1 was immobilized by mixing
glutaraldehyde, OM-PLA1, 1 g of MGO, and 50 mL of the
immobilization buffer prepared by 0.01 M citric acid and
0.02 M hydrogen phosphate disodium. The parameters of
pH, treatment time, and glutaraldehyde concentration were
investigated to produce the MGO-OM-PLA1 complex. MGO-
OM-PLA1 was separated and recovered by magnets and washed
three times by the immobilization buffer (Qiu et al., 2010).

Field emission scanning electron microscope (FE-SEM, Hitachi
SU8020, Japan) and Fourier transform infrared spectroscope
(FTIR, Thermo Nicolet 67, United States) were used to observe
the microstructure and the spectral characteristic of MGO-OM-
PLA1, respectively (He et al., 2013; Huang et al., 2015).

MGO-OM-PLA1 Degumming of
Rapeseed Oil
Enzymatic degumming was performed by adding MGO-OM-
PLA1 in the crude rapeseed oil (Jiang X. F. et al., 2014). The
phosphorus content of crude rapeseed oil was 55.6 mg/kg.
Enzymatic degumming was carried out with the addition
of 0.02% MGO-OM-PLA1 (w/w) into a weight of 150 g
crude rapeseed oil at 50◦C. MGO-OM-PLA1 was recovered by
magnets to terminate the degumming reaction. The times of
rapeseed oil degumming were determined when the phosphorus
concentration was lower than 10 mg/kg rapeseed oil at each time.

FIGURE 2 | Isolation of OM-PLA1 from the genome of S. marcescens. Note:
Lane M represented DNA Marker; lane 1–4 represented PCR amplification
product of OM-PLA1; lane 5 represented the control.
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FIGURE 3 | Phylogenetic tree of phospholipase genes from 19 different microorganisms.

The recovered MGO-OM-PLA1 particles were reused for the
next degumming of rapeseed oil.

Determination of Phosphorus Content
and OM-PLA1 Activity
Phosphorus content was determined by a spectrophotometric
method in accordance with Official Method Ca 12–55 using
ultraviolet visible near-infrared spectrophotometer (Agilent
CARY5000, United States) (Chen et al., 2014). The activity
of OM-PLA1 was measured by the colorimetric assay using
a pH indicator (Araújo and Radvanyi, 1987; Pires et al., 2017).

FIGURE 4 | Profile of recombinant OM-PLA1 from P. pastoris by SDS-PAGE
approach. Note: Lane M2 represented protein marker; B1 and B2 respectively
represented the protein from the engineered and wild type P. pastoris GS 115.

Triton–soybean lecithin was prepared by using 10 g of
soybean lecithin dissolved in 200 mL of 0.02% Triton X-100
solution (w/v). A 98 mL volume of Triton–soybean lecithin
and 2 mL of fermentation solution were mixed. The pH of
the mixture was adjusted to 10 by adding 0.01 M NaOH.
The activity of OM-PLA1 was determined based on the
consumed volume of NaOH. The activity of phospholipase
is defined as a unit of phospholipase activity required to
hydrolyze phospholipids for 1 min to produce 1 µmol of free
fatty acids (Sutto-Ortiz et al., 2017). Data are presented as
mean ± standard deviation (SD). Figures were drawn using
Software Origin.

FIGURE 5 | Effect of induction time of 1 mM methanol on the expression of
recombinant OM-PLA1.
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RESULTS

S. marcescens OM-PLA1 Cloning and
Phylogenetic Tree Analysis
The size of the isolated S. marcescens OM-PLA1 is 879 bp
after sequencing confirmation (Figure 2), which encodes 292
amino acid residues. The phylogenetic tree of phospholipase
sequences from 19 different species was drawn (Figure 3).
S. marcescens OM-PLA1 showed the closest relationship to
Escherichia coli OM-PLA1 NC_000913.3 among the tested
phospholipase-producing microorganisms. A close genetic
relationship also existed between Vibrio parahaemolyticus OM-
PLA NC_004603.1 and Aliivibrio wodanis PLA NZ_LN554848.1,
Ralstonia mannitolilytica PLA NZ_CP010799.1, and Ralstonia
pickettii PLA NC_010682.1. However, S. marcescens OM-PLA1
has a far genetic relationship with Sphingomonas sp. OM-PLA
NC_008308.1 compared with other phospholipase genes.

Recombinant Expression of OM-PLA1 in
P. pastoris
The molecular weight of OM-PLA1 was appropriately 33 KDa by
SDS-PAGE (Figure 4). The induction time of methanol affecting
the expression of recombinant OM-PLA1 was investigated
(Figure 5). The wild-type P. pastoris could not produce
OM-PLA1 during the induction processing of methanol. The
engineered P. pastoris could effectively produce the recombinant
OM-PLA1. The activity of OM-PLA1 was 21.2 U/mL after
induction by 1 mM methanol for 72 h. The production
efficiencies of treatment time and cell concentration were
0.29 U/mL/h and 1.06 U/mL/OD600, respectively.

FE-SEM Observation of the Fe3O4/GO
Complex
FE-SEM was used to investigate the microcosmic difference
between GO and the prepared Fe3O4/GO (Figure 6). The whole
structure of GO was complete. The edge outline was clear
and neat. The exfoliated lamellae of GO showed a smooth,
thin, and large surface. No visible objects attached onto the

surface of GO (Figure 6A). Figure 6B shows that the surface
of the whole material was rough and convex. The iron oxide
nanoparticles were largely anchored on the lamellae of GO in a
highly dispersed state.

Very few of the GO were still exposed without attachment
of granular objects. Fe3O4 particles showed spherical
agglomeration. The thickness of coverage by Fe3O4 particles
was inhomogeneous. The Fe3O4 particle size ranged from 10 to
30 nm. A small amount of Fe3O4 particles exceeded 50 nm of size.

FTIR Spectral Analysis of Graphene
Oxide-Based Fe3O4 Nanoparticles
FTIR spectroscopy was used to observe the preparation of MGO
particles (Figure 7). Multiple oxygen-containing functional
groups existed on the surface and edge of GO. The absorption
peaks of MGO particles obviously differed from those of graphite
oxide. The characteristic absorption peaks at 3412, 1712, 1628,
1197, and 592 cm−1 corresponded to the stretching vibrations of
O-H, C = O, C = C, C-O, and Fe-O. In the Fe3O4/GO composite,
the absorption peaks at 1712, 1628, and 1197 cm−1 were greatly

FIGURE 7 | FTIR observation of graphene oxide-based Fe3O4 nanoparticles.

FIGURE 6 | Microcosmic difference between (A) GO and (B) prepared Fe3O4/GO.
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FIGURE 8 | Effect of pH, glutaraldehyde concentration, and immobilization time on MGO-OM-PLA1 preparation. (A–C) Represented pH, glutaraldehyde
concentration, and immobilization time, respectively.

FIGURE 9 | Effect of pH (A) and temperature (B) on the activity of MGO-OM-PLA1.
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weakened in comparison with those of GO. The absorption
peak of epoxy at 1197 cm−1 almost disappeared in the Fe3O4-
GO composite, which reflected that chemical bonding existed
between these oxygen-containing functional groups and Fe3O4
particles. In addition, the Fe-O absorption peaks from Fe3O4-
GO at 592 cm−1 were significantly strengthened, which further
proved that a close combination existed between Fe3O4 and GO.

MGO-OM-PLA1 Preparation
The effects of pH, glutaraldehyde concentration, and
immobilization time on MGO-OM-PLA1 preparation were
investigated (Figure 8). At pH 6, the immobilization efficiency of
OM-PLA1 reached 61.7% (w/w), which was the highest among

FIGURE 10 | MGO-OM-PLA1 enzymatic degumming of crude rapeseed oil
under the conditions of pH 7.5 at 50◦C.

FIGURE 11 | Effect of recycling times on MGO-OM-PLA1 activity under the
conditions of pH 7.5 at 50◦C.

the set parameters (Figure 8A). The highest immobilization
efficiency was achieved when the glutaraldehyde concentration
(v/v) was 7% (Figure 8B). In addition, the efficiency of OM-
PLA1 immobilization reached 60.9% (w/w) after 3 h of treatment
(Figure 8C), which was the higher than those at other times.

Rapeseed Oil Degumming
The effect of pH and temperature on the activity of MGO-OM-
PLA1 was investigated (Figures 9A,B). Under the conditions
of pH 7.5 (Figure 9A) and 50◦C (Figure 9B), the activity of
MGO-OM-PLA1 reached the highest among the set parameters.
Therefore, in this study, the parameters of pH 7.5 and
50◦C were used to investigate the enzymatic degumming of
crude vegetable oils.

MGO-OM-PLA1 was used in the enzymatic degumming of
crude rapeseed oil (Figure 10). The contents of phosphorus in
crude rapeseed oil gradually decreased with prolonged treatment
time. The content of 0.02% MGO-OM-PLA1 (w/w) was used
to perform enzymatic degumming with pH 7.5 at 50◦C. After
degumming for 2.5 h, the phosphorus content was 8.9 mg/kg
rapeseed oil (below 10 mg/kg) from the initial concentration of
55.6 mg/kg rapeseed oil. After 4 h of degumming, the phosphorus
contents further decreased to 5.1 mg/kg rapeseed oil.

Recovery and Reuse of MGO-OM-PLA1
The effect of recycling times on MGO-OM-PLA1 activity
was investigated (Figure 11). The activity of MGO-OM-PLA1
gradually decreased with prolonged degumming time. MGO-
OM-PLA1 retained 90% of the initial activity after degumming
for five times. After 13 times of recycling, the activity of MGO-
OM-PLA1 decreased to 51.7% of the initial activity of the enzyme.
Therefore, the half life of MGO-OM-PLA1 activity was regarded
as 13 times for the enzymatic degumming of rapeseed oil.

DISCUSSION

The increase in oil yield and effective application on crude
oils determines the development of enzymatic degumming.
Enzymatic degumming has been applied in more than 30
crushing-refining plants. In general, a phosphorus content of

TABLE 2 | Expression of the phospholipase gene in recombinant host strains.

Phospholipase Host strain Expression efficiency

S. marcescens
OM-PLA1

P. pastoris 21.2 U/mL, 0.29 U/mL/h, this
study

Fusarium oxysporum
PLB

P. pastoris 6.6 g/L (Su et al., 2017)

Bacillus cereus PLB P. pastoris 4.5 g/L (Elena et al., 2016)

Streptomyces
violaceoruber PLA2

P. pastoris 34.7 U/mL (Liu et al., 2015)

Thermotoga lettingae
PLB

E. coli Half-life of 240 min at 90◦C
(Wei et al., 2015)

Pseudomonas
fluorescens PLB

E. coli 20.1% higher than the
wild-type (Jiang et al., 2012)

Bacillus cereus PLC C. glutamicum 5.5 g/L (Ravasi et al., 2015)
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below 10 mg/kg oil meets the actual requirement (Lamas et al.,
2016). Previous reports on crude oil degumming mainly focused
on the breeding of strains producing phospholipase A2, B, and C
(Table 2). The phospholipases of the recombinant strains possess
high application values in enzymatic degumming (Wei et al.,
2015; Elena et al., 2017; Su et al., 2017). In this study, S. marcescens
OM-PLA1 was effectively expressed in engineered P. pastoris. The
activity and expression efficiency of OM-PLA1 were 21.2 U/mL
and 0.29 U/mL/h, respectively. The immobilization product
MGO-OM-PLA1 possessed excellent degumming capability of
oil. The MGO-OM-PLA1 activity still retained 75 and 50% of
the initial activity with 11 and 13 recycling times, respectively.
In comparison with the reported 70% of the initial activity
retained after seven recycles (Zhang et al., 2007), MGO-OM-
PLA1 has the advantages of more application frequencies and
higher degumming efficiency. Therefore, S. marcescens OM-
PLA1 expressed by recombinant P. pastoris exhibited a potential
application value in the enzymatic degumming of oil.

The material of immobilization is also a critical factor
influencing the degumming of phospholipase. Octyl agarose,
gelatin hydrogel, and cellulose triacetate have been applied
to immobilize the commercial enzyme Lecitase (R) Ultra for
oil degumming (Fernandez-Lorente et al., 2007; Sheelu et al.,
2008; da Silva et al., 2017). In addition, sodium alginate
and chitosan microparticles were crosslinked with Fe3O4 to
immobilize phospholipase (Qu et al., 2016). In this study,
graphene oxide was used to immobilize phospholipase OM-
PLA1 for its advantage of a large number of functional groups
on its surface, such as carboxyl, hydroxyl and epoxy groups,
which allow easy reaction with compounds (Li et al., 2015). As a
scaffold for enzyme immobilization, graphene oxide-based Fe3O4
nanoparticles possess a magnetic property (Shao et al., 2015),
which facilitate easy recovery and reuse.

In this study, graphene oxide-based Fe3O4 nanoparticles were
used to immobilize S. marcescens OM-PLA1 for the enzymatic
degumming of rapeseed oil. The contents of phosphorus
decreased to 8.9 mg/kg rapeseed oil from 55.6 mg/kg rapeseed
oil with 2.5 h of degumming. Therefore, this study provided
an effective approach for the enzymatic degumming of crude
vegetable oil. However, some problems remain to be solved. First,
the immobilization efficiencies of OM-PLA1 and graphene oxide-
based Fe3O4 nanoparticles can still be increased. Second, the

effect of the crosslinking agent glutaraldehyde on the activity of
OM-PLA1 need further analysis. Third, the degumming effect
of MGO-OM-PLA1 on other crude vegetable oils should be
further explored.

CONCLUSION

In this study, S. marcescens OM-PLA1 gene with a size
of 879 bp was isolated and expressed in the recombinant
P. pastoris GS 115. The size of OM-PLA1 was appropriately
33 KDa. After 72 h of inducible time, the highest activity
of OM-PLA1 was reached (21.2 U/mL). The production
efficiencies of treatment time and cell concentration of OM-
PLA1 were 0.29 U/mL/h and 1.06 U/mL/OD600, respectively.
After 4 h of degumming, the phosphorus contents reached
5.1 mg/kg from 55.6 mg/kg using 0.02% (w/w) MGO-OM-
PLA1 prepared by graphene oxide-based Fe3O4 nanoparticles
and OM-PLA1. The half life of MGO-OM-PLA1 activity
was 13 times for the enzymatic degumming of rapeseed
oils with the initial phosphorus content of 55.6 mg/kg.
Therefore, S. marcescens OM-PLA1 gene could effectively
express in the recombinant P. pastoris. In addition, the cross-
linked copolymer MGO-OM-PLA1 possessed good stability
and effective degumming of vegetable oils. This study has an
important application value in the enzymatic degumming of
crude vegetable oil.
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