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Next-generation sequencing (NGS)-based 16S rRNA sequencing by jointly using the
PCR amplification and NGS technology is a cost-effective technique, which has been
successfully used to study the phylogeny and taxonomy of samples from complex
microbiomes or environments. Clustering 16S rRNA sequences into operational
taxonomic units (OTUs) is often the first step for many downstream analyses. Heuristic
clustering is one of the most widely employed approaches for generating OTUs.
However, most heuristic OTUs clustering methods just select one single seed sequence
to represent each cluster, resulting in their outcomes suffer from either overestimation
of OTUs number or sensitivity to sequencing errors. In this paper, we present a novel
dynamic multi-seeds clustering method (namely DMSC) to pick OTUs. DMSC first
heuristically generates clusters according to the distance threshold. When the size of
a cluster reaches the pre-defined minimum size, then DMSC selects the multi-core
sequences (MCS) as the seeds that are defined as the n-core sequences (n ≥ 3), in
which the distance between any two sequences is less than the distance threshold.
A new sequence is assigned to the corresponding cluster depending on the average
distance to MCS and the distance standard deviation within the MCS. If a new sequence
is added to the cluster, dynamically update the MCS until no sequence is merged
into the cluster. The new method DMSC was tested on several simulated and real-life
sequence datasets and also compared with the traditional heuristic methods such as
CD-HIT, UCLUST, and DBH. Experimental results in terms of the inferred OTUs number,
normalized mutual information (NMI) and Matthew correlation coefficient (MCC) metrics
demonstrate that DMSC can produce higher quality clusters with low memory usage
and reduce OTU overestimation. Additionally, DMSC is also robust to the sequencing
errors. The DMSC software can be freely downloaded from https://github.com/NWPU-
903PR/DMSC.

Keywords: multi-seeds, dynamic update, clustering, operational taxonomic units, 16S rRNA

Abbreviations: AL, average linkage; MCC, matthews correlation coefficient; MCS, multi-core sequences; OTU, operational
taxonomic units; rRNA, ribosomal RNA; std, standard deviations.
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INTRODUCTION

Bacteria are the most diverse domain on our planet and play
an essential role in various biogeochemical activities as well as
an important role in human health and disease (Fuks et al.,
2018). Characterizing the taxonomic community composition
taken from an environmental sample is critical for understanding
the bacterial world (Lane et al., 1985; Wei et al., 2016). Most
of our knowledge about the microbial community descriptions
comes from the 16S rRNA (ribosomal RNA) marker genes
generated by high-throughput sequencing technology (Koslicki
et al., 2013). Bypassing the necessity of isolating single organisms
for cultivation, the advanced sequencing technology can produce
millions of 16S rRNA and has become a powerful tool for
in-depth analysis of bacterial community composition (Zhang
et al., 2013; Wei and Zhang, 2018).

Usually, a fundamental first step for rapidly processing the 16S
sequencing data is to cluster them into the OTUs (Turnbaugh
et al., 2007; Peterson et al., 2009), which form the basis for
estimating the species, diversity, composition, and richness of
the microbes in the environment (Amir et al., 2017; Westcott
and Schloss, 2017). Two major approaches for binning 16S rRNA
sequences include: (i) taxonomy dependent methods, where
each query sequence is compared against a reference taxonomy
database and assigned to the organism of the best-matched
annotated sequence using sequence searching (Altschul et al.,
1990) or classification (Liu et al., 2017, 2018), and (ii) taxonomy
independent methods (also called de novo clustering) (Chen
et al., 2013b), where sequences are grouped into OTUs based on
pairwise sequence similarities. However, a significant portion of
microbes in a sample is contributed by unknown taxa which are
not recorded in databases, thus taxonomy dependent methods
are inherently limited by the completeness of reference databases
(Chen et al., 2016). In contrast, de novo clustering methods
divide sequences into OTUs without needing any reference
database and have become the preferred choice for researchers
(Cai et al., 2017).

In the past decade, a wide variety of de novo clustering
methods has been proposed for binning OTUs. These methods
can be further categorized into hierarchical clustering, heuristic
clustering, model-based and network-based methods (Wei et al.,
2017). Hierarchical clustering methods [e.g., mothur (Schloss
et al., 2009), HPC-CLUST (Matias Rodrigues and von Mering,
2013), ESPRIT (Sun et al., 2009), and mcClust (Cole et al.,
2013)] require a distance matrix derived either from all pairs
sequences alignment or a multiple sequence alignment, then
build a hierarchical tree with a predefined threshold to assign
sequences into OTUs. Network-based methods [e.g., M-pick
(Wang et al., 2013) and DMclust (Wei et al., 2017)] first construct
a fully connected graph by computing all pairwise sequences
distances and then employ the strategy of modularity community
detection to generate OTUs. As a result, the computational
complexity of both hierarchical and network-based methods is
O(N2), where N is the number of sequences (Wei and Zhang,
2017; Wei et al., 2017). Model-based methods [e.g., CROP (Hao
et al., 2011) and BEBaC (Cheng et al., 2012)] mainly apply
some statistical model (e.g., Bayesian model) or mathematics

framework (e.g., Gaussian mixture model) to describe sequence
data then assign sequences to OTUs based on probability
theory, and still, have a high computational burden (Chen
et al., 2013a). Therefore, hierarchical clustering, model-based
and network-based clustering methods quickly meet with the
bottleneck in terms of computational time and memory usage for
dealing with large-scale sequencing data (Wei et al., 2017).

A dozen of heuristic clustering methods such as CD-HIT
(Li and Godzik, 2006), UCLUST (Edgar, 2010), DySC (Zheng
et al., 2012), VSEARCH (Rognes et al., 2016), and DBH (Wei
and Zhang, 2017) were developed to decrease the computational
complexity. These methods build up clusters in an iterative
incremental strategy. Each cluster is represented by one sequence
(called seed) and each sequence is compared to all seeds. If the
distance between one input sequence and a seed is within a
given threshold, the input sequence is assigned to an existing
cluster. Otherwise, this sequence becomes a seed of a new cluster.
This procedure is repeated until all sequences are assigned.
The computational complexity of heuristic clustering methods
is O(NM), where M is the number of seeds (usually M ≤ N).
Therefore, heuristic clustering methods run several orders of
magnitude faster than other clustering algorithms and are more
widely used in processing millions of 16S rRNA sequences
(Cai and Sun, 2011).

Although heuristic clustering approaches are computationally
efficient, they always overestimate the OTUs number and
produce lower clustering quality than other methods (Huse et al.,
2010; Wei and Zhang, 2015). Because most existing heuristic
clustering methods just use one single sequence as the seed for
each cluster, the results show an obvious sensitivity to the selected
seeds that represent the clusters, especially when sequences
datasets contain sequencing errors (Zheng et al., 2012; Chen et al.,
2013a; Wei and Zhang, 2017). Therefore, selecting “good” seeds
for one cluster is profoundly significant for heuristic clustering
methods. In this work, inspired by the seed reselection procedure
in DySC and the Gaussian model representation of one cluster
in CROP, we proposed a dynamic multi-seeds clustering (namely
DMSC) method to pick OTUs. The DMSC algorithm consists of
four main phases. First, heuristically generate clusters according
to the distance threshold, which is similar to classical heuristic
methods (e.g., CD-HIT or UCLUST). Second, when the size
of a cluster reaches the pre-defined minimum size, select the
MCS as seeds of a cluster, in which the distance between any
two sequences is less than the distance threshold. Third, a new
sequence is assigned to the corresponding cluster depending
on the average distance to MCS and the distance standard
deviation between each pairwise sequences in MCS. Finally,
DMSC dynamically updates the MCS until no sequence is merged
into the cluster.

Compared with other heuristic clustering methods, the unique
characteristics of our DMSC method mainly manifest in the
following three points. (i) DMSC selects MCS as the seeds in
one cluster instead of the single seed representation used in most
heuristic clustering methods such as CD-HIT and UCLUST; (ii)
in DMSC, the MCS of one cluster is always dynamically updated
with the cluster size increases, while the seed of each cluster in
most other heuristic methods is always fixed; and (iii) according
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to the average distance to MCS and the distance standard
deviation between each pairwise sequences in MCS, a new
sequence is assigned to the corresponding cluster, while other
heuristic methods assign the new sequence to one cluster just
base on the distance with the seed sequence. Four experimental
results demonstrate that DMSC can achieve higher quality
clusters and reduce OTU overestimation with low memory usage.
Additionally, DMSC is also robust to sequencing errors.

MATERIALS AND METHODS

The first motivation of our DMSC method is to decrease the
sensitivity of single seed representation to sequencing errors
in most heuristic clustering methods. Here we select the MCS
as seeds of a cluster, in which the distance between any two
sequences is less than the distance threshold. There are two
different parameters in DMSC approach: η (default value 25), the
minimum sequence number in a cluster to ensure that the cluster
contains enough sequences to yield a reliable MCS; and µ (default
value 3), the time (multiple) of distance standard deviation
between each pair of sequences in the MCS. These parameter
settings have been evaluated in following experiments and the
default values have robust performance. Figure 1 is a flowchart
showing the OTUs generating process with DMSC. It can be seen
that DMSC method has four main phases: (i) according to the
distance threshold θ , a series of clusters are formed by heuristic
clustering of each sequence one by one; (ii) when the size of a
cluster reaches the pre-defined minimum sequence number (η),
the MCS is selected as the seeds; (iii) according to the average
distance to MCS and the distance standard deviation (σ) between
each pairwise sequences in MCS, a new sequence is assigned to
the corresponding cluster; and (iv) after a new sequence is added
to one cluster, update the MCS.

Generating Clusters
At the beginning of DMSC, the input sequences are sorted
by abundance in a descending order. These can eliminate the
influence of sequence input order on the clustering results. Then
the first sequence is assigned to the first cluster and becomes the
seed of this cluster. The second sequence is added to the cluster
if the distance between the sequence and the seed is within the
pre-defined threshold (θ), otherwise, this sequence is stored as
a new seed for creating a new cluster. Repeat this process until
the size of a cluster reaches the predefined threshold (η), then the
MCS selection procedure is activated.

Selecting Multi-Core Sequences (MCS)
The multi-core sequences of one cluster is defined as the n-core
sequences (n ≥ 3), in which the distance between any two
sequences within the cluster is less than the distance threshold
(θ). If more than 3-core sequences are selected in the cluster,
these core sequences are taken as seeds to represent this
cluster, otherwise, one seed sequence is selected to represent this
cluster. Although the MCS selection procedure can reduce OTU
overestimation and decrease the sensitivity to the sequencing
errors, it will increase the computational burden. Considering

both the clustering quality and the computational burden, we
select more than 3 core sequences (i.e., n ≥ 3) as the seeds in
this paper. The pseudo-code for the MCS selection procedure is
outlined in the following Figure 2.

Assigning Sequences
One reason that heuristic clustering methods generally
overestimate the OTUs number is that these methods just
compare the distance with single seed to assign sequences.
Model-based clustering methods can reduce OTU overestimation
because they consider the distance distribution in one cluster.
Therefore, we introduce the distance standard deviation
(σ) between each pairwise sequences in one MCS in this
work. That is: ∣∣d(s,Mi)

∣∣ ≤ µ∗σi (1)

where Mi is the MCS of the i-th cluster, d(s, Mi) is the average
distance between sequence s and Mi, µ is the multiple constant,
σi is the distance standard deviation of Mi. If the sequence s meets
Equation 1, then s is merged into the i-th cluster. d(s, Mi) and σi
are defined as:

d (s,Mi) =
1
|Mi|

|Mi|∑
i=1

d (s, si) , si ∈ Mi (2)

σi =

√√√√√ 1
|Mi| − 1

si 6=sj∑
si,sj∈Mi

[
d
(
si, sj

)
− d̄Mi

]2
(3)

where |Mi| is the sequence number in Mi, d̄Mi is the average
distance of all pairwise sequences in Mi.

Updating MCS
Once one sequence is merged into a cluster, the MCS will be
updated according to the MCS selection procedure in Figure 2.
Therefore, the MCS of one cluster is always dynamically updating
with the cluster size increases.

After all the MCSs are no long change, all the isolated
sequences are checked and assigned to the nearest neighbor
clusters to form OTUs.

RESULTS

We compared our DMSC method with seven state-of-the-art
OTUs clustering algorithms: CD-HIT (v.4.6.8) (Li and Godzik,
2006), UCLUST (v.11.0.667) (Edgar, 2010), DBH (Wei and
Zhang, 2017), DySC (Zheng et al., 2012), ESPRIT-Forest (Cai
et al., 2017), AL clustering algorithm implemented in mothur
(v.1.40.5) (Schloss et al., 2009), and CROP (Hao et al., 2011).
Among these methods, CD-HIT, UCLUST, DySC, and DBH are
typical heuristic clustering approaches; mothur is an open source
software package for analyzing the biological sequence data, and
the AL clustering in mothur (mothur-AL) has been demonstrated
that it is a reliable method to represent the actual distances
between sequences (Westcott and Schloss, 2015); ESPRIT-Forest
is a new parallel hierarchical clustering method, and CROP is
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FIGURE 1 | Flowchart of DMSC algorithm. DMSC contains four main modules: generating clusters, selecting MCS, assigning sequences, and updating MCS. θ
denotes the distance threshold; η is the minimum sequence number of a cluster to select the MCS; Mi is the MCS of the i-th cluster; σi is the distance standard
deviation between each pairwise sequences in Mi ; and µ denotes the multiple.

a model-based method. We conducted these methods on four
benchmark datasets including two simulated dataset and three
published real-life datasets. Some features of each benchmark
dataset are shown in Table 1.

The metrics of OTUs number, NMI, and MCC are adopted
to access the performance of every OTU picking method in the
following experiments. The metrics of OTUs number and NMI
have been widely used to compare the performance of OTU
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FIGURE 2 | The pseudo-code of the MCS selection procedure for one cluster.

picking methods based on the known ground truth information
datasets (Sun et al., 2011; Schmidt et al., 2015). Although the
ground truth information (i.e., how many species the dataset
includes, and what species the sequence belongs to) is always
unknown for most real-life 16S rRNA sequencing dataset, it can
be partially resolved by applying some searching methods against
the reference database to annotate the 16S rRNA sequences (Cai
and Sun, 2011; Chen et al., 2013b; Edgar, 2018). MCC metric was
also used to evaluate the performance of OTU picking methods
based on the sequence distance and clustering threshold without
relying on an external reference (Schloss and Westcott, 2011),
which is an objective metric to assess the clustering quality of
OTUs picking methods (He et al., 2015; Westcott and Schloss,
2015; Schloss, 2016). The computational formulas of NMI and
MCC are listed in Supplementary File.

All methods were executed on an Ubuntu 16.04.5 server with
16 3.2-GHz Intel Xeon (E5-2667V4) processors and 128 GB of
RAM. And the running command lines of each method are listed
in Supplementary Table S1.

Experiment 1: Stacked_60 Dataset
The Stacked_60 benchmark dataset was constructed by Barriuso
et al. (2011), which is retrieved from 59 different bacterial
genera in the NCBI and trimmed to obtain the V6 region

(from positions 963 to 1063 in E. coli). Stacked_60 contains
random mutation and is specially designed to test the accuracy
of OTUs picking methods at different sequence distances. The
taxa distance range and the taxa abundance are in 0.01–0.38 and
0.001–0.003, respectively.

Table 2 lists the maximum NMI value and the corresponding
OTUs number, from which we can see that DMSC and CROP
have higher maximum NMI value than the other methods,
and different methods achieve the maximum NMI values at
different distance thresholds. At the respective maximum NMI
value, DMSC and CROP inferred 59 OTUs which equals to
the expected number, while DBH, DySC, CD-HIT, mothur-AL
and ESPRIT-Forest overestimated OTUs number, and UCLUST
underestimated OTUs number.

Figure 3 shows the NMI values of DMSC, CROP, UCLUST,
CD-HIT, DySC, DBH, mothur-AL, and ESPRIT-Forest with
different distance thresholds on the Stacked_60 dataset. It can
be seen that the NMI value of DMSC is almost identical to the
CROP from 0.03 to 0.05 distance threshold, and also higher
than that of other methods. In the range of 0.06∼0.09, DMSC
achieved the highest NMI values, while the NMI value of CROP
continuously drops, indicating that CROP is more sensitive to the
distance threshold. Because the NMI values vary a lot in the range
of 0.01∼0.02 distance thresholds for all methods, Figure 3 just
represents the NMI values from 0.03 to 0.10 distance thresholds.
Figure 4 depicts the MCC curves of eight methods with different
distance thresholds on Stacked_60 dataset. From Figure 4 we
can see that DMSC method always achieved the highest MCC
value in the range of 0.01∼0.10 distance thresholds. The NMI
values, OTUs number and MCC values of eight methods in
the range of 0.01∼0.1 distance thresholds can be found in
Supplementary Table S2.

These results in Figures 3, 4, Table 1, and Supplementary
Table S2 show that our DMSC method can accurately estimate
the species number and obtain better cluster quality for
Stacked_60 dataset.

Experiment 2: Simulated Dataset
We then considered another widely used simulated dataset
to estimate the clustering accuracy, where the ground truths
were directly taken from a simulator software (Cheng et al.,
2012). A total of 22,000 sequences (∼500 bp) from 11 taxa
were generated and each taxon contains 2,000 sequences with
different substitution rates. Among these 11 taxa, three taxa are
within 1% different from each other. Therefore, the expected
OTUs number is 9.

TABLE 1 | Details of the benchmark datasets.

Datasets Taxon
number

Sequence
number

Average
length

Variable
regions

Data source

Stacked_60 dataset 59 2,614 98 bp V6 Barriuso et al., 2011

Simulated dataset 11 22,000 500 bp – Cheng et al., 2012

V6 dataset 177 ∼310 K 121 bp V6 Chen et al., 2013a

V4 dataset 68 ∼511 K 253 bp V4 Westcott and Schloss, 2015

Error datasets 30 150 K 120 bp V6 Wei and Zhang, 2017
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TABLE 2 | The maximum NMI values and OTUs number with different methods on stacked_60 dataset.

Methods DMSC
(0.03)

CROP
(0.03)

DySC
(0.03)

DBH
(0.02)

CD-HIT
(0.04)

UCLUST
(0.09)

mothur-AL
(0.06)

ESPRIT-Forest
(0.08)

Max. NMI 0.99951 0.99951 0.99475 0.99868 0.99557 0.98528 0.96650 0.96614

OTUs 59 59 60 62 65 56 161 86

The value in the bracket is the distance threshold where each method achieves its maximum NMI. For mothur-AL method, the maximum NMI of mothur-AL is selected
from the distance range of 0.01∼0.06 for reason that mothur-AL method just obtains the clustering results in these distance thresholds.

FIGURE 3 | NMI values of different algorithms on stacked_60 dataset.

FIGURE 4 | MCC values of different methods on stacked_60 dataset.

By setting different distance thresholds ranging from 0.01 to
0.1, the maximum NMI values of seven methods at different
distance thresholds and the corresponding inferred OTUs
number are reported in Table 3, from which we can see that
DMSC achieved the highest NMI (0.9503). Meanwhile, DMSC,

CROP, DBH, and CD-HIT successfully obtained 9 OTUs at
their best NMI value, while DySC, UCLUST, and ESPRIT-Forest
overestimated OTUs. The NMI curves of seven methods are
shown in Figure 5, from which we can see that DMSC achieved
better NMI values than other methods at distance intervals
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TABLE 3 | Maximum NMI values of seven methods on the simulated dataset.

Methods DMSC
(0.02)

CROP
(0.03)

DySC
(0.03)

DBH
(0.03)

CD-HIT
(0.05)

UCLUST
(0.05)

ESPRIT-Forest
(0.05)

Maximum NMI 0.9503 0.9334 0.9252 0.9293 0.9334 0.9107 0.8979

OTUs number 9 9 17 9 9 10 13

The value in the bracket is the distance threshold where each method achieves its maximum NMI.

[0.01, 0.04] and [0.07, 0.1], reaching the highest NMI value at
0.02 distance threshold; other methods obtained their best NMI
values at different distance thresholds. Figure 6 represents the
MCC curve of seven methods with different distance thresholds
ranging from 0.01 to 0.1, from which we can see that MCC
values of DMSC are higher than that of other six methods in
the range of 0.02∼0.07 distance thresholds. The NMI values,
OTUs number and MCC values of seven methods are listed
in Supplementary Table S3. These results indicate that DMSC
has a better cluster performance than ESPRIT-Tree, CD-HIT,
UCLUST, DBH, CROP, and DySC.

Experiment 3: V6 Variable Region
Dataset From Human Gut Flora
In this experiment, we use one real-world benchmark dataset
of the V6 variable region from human gut flora to evaluate the
performance of OTUs picking methods. This dataset contains
∼310K sequences (average length: ∼121 bp) which are classified
into 177 species and covers the V6 hypervariable region of 16S
rRNA gene (Chen et al., 2013a). In order to reduce computational
burden and remove statistical variations, each method was run
10 times and ∼30K reads were randomly extracted from the V6
dataset in each run.

Figure 7 describes the average NMI value as a function of
the distance threshold over 10 runs for six methods, from which

we can observe that DMSC has the highest NMI values than
other methods in the range of 0.01∼0.07 distance thresholds, and
DBH also achieved higher NMI values than CD-HIT, UCLUST,
DySC, and ESPRIT-Forest from distance threshold interval [0.02,
0.08]. CD-HIT has the lowest NMI values except at 0.1 distance
threshold. The average OTUs number inferred with six methods
at different distance thresholds are described in Supplementary
Figure S1, from which we can see that DMSC inferred fewer
OTUs than CD-HIT, UCLUST, DBH and ESPRIT-Forest, but
more than DySC at different distance thresholds. These can be
explained by the fact that the sequence distance calculation in
DySC is based on pairwise k-mer distances (Zheng et al., 2012),
while other methods (including DMSC) are based on pairwise
sequence alignment (PSA). It’s reported that k-mer distance is
looser than PSA (Sun et al., 2009). In other words, when setting
to the same threshold (e.g., 0.03), more sequences of using the
k-mer distance will satisfy the threshold to be clustered into
one group, resulting in that DySC trends to generate fewer
OTUs. However, DySC always gives less clustering accuracy and
quality than DMSC in terms of the NMI (Figure 7) and MCC
(Figure 8) evaluation metrics. Supplementary Figure S2 reports
the NMI std of six methods at different distance thresholds
with 10 re-sampled runs, from which we can see that the NMI
std of DMSC varies in the scope of 0.003∼0.012 at different
distance thresholds. DMSC has the lowest std than other five
methods in the range of 0.06∼0.09 distance thresholds and

FIGURE 5 | NMI values of different methods on the simulated dataset.
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FIGURE 6 | MCC values of different methods on the simulated dataset.

FIGURE 7 | Average NMI values of six methods at different distance thresholds on V6 data set.

almost equals to CD-HIT and UCLUST in the range of 0.01∼0.05
distance thresholds. Figure 8 presents the MCC curves of six
methods with different distance thresholds, from which we can
see that the MCC values of DMSC and DBH are higher than
that of other four methods in the range of 0.03∼0.10 distance
thresholds. For reason that CROP takes longer running time
to output the OTUs for the large-scale dataset, we did not
list the results of CROP in this experiment. Supplementary
Table S4 lists the NMI values, OTUs number and MCC values
of six methods, and Supplementary Table S5 gives the t-test
results of DMSC compared with the other four methods. These

results in Figures 7, 8, Supplementary Figures S1, S2, and
Supplementary Tables S4, S5 show that DMSC can generate the
most robust estimations.

Experiment 4: V4 Variable Region
Dataset From the Murine Gut
In this experiment, we adopt another real-world benchmark
dataset of the V4 variable region from the Murine gut
to assess the performance of OTUs picking methods. The
V4 dataset was generated by Illumina’s MiSeq platform
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FIGURE 8 | The MCC values of six methods on V6 dataset.

(Westcott and Schloss, 2015), covering the V4 hypervariable
region of 16S rRNAs from Murine microbiota [36]. The raw
sequences of V4 dataset can be freely obtained from http:/www.
mothur.org/MiSeqDevelopmentData/StabilityNoMetaG.tar. The
ground-truth of V4 dataset can be extracted as followings.
First, the pair end raw sequences were merged by FLASH
(Magoč and Salzberg, 2011), then the usearch (Edgar, 2010)
program was adopted to filter the merged sequences. Finally,
the Python script (assign_taxonomy.py) in QIIME (Caporaso
et al., 2010) was used to align the sequences for obtaining
the ground-truth information with a stringent criterion. If
the identity percentage is more than 97% (≥97%) and the
length of the aligned region is more than 90% (≥90%)
of the total length, the annotated sequences are retained.
Thus, we obtained about ∼511K annotated reads, which were
classified into 68 genera.

By setting different distance thresholds ranging from 0.01
to 0.15, the NMI curves of five methods are shown in
Figure 9, and the inferred OTUs number of five methods at
different distance threshold are presented in Supplementary
Figure S3. Figure 10 is the MCC curves of five methods at
different distance thresholds. The NMI values, OTUs number
and MCC values inferred with five methods at different distance
thresholds are listed in Supplementary Table S6. Because DySC
software returns a debug information, ESPRIT-Forest appears
a segmentation fault (core dumped) information, and CROP is
time-consuming on this large V4 dataset, we did not give the
results of DySC, ESPRIT-Forest, and CROP in this experiment.

From Figure 9, we can see that most of NMI values of
DMSC are higher than that of other four methods in the range
of 0.01∼0.13 distance thresholds, and it is obviously higher
than other three methods in the distance range of 0.09∼0.12.

The results in Supplementary Figure S3 show that DMSC and
DBH inferred less OTUs than other methods, and DMSC inferred
67 OTUs which is near the ground truth at 0.09 distance
threshold. From Figure 10, we can see that the MCC values of
DMSC are higher than that of the other four methods except
at 0.10 distance threshold. These results suggest that DMSC can
achieve higher clustering quality than UCLUST, CD-HIT, DBH,
and mothur-AL methods.

DISCUSSION

Inspired by the seed reselection strategy and model-based
methods, we herein developed a novel dynamic multi-seeds
heuristic method for picking OTUs from 16S rRNA sequences.
Besides the distance threshold θ given by users, DMSC also
needs another two parameters in picking OTUs procedure: η

and µ. How these two parameters affect the clustering results
needs to be further investigated. In the following, we tested the
parameter effect on the simulated dataset used in experiment
2. We first tested the effect of the η by fixing µ (e.g., µ = 3).
The NMI values at different distance thresholds are presented
in Supplementary Figure S4, from which we can see that
we can see that the NMI values of η = 10, 15, 20, 15 in
the range of 0.02∼0.1 distance thresholds are nearly equal,
indicating that η has little influence on the clustering results.
Supplementary Figure S5 shows the effect of µ by fixing η

(e.g., η = 25). From Supplementary Figure S5, we found that
the NMI values of µ = 3, 4 are higher than that of µ = 1,
2 in the range of 0.01∼0.1 distance thresholds. Therefore, we
select η = 25 and µ = 3 as the default parameter values in
our DMSC method.
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FIGURE 9 | NMI values of five methods at different distance thresholds on V4 dataset.

FIGURE 10 | MCC values of five methods at different distance thresholds on V4 dataset.

Sequencing errors (i.e., deletion, insertion, and substitution)
are inevitably introduced during the high-throughput sequencing
procedure, which can easily lead to OTUs overestimation
(Schmidt et al., 2015). In order to estimate the robustness of
handling sequencing errors for different OTU picking methods,
ten simulated datasets in DBH (Wei and Zhang, 2017) with error
rate varies from 0.21 to 0.42% are used to test our DMSC method.
Each dataset contains 150,000 sequences from 30 taxa and each
taxon contains 5,000 sequences. The OTUs number inferred at

0.05 distance threshold is shown in Supplementary Figure S6,
from which we can see that with the error rate increase from
0.21 to 0.41%, DMSC infer a smaller number of OTUs than other
methods, especially in the 0.33∼ 0.41% scope of higher error rate,
the OTUs number inferred by DMSC is obviously less than that
of other five methods. Table 4 lists the average OTUs number and
std (σ) in the scope of 0.21∼0.41% sequencing errors, from which
we can see that the average OTUs number of DMSC is smaller
than that of other five methods, and the standard deviation is

TABLE 4 | Average OTUs number and standard deviation of six methods in the scope of 0.21∼0.41% sequencing errors at 0.05 distance threshold.

DMSC UCLUST DBH CD-HIT DySC ESPRIT-Forest

Average OTUs 34 38 37 39 46 92

σ 3.748 9.605 6.863 11.253 3.588 24.691
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lower than that of UCLUST, DBH, CD-HIT, and ESPRIT-Forest,
near to DySC. Supplementary Table S7 reports the average OTUs
number and std at 0.03 distance threshold, from which we can see
that the standard deviation of DMSC is lower than that of other
five methods. These results indicate that DMSC can better reduce
the OTUs overestimation than the other five methods.

The rapid increase in the amount of sequencing data provides
a valuable source to significantly understand bacterial diversity
from the environmental samples, meanwhile introducing a
serious computational challenge for processing these mass data.
In addition to the clustering accuracy, computational complexity
is also used to assess a new clustering method. The computational
complexity of DMSC mainly contains three components. (1) For
generating clusters, a total of N sequences needs to be processed.
The large maximum complexity is O(N). (2) In the MCS selection
procedure, a distance matrix with size of η × η needs to be
calculated with a complexity of O(K × η2), where K is the
number of clusters with size larger than η. (3) In the sequences
assignment procedure, each sequence is compared with each
cluster, resulting in a complexity of O(K × N). As a result, the
total time complexity of DMSC is O(N+K × η2

+K × N), which
is larger than that of traditional heuristic clustering methods such
as CD-HIT and UCLUST, but smaller than that of model-based
clustering methods such as CROP. In this work, all methods were
executed with 16 threads. In order to graphically demonstrate the
scaling property of our DMSC method, we compared DMSC with
CD-HIT, UCLUST, DBH, DySC, mothur-AL and ESPRIT-Tree
on V6 dataset at different sequence size ranging from 1 K to 100
M. Supplementary Figure S7 shows the running time (wall time)
of seven methods. We can see that with the sequence number
increases, the speed of DMSC is much faster than mothur-AL,
and little lower than the traditional heuristic methods (e.g.,
CD-HIT, UCLUST, and DBH) that just use one sequence as the
seed for each cluster. For the memory usage, Supplementary
Figure S8 graphically describes the memory property of seven
methods. From Supplementary Figure S8, we can see that DMSC
needs a little larger memory usage than the classical greedy
clustering methods such as CD-HIT, UCLUST and DySC, and
much smaller memory storage than ESPRIT-Forest and mothur-
AL for large-scale sequences.

CONCLUSION

16S rRNA high-throughput sequencing has become a powerful
and convenient technology for studying microbial diversity and
composition in the environmental samples. Until now, numerous
heuristic clustering methods have been developed to pick OTUs,
but most of them just select one sequence as the cluster
seed, resulting in OTUs overestimation and sensitivity to the
sequencing errors. In this work, we proposed a novel dynamic
multi-seeds heuristic clustering method (namely DMSC) by

incorporating the dynamical multi-seeds updating strategy and
the heuristic clustering procedure. Meanwhile, DMSC considers
the distance’s standard deviation within the MCS to generate
OTUs. DMSC method is inspired by the idea of seed reselection
procedure in DySC, but there are three main differences between
DMSC and DySC: (i) DMSC selects MCS as the seeds in
one cluster, while DySC just uses one single sequence as the
seed; (ii) DySC only updates seed once time, then the seed
will be fixed, while DMSC dynamically updates the MCS if a
new sequence is added to one cluster, therefore, the seeds is
always updated with the cluster size increases; and (iii) a new
sequence is assigned to the corresponding cluster depending
on the average distance to MCS and the distance standard
deviation between each pairwise sequences in MCS, while DySC
assigns the new sequence just based on the distance to seed
sequence. Compared with the state-of-the-art methods, such
as UCLUST, CD-HIT, DBH, DySC, ESPRIT-Forest, CROP, and
mothur-AL, the clustering results show that DMSC can produce
OTUs with higher quality and reduce OTUs overestimation with
low memory usage. Additionally, DMSC is also robust to the
sequencing errors.
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