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Natural polysaccharides with health benefits are characterized by a large structural
diversity and differ in building blocks, linkages, and lengths. They contribute to
human health by functioning as anti-adhesives preventing pathogen adhesion, stimulate
immune maturation and gut barrier function, and serve as fermentable substrates
for gut bacteria. Examples of such beneficial carbohydrates include the human milk
oligosaccharides (HMOs). Also, specific non-digestible carbohydrates (NDCs), such as
galacto-oligosaccharides (GOS) and fructo-oligosaccharides (FOS) are being produced
with this purpose in mind, and are currently added to infant formula to stimulate the
healthy development of the newborn. They mimic some functions of HMO, but not all.
Therefore, many research efforts focus on identification and production of novel types
of NDCs. In this review, we give an overview of the few NDCs currently available [GOS,
FOS, polydextrose (PDX)], and outline the potential of alternative oligosaccharides, such
as pectins, (arabino)xylo-oligosaccharides, and microbial exopolysaccharides (EPS).
Moreover, state-of-the-art techniques to generate novel types of dietary glycans,
including sialylated GOS (Sia-GOS) and galactosylated chitin, are presented as a way to
obtain novel prebiotic NDCs that help shaping the infant microbiome.

Keywords: infant, microbiome, non-digestible carbohydrates, exopolysaccharides, transglycosylation

INTRODUCTION

Humans live in symbiosis with trillions of bacteria, and most of them are symbionts and beneficial
to the host (Sender et al., 2016). Disturbance in our microbiota can contribute to the development
of many diseases (Wang et al., 2017). Bacteria are mainly present in the areas that are more exposed
to the surrounding environment such as the skin, vaginal and oral mucosa, and the GIT. The gut
microbiota has been extensively studied due to its impact on the establishment of immunity (Martin
et al., 2010) and prevention of chronic inflammation (Belkaid and Hand, 2014). While the fetal
GIT was considered sterile for many years, emerging evidence suggests that colonization of the
GIT starts already at the prenatal stage with neonatal colonization by Enterobacter, Escherichia,
Shigella, and Staphylococcus species, as detected in the umbilical cord, placenta, and amniotic fluid
(Carmen Collado et al., 2016). After birth, the newborn gut is rapidly colonized by different bacterial

Abbreviations: APS, acidic polysaccharides; AXOS, (arabino-)xylo-oligosaccharides; DP, degree of polymerization;
EPS, exopolysaccharides; FOS, fructo-oligosaccharides; GHs, glycosyl hydrolases; GIT, gastrointestinal tract; GMP,
glycomacropeptide; GOS, galacto-oligosaccharides; GTs, glycosyl transferases; H-APS, high-molecular weight acidic
polysaccharides; HePS, heteropolysaccharides; HMOs, human milk oligosaccharides; HoPS, homopolysaccharides; NDCs,
non-digestible carbohydrates; NEC, necrotizing enterocolitis; NPS, neutral polysaccharides; PDX, polydextrose; POS, pectin
oligosaccharides; SB-POS, sugar beet pulp pectin oligosaccharides; SCFAs, short chain fatty acids.
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strains with the first colonizers being facultative aerobes such
as Escherichia and Enterococcus, whose oxygen consumption
allows colonization of anaerobic bacteria, with the most abundant
being Bifidobacterium (Houghteling and Walker, 2015). Many
early-life factors have an impact on the composition of
the infant gut microbiota, including the mode of delivery,
the infant feeding pattern, diet composition, and the use
of antibiotics, but also the health of the mother during
pregnancy (Gonzalez-Perez et al., 2016).

The early colonization process is crucial for a healthy
microbiome and prevents disease later in life. Gut microbiota
are essential for digestion of food, but also to function as a
barrier against pathogens, and for the development of immune
tolerance to innocuous antigens and microorganisms (Yang et al.,
2016). Imbalances in the intestinal microbiome composition can
result in bacterial overgrowth or lower species diversity, making
the host more susceptible to pathogenic infections (Lozupone
et al., 2012). Furthermore, microbial dysbiosis may lead to
autoimmune and allergic diseases. The healthy infant intestinal
microbiome has a low microbial diversity, with Bifidobacterium,
Bacteroidetes, Firmicutes, and Proteobacteria being most
abundant. Feeding has a major influence on the microbiota
composition, as breast-fed infants have higher Bifidobacterium
and Enterobacteria numbers and a lower diversity in comparison
to formula-fed infants (Milani et al., 2017).

There is a growing understanding of the mechanisms by which
a balanced microbiome contributes to health. For instance, many
genera such as Eubacterium and Bacteroides are involved in the
production of vitamin K (Rossi et al., 2011), an essential cofactor
promoting the γ-carboxylation of glutamate residues involved
in blood clotting (Gröber et al., 2014). Bifidobacterium species
are able to produce folate, a vitamin involved in DNA synthesis
and repair with an undisputed importance in neurological
development (Crider et al., 2012), with the best producing
strains being Bifidobacterium adolescentis and Bifidobacterium
pseudocatenulatum (Rossi et al., 2011). Lactobacilli carry the
rib operon, which is implicated in the de novo synthesis of
riboflavin, which is important in developmental processes and
in the hemopoietic system (Thakur et al., 2016). Moreover, gut
microbiota are responsible for the production of SCFAs, such as
acetate, propionate, and butyrate. Acetate is the most abundant,
and it is used by many gut commensals to produce propionate
and butyrate in a growth-promoting cross-feeding process.
SCFAs are important for the reduction of the intestinal pH
and the consequent inhibition of pathogen’s adhesion. Moreover,
butyrate is the preferred energy source for colon epithelial cells,
where it contributes to the maintenance of the gut intestinal
barrier, exerts immunomodulatory and anti-inflammatory effects
(Stilling et al., 2016; Zhang et al., 2018), also through epigenetic
mechanisms (Furusawa et al., 2013; Paparo et al., 2014), and may
even prevent colorectal cancer (Wu et al., 2018).

A healthy infant microbiome is normally created under
the guidance of molecules in human milk. This is mainly
accomplished by HMOs, which serve as feed for specific bacterial
species. HMOs are a family of >200 structurally different
molecules that vary in quantity and composition from mother
to mother, and over the course of lactation. However, some

general trends in HMO composition are present (Table 1). HMOs
are composed of a linear or branched backbone containing
galactose (Gal), N-acetylglucosamine (GlcNAc), and glucose
(Glc), which can be decorated with fucose (Fuc) and sialic
acid (Sia) residues, and this decoration pattern depends on
the mother’s secretory status (Bode, 2012). Only members
of Bifidobacterium and Bacteroides were shown to metabolize
HMOs (Marcobal et al., 2010). Especially Bifidobacterium
bifidum and Bifidobacterium infantis are efficient utilizers of
HMOs, whereas they are moderately digested by Bifidobacterium
breve and Bifidobacterium longum. Interestingly, Bifidobacterium
animalis and B. adolescentis are incapable of degrading HMOs
(LoCascio et al., 2009; Sela and Mills, 2010). To ensure a high
number in the gut, bifidobacteria have been observed to create
a cross-feeding niche, as the extracellular fermentation of HMOs
by B. bifidum is associated with a cooperative effect for B. infantis,
which is able to import the released sugars and digest them
intracellularly (Garrido et al., 2012; Thomson et al., 2018).

For infants where human milk is not an option, infant formula
supplemented with NDCs that should mimic prebiotic functions
of HMOs have been created (Vandenplas et al., 2015). A prebiotic
is defined as “a substrate that is selectively utilized by host
microorganisms conferring a health benefit” (Gibson et al., 2017).
HMOs fulfill these criteria, as they are not digested in the upper
part of the GIT of infants (Engfer et al., 2000), while they
serve as preferred food source for beneficial bacteria. Next to
HMOs, other NDCs or dietary fibers have been shown to be
major drivers of gut microbiome composition and function, and
might be added to infant formula for this purpose (Benitez-Paez
et al., 2016). Interestingly, the currently applied molecules do
not mimic all the functions of the >200 HMOs found in human
milk, so novel oligosaccharides are needed to fill this void. This
review aims to inspire the selection of future NDCs that can be
added to infant formula by reviewing beneficial glycans that show
great promise as modulators of the microbiome, with a focus on
their interaction with bifidobacteria and lactobacilli, since most is
known about these genera. Moreover, state-of-the-art techniques
to generate novel types of dietary glycans are presented.

NDCS CURRENTLY ADDED TO INFANT
FORMULA

To mimic the beneficial effects of HMOs, two alternative
oligosaccharides are routinely added to infant formula:
GOS and FOS (Table 1). GOS are produced by enzymatic
transglycosylation from lactose (vide infra), providing a mixture
of differently linked oligosaccharides with a DP from 2 to 8.
The Gal units are linked through β-galactosidic linkages, which
are resistant to GIT enzymes until they reach the colon where
they are fermented by bacteria. In general, GOS stimulate
the growth of bifidobacteria (Absmanner et al., 2010), and
especially the numbers of B. adolescentis are impacted (Sierra
et al., 2015). FOS are generally produced by enzymatic digestion
from naturally isolated inulin, yielding oligosaccharides with
DP from 2 to 9, and bifidobacteria readily grow when FOS
are used as a sole carbon source (Macfarlane et al., 2008).
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TABLE 1 | Overview of oligosaccharide structures discussed herein.

Oligosaccharide Structure Length Average structure

Naturally isolated

Arabinoxylan oligosaccharides (AXOS) (α-1,2/1,3-Ara)m-β-1,4-Xyln DP ∼ 5

Curdlan (β-1,3-Glc)n 60–2000 kDa

Dextran α-1,6-Glcn, with m branches at α-1,2/1,3-Glc 40–2000 kDa

Human milk oligosaccharides (HMOs) (α-Fuc)l/(α-Sia)m-(β-Gal-β-1,3/1,4-GlcNAc)n-β-Glc DP 3–25

Inulin (β-2,1-Fru)n-β-Glc DP 10–26 (Raftiline)

Laminarin β-1,3-Glcn, with m branches at β-1,6-Glc DP 20–30

Levan (β-2,6-Fru)n ∼500 kDa

Pectin (β-1,4-Gal)k/(α-1,5-Ara)l-(α-1,4-GalA-α-Rha)m-(α-1,4-GalA)n N/A

Xylo-oligosaccharides (XOS) (β-1,4-Xyl)n DP 2–10

Enzymatically produced

Fructo-oligosaccharides (FOS) (β-2,1-Fru)n-β-Glc DP 2–9

Galacto-oligosaccharides (GOS) (β-1,3/1,4/1,6-Gal)n-β-Glc DP 2–8

Gal-chitin (β-1,4-Gal)m-β-1,4-GlcNAcn DP 2–4

Gal-chitosan (β-1,4-Gal)m-β-1,4-GlcNn DP 2–4

Polydextrose (PDX) (α/β-1,2/1,3/1,4/1,6-Glc)n DP 5–25

Sia-GOS (α-2,3-Sia)m-(β-1,3/1,4/1,6-Gal)n-β-Glc DP 2–8

Nomenclature: arabinose (Ara, ); fructose (Fru, ); fucose (Fuc, ); galactose (Gal, ); galacturonic acid (GalA, ); glucosamine (GlcN, ); N-acetylglucosamine

(GlcNAc, ); glucose (Glc, ); rhamnose (Rha, ); sialic acid (Sia, ); xylose (Xyl, ).

When mixtures of GOS/FOS in a 9/1 ratio are used, the ratio
of different Bifidobacterium species was similar to breast-fed
infants (Haarman and Knol, 2005). This GOS/FOS mixture
was also demonstrated to be the best growth substrate for
Bifidobacteria and Lactobacilli, while inulin and PDX led to
poor growth (Vernazza et al., 2006). PDX is a synthetic polymer
of randomly connected Glc units with an average DP of 12
and all possible glucosidic linkages: α- or β- and 1→2, 1→3,
1→4, and predominantly 1→6 (Ramiro do Carmo et al.,
2016). When PDX was used in combination with GOS in a
1:1 ratio, the increase in Bifidobacterium species, specifically
B. infantis, B. longum, and B. catenulatum, was similar to the
breast-fed microbiota, where B. infantis, B. longum, and B. breve
are predominant (Scalabrin et al., 2012). Interestingly, this
GOS/PDX mixture was also identified in a commercial brand of

infant formula (Nijman et al., 2018). Next to prebiotic properties,
GOS, FOS, and mixtures of both components were also shown
to have immunomodulatory properties, which have recently
been reviewed (Macfarlane et al., 2008; Ackerman et al., 2017,
Akkerman et al., 2018).

ALTERNATIVE NDCS ISOLATED FROM
NATURAL SOURCES

Polysaccharides with prebiotic potential have mostly been
extracted from the cell wall of higher plants including cereals
and grains, fruits, and vegetables, seaweeds, and microalgae
(de Jesus Raposo et al., 2016). In this section, we focus on the
naturally isolated polysaccharides POS and AXOS that have
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already been investigated for their prebiotic effect and might
serve as alternative for HMOs.

Pectins have received widespread attention for their potential
as prebiotics. They are composed of a backbone of galacturonic
acids, which are hypothesized to mimic the Sia residues in
HMOs (Table 1). Pectins are heteropolysaccharides and are
available from citrus peels, apple pomace, sugar beet pulp, and
potato pulp. The hydrolysis of pectins yields POS, which are
composed of galacturonic acid, galactose, rhamnose, arabinose,
and xylose building blocks. Moreover, POS can be methylated
or esterified on the galacturonic acid residues, and the degree
of methylation, esterification, and the ratios of monosaccharides
depends on the source of pectin and the type of extraction
method used. In light of this structural diversity, studies with
POS become more reliable and reproducible when the exact
molecular structure is described. POS has a demonstrated
prebiotic effect, promoting the growth of Bifidobacteria and
Lactobacilli. Interestingly, especially neutral POS, such as
galactan, GOS, arabinan, and arabino-oligosaccharides, enhance
the growth of Bifidobacteria to a similar extent as inulin
(Onumpai et al., 2011; Di et al., 2017). A similar increase
in bifidobacteria numbers was observed for an arabinose-
rich mixture of SB-POS, while lactobacilli were selectively
enhanced using lemon peel waste-derived POS, which was
high in galacturonic acids, and the number of bacterial
members of Faecalibacterium prausnitzii group and Roseburia
intestinalis (both of the phylum Firmicutes) increased with
all types of pectins (Gomez et al., 2016). In contrast, a
commercial source of SB-POS, which was shown to contain
a high galacturonic acid content, had little effect on numbers
of bifidobacteria, highlighting the importance of the pectin
composition (Leijdekkers et al., 2014). Infant formula with
pectins has been studied in human infant trials, but there was
no effect of the acidic oligosaccharides on bifidobacteria and
lactobacilli (Fanaro et al., 2005).

Xylo-oligosaccharides (XOS, Table 1) are present in fruits,
vegetables, bamboo, honey, and milk, and can be produced
on an industrial scale by enzymatic degradation of xylan-
rich materials (Aachary and Prapulla, 2011). XOS is readily
fermented by commensal bacteria, and can in humans increase
the population of fecal bifidobacteria and SCFA production
(Lecerf et al., 2012). AXOS (Table 1) are prepared by degradation
of arabinoxylan, which is the major non-cellulose polysaccharide
in cereals and plants. In a fermentation study, it was shown
that B. longum B24 could liberate the arabinose units from
AXOS without degrading the xylan backbone, while B. longum
B18 was able to metabolize XOS up to DP4 (Riviere et al.,
2018). B. adolescentis B72 degraded various types of FOS,
partially degraded inulin, and metabolized XOS longer than
DP4. The authors suggested that the strain-specific mechanisms
to utilize different glycans lead to a cooperative effect and
simultaneous striving of different bacterial strains. A similar
cross-feeding effect was observed between B. longum NCC2705
and Eubacterium rectale ATCC 33656 when grown on AXOS
(Riviere et al., 2015). B. longum is able to release arabinose
and produce acetate, whereas E. rectale uses acetate to produce
butyrate. When co-cultured on AXOS, the consumption of

arabinose by B. longum and concomitant release of acetate
allowed E. rectale to produce butyrate, resulting in a simultaneous
prebiotic and butyrogenic effect (Riviere et al., 2016). Other
examples of such a commensal cross-feeding relationship with
bifidobacteria have been reported, including Faecalibacterium
(De Vuyst and Leroy, 2011; Moens et al., 2016). Negatively
charged XOS structures, containing glucuronic acid units, have
also been isolated from hardwood (Rivas et al., 2017), and
may be promising candidates for novel charged prebiotic
NDCs (vide infra).

POTENTIAL OF EXOPOLYSACCHARIDES
AS NOVEL NDCS

Exopolysaccharides produced by Gram-positive bacteria
currently attract a great deal of attention because of their wide
range of beneficial properties (Ryan et al., 2015). Regularly
new EPS structures are identified that have a specific health
effect, and especially the immune-modulating properties are
often investigated (Castro-Bravo et al., 2018). From recent
reviews on the characterized EPS structures of Lactobacillus and
Bifidobacterium, their great structural diversity is immediately
apparent (Hidalgo-Cantabrana et al., 2014; Castro-Bravo et al.,
2018; Oleksy and Klewicka, 2018). They are broadly divided into
HoPS, which are composed of a single sugar building block,
and HePS, which display a repeating fragment of two to eight
different sugar units.

Most HoPS are found to be susceptible to fermentation by
commensal bacteria (Salazar et al., 2016), which is presumably
directly linked to their relatively simple molecular structure,
albeit that they can be very large in size. For instance,
the prebiotic effect of β-fructans was investigated with two
levan-type EPS isolated from Lactobacillus sanfranciscensis, and
compared with levan (fructan with β-2,6 linkages, Table 1),
inulin (fructan with β-2,1 linkages), and FOS (Dal Bello et al.,
2001). An enrichment of Bifidobacterium species in human
fecal samples in a large bowel model medium was observed
with the EPS and inulin as added carbon source, while levan
and FOS had no effect. This may reflect the importance
of both the length of the carbohydrate, and the fructose
linkage type in the isolated EPS, which may be different
from commercial levan. The capability of Bifidobacterium
species to directly metabolize the L. sanfranciscensis EPS
was further demonstrated in a fermentation study (Korakli
et al., 2002). β-Glucans, including curdlan (linear β-1,3-Glc,
Table 1) and laminarin (β-1,3/1,6-Glc, Table 1), are also
readily fermented by bifidobacteria. Especially the B. infantis
population benefitted from β-glucan digestion, and concomitant
increased production of propionate and butyrate was observed
(Zhao and Cheung, 2011).

In contrast, there is a lack of data on the digestibility
of HePS by commensal bacteria, presumably due to their
complex structures and generally low isolated yields. Both
bifidobacteria and lactobacilli display structurally diverse
HePS, which may contain galacto-pyranose and -furanose,
rhamnose, mannose, and 6-deoxy-talose, among others
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(Hidalgo-Cantabrana et al., 2014). In a fecal slurry fermentation
experiment, the uncharacterized EPS from different B. animalis,
B. pseudocatenulatum, and B. longum species isolated from
humans were investigated for their prebiotic effect (Salazar
et al., 2008). Although there were high inter-individual
variations, the data indicated an EPS-related enrichment
of Bifidobacterium species, similar to the result obtained
with inulin. Bacteroides fragilis DSMZ 2151 was also found
to digest (uncharacterized) HePS from B. longum E44 and
B. animalis subsp. lactis R1, with concomitant increase in
propionate and acetate production (Rios-Covian et al., 2016).
Although there is no data on fermentation yet, an interesting
link between acidic phosphate groups in HePS structures
and immune responses was found (Kitazawa et al., 1998).
Lactobacillus delbrueckii subsp. bulgaricus OLL-1073-R1
produces two different EPS: acidic phosphate-containing
(APS) and NPS, both composed of Glc and Gal residues
(ratio 3:2). Interestingly, only the APS was a strong inducer
of proliferation and activity of macrophages. When the APS
was fractionated in two different EPS based on size, the B-cell
mitogenic activity was observed only with high-molecular
weight polysaccharide (H-APS). The impact of the acidic
phosphate was substantiated by chemical dephosphorylation,
which resulted in a reduction of the stimulatory effect (Kitazawa
et al., 1998). Interestingly, when unrelated dextran (α-Glc
HoPS from Leuconostoc mesenteroides, Table 1) was chemically
phosphorylated, the proliferation of lymphocytes was directly
proportional to the phosphate content (Sato et al., 2004).
Unfortunately, there is no information available on the
fermentability of these charged EPS, which could shed a light
on their prebiotic potential. Overall, the structural complexity
of especially the HePS yields large promise for prebiotic
potential, which warrants extra dedication to unraveling the
molecular structure of prebiotic HePS to gain more insight in the
structure–function relation.

DEVELOPMENT OF NOVEL NDCS

With the increasing interest and appreciation of the impact
of dietary glycans on healthy microbiome development and
overall human health, there is a tremendous surge in methods to
produce existing and novel glycans. Chemical synthesis has the
potential to generate well-defined carbohydrate structures, but
reliable methods are not generally available, and especially not on
the scale that would allow for biological evaluation. Enzymatic
synthesis is more amenable to larger scale carbohydrate
production, but also has its challenges. GTs have successfully
been used in the synthesis of HMO structures in vitro (Chen
et al., 2015; Yu et al., 2017a), but their application is hampered
by the use of expensive nucleotide-activated sugars, and
multi-enzyme substrate recycling systems are needed to prevent
metabolites from inhibiting enzyme activity (Qin et al., 2016).
Using bacterial cells as production factories however, major
advancements in HMO production have been made and have
resulted in FDA approval and commercialization of the major
HMO 2′-fucosyllactose. Different methods are now available in

Saccharomyces cerevisiae (Yu et al., 2018) and Escherichia coli
(Chin et al., 2017), and other HMO structures are expected to
be produced in this way in the near future (Sprenger et al., 2017).
Alternative methods rely on the use of GHs, which are able to
perform a transglycosylation reaction next to glycosidic bond
hydrolysis (Danby and Withers, 2016; Manas et al., 2018). In this
way, well-known prebiotic fibers such as GOS are industrially
produced by making use of β-galactosidase enzymes (Torres et al.,
2010), and also FOS can be synthesized in this way (Karboune
et al., 2018). This approach can also be used to decorate existing
glycans with other sugars, and the generation of galactosylated,
fucosylated (Zeuner et al., 2018), and sialylated glycans as
HMO mimics have recently been reviewed (Zeuner et al., 2014).
A variety of glycan acceptors, ranging from monosaccharides
and lactose to Tn antigens (e.g., N-acetylgalactosamine-threonine
conjugates), GOS, and HMOs have been described. This strategy
has the potential to rapidly yield novel dietary glycans that display
complex sugar building blocks (e.g., Sia, Fuc) that were previously
difficult to obtain.

A successful example of this strategy is the production and
biological evaluation of sialylated GOS (Sia-GOS, Table 1).
Using a transsialidase from Trypanosoma cruzi and bovine
κ-casein-derived GMP as the source of Sia, commercial GOS
was decorated with α-2,3-Sia residues to create mono-Sia-GOS
(Wilbrink et al., 2015). These novel glycans were subsequently
tested in a rat model of NEC, an intestinal disorder mainly
observed in preterm infants, for which sialylated HMOs were
found to protect (Jantscher-Krenn et al., 2012; Yu et al., 2017b).
Interestingly, Sia-GOS significantly reduced the pathology
score of NEC, with pooled HMO still being superior in
terms of protection, while regular GOS supplementation and
formula-feeding both resulted in the worst pathology scores
(Autran et al., 2016). In separate fermentation studies, with a
Sia-GOS batch produced by a GT-catalyzed sialylation, it was
revealed that B. infantis ATCC 15697 was able to digest Sia-GOS,
whereas B. adolescentis ATCC 15703 could not, highlighting
the species-specific ability to metabolize HMOs and HMO
mimics (Wang et al., 2015).

Using a similar strategy, chitin and chitosan (deacetylated
at the amine) oligosaccharides were decorated with β-Gal
residues (Black et al., 2014). The transglycosylation was
performed with β-galactosidase from Lactobacillus plantarum
with lactose as the Gal source, and different chitin and chitosan
acceptors were decorated with one to three residues in a β-
1,4 linkage (Table 1). Especially the β-Gal-chitosan and GOS
oligosaccharides were found to prevent enterotoxigenic E. coli
K88 from adhering to porcine erythrocytes, in contrast to alpha-
linked GOS and α-Gal-chitosan (Yan et al., 2017; Yan and Ganzle,
2018). It will be interesting to perform digestion studies of
these novel β-Gal-chitosan glycans by bacteria to investigate
their prebiotic effect.

CONCLUDING REMARKS

It is clear that the creation of a healthy infant microbiome is
a delicate interplay of a variety of commensal bacteria, which
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can be beneficially influenced by oligosaccharides. Because
the composition of the infant’s microbiome can have
a profound effect on adult life, there is a great
potential for the addition of carbohydrates that mimic
HMO functions. Promising better candidates that may
substitute or be added to currently applied NDCs are the
HePS, which have the potential to specifically enhance
certain species. Also, as structural mimics of HMOs,
fucosylated and sialylated oligosaccharides are expected
to be applied in the near future. In the end, more
knowledge of the presence of the biosynthetic machinery
necessary to utilize specific oligosaccharides will pave
the way for the development of novel NDCs with
prebiotic effects.
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