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Peptidoglycan (PG) is an essential molecule for the survival of bacteria, and thus, its 
biosynthesis and remodeling have always been in the spotlight when it comes to the 
development of antibiotics. The peptidoglycan polymer provides a protective function in 
bacteria, but at the same time is continuously subjected to editing activities that in some 
cases lead to the release of peptidoglycan fragments (i.e., muropeptides) to the 
environment. Several soluble muropeptides have been reported to work as signaling 
molecules. In this review, we summarize the mechanisms involved in muropeptide release 
(PG breakdown and PG recycling) and describe the known PG-receptor proteins 
responsible for PG sensing. Furthermore, we overview the role of muropeptides as 
signaling molecules, focusing on the microbial responses and their functions in the host 
beyond their immunostimulatory activity.

Keywords: peptidoglycan, PG cleaving enzymes, PG recycling, PG receptors, signaling functions, bacterial 
interactions

INTRODUCTION

Most bacteria surround themselves with a protective cell wall to repel environmental challenges. 
These tough cell walls are primarily composed of a peptidoglycan (PG) exoskeleton, also called 
the murein sacculus (Vollmer et  al., 2008a; de Pedro and Cava, 2015). PG is a highly dynamic 
macromolecule subjected to constant remodeling in response to changing environmental conditions 
(Horcajo et  al., 2012). It counteracts osmotic pressure, maintains cell shape and integrity, and 
serves as a protective barrier against physical, chemical, and biological threats (Holtje, 1998; Vollmer 
et  al., 2008a). PG is found on the outside of the cytoplasmic membrane of almost all bacteria 
(Nanninga, 1998; Mengin-Lecreulx and Lemaitre, 2005) and presents a conserved overall composition 
and biogenesis, although the complexity and thickness of the structure vary (Cava and de Pedro, 2014). 
Peptidoglycan also serves as a scaffold for anchoring other cell envelope components such as 
proteins (Dramsi et  al., 2008) and teichoic acids (Neuhaus and Baddiley, 2003).

Structurally speaking, the PG sacculus is made up of linear glycan strands cross-linked to 
each other by short peptide chains forming a continuous layer. The glycan backbone generally 
consists of repeating disaccharides of N-acetylglucosamine (NAG) and N-acetylmuramic acid 
(NAM) covalently attached to a peptide chain containing 2–5 amino acid residues. The archetypical 
peptide stem structure is L-alanine, D-glutamic acid, a dibasic amino acid [typically 
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meso-diaminopimelic acid (mDAP) or L-lysine], D-alanine, and 
D-alanine (Figure 1A). Some of the peptide chains from adjacent 
glycan strands are cross-linked, resulting in a thick three-
dimensional multi-layered meshwork. This arrangement is widely 
conserved across most bacterial species; however, the chemistry 
of the residues of the peptide stem, the glycan chains, and the 
type of crosslinking can vary (Vollmer et  al., 2008a). These 
variations alter the properties of the cell wall and allow for great 
diversity in fine structure and architecture (Schleifer and Kandler, 
1972; Vollmer and Bertsche, 2008; Cava and de Pedro, 2014; 
Turner et  al., 2014). For more detailed information about PG 
structure, synthesis, and regulation, we refer to extended reviews 
(Vollmer et  al., 2008a; Typas et  al., 2011; Egan et  al., 2017).

During growth and maturation, PG is degraded by dedicated 
enzymes, which shed PG fragments (or muropeptides) in a 
process termed PG turnover. In E. coli, in a single generation 
of growth, as much as 50% of the PG is excised from the 
cell wall as anhydromuropeptides, suggesting a robust turnover 
of the cell wall (Doyle et  al., 1988). Around the 95% of these 
are efficiently recovered and reused through the PG-recycling 
pathway (Goodell and Schwarz, 1985; Park and Uehara, 2008).

In recent years, PG has been of much interest not only 
because it is one of the major antibiotic targets (Kohanski 
et  al., 2010) but also due to its importance in host physiology 
and metabolism since it presents immunostimulatory activities 
(Girardin et  al., 2003a,b). Some PG-derived fragments are 
recycled for cell wall biosynthesis but they are also used in 
bacterial communication and are detected by eukaryotes to 
initiate an immune response (Girardin et al., 2003a,b; Boudreau 
et  al., 2012; Woodhams et  al., 2013; Dworkin, 2014). Recent 
data suggest that muropeptides have many diverse roles, including 
involvement in symbiotic associations, microbial interactions, 
and pathogenesis in animals and plants. In this review, we focus 
on the signaling functions of PG fragments, describing the 
mechanisms involved in the release of these molecules and 
the means by which they are sensed by bacterial and host cells.

MUROPEPTIDES RELEASE

It is well documented that the PG sacculus is remodeled during 
bacterial growth and that this process causes the release of 
muropeptides. The discharge of PG fragments can occur as a 
consequence of the disruption of PG during growth or by the 
complete lysis of cells.

PG Cleaving Enzymes
Cleavage of PG is required for fundamental physiological 
processes in bacteria such as enlargement of the PG sacculus 
during bacterial growth and cell separation during cell division 
(Holtje, 1998; Layec et  al., 2008; Uehara et  al., 2010; Typas 
et  al., 2011; Uehara and Bernhardt, 2011; Waldemar, 2012); 
incorporation and assembly of protein complexes into the 
cell wall (e.g., secretion, conjugation, and flagellum systems) 
(Dijkstra and Keck, 1996; Koraimann, 2003; Scheurwater 
et  al., 2008; Scheurwater and Burrows, 2011; Stohl et  al., 
2013); or sporulation and resuscitation of dormant states 
(Keep et al., 2006; Wyckoff et al., 2012; Popham and Bernhards, 
2015). Enzymes cleaving the bonds that exist within PG are 
generally known as PG hydrolases (PGHs), and although 
some (i.e., lytic transglycosylases) do not present chemical 
hydrolytic activity, from now on we  will refer to all them 
as PGHs. Despite the large number and diversity of proteins 
cleaving the PG, they can be  grouped accordingly to the 
type of the bond cleaved such as glycosidases (cleaving 
glycosidic bonds of the glycan strands), amidases (hydrolyzing 
the amide bond between the first amino acid of the stem 
peptide and the NAM), and peptidases (cleaving bonds 
between amino acids present in the stem peptides) (Figure 1B). 
They often act on a particular type of PG, cleaving intact 
high-molecular-weight murein sacculi and its soluble fragments 
(Vollmer et  al., 2008b).

PG glycan chains contain two glycosidic bonds sensitive to 
the activity of glycosidases: the bond between a NAG and the 

A B

FIGURE 1 | Schematic representation of muropeptides and peptidoglycan. (A) The archetypical structure of muropeptides consist of NAG-NAM disaccharides 
attached to a peptide chain containing 2- to 5 amino acid residues, typically: L-alanine, D-glutamic acid, mDAP/L-Lys, D-alanine, and D-alanine. (B) Diverse 
cleavage points of PG cleaving enzymes: glucosaminidases (pink), amidases (yellow), peptidases (blue), and muramidases (green) are shown.
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adjacent NAM is hydrolyzed by N-Acetyl-β-glucosaminidases 
(N-acetylglucosaminidases), while muramidases (or muralytic 
enzymes) cleave the bond between sequential NAM and NAG 
residues (Figure 1B). Muramidases are divided into two 
subgroups depending on their catalytic mechanism: lysozymes 
are hydrolytic enzymes that add water across the glycosidic 
bond during the cleavage generating a reducing NAM product; 
while lytic transglycosylases (LTs) catalyze an intramolecular 
rearrangement involving the C-6 hydroxyl group of the NAM 
resulting in the formation of unique 1,6-anhydro-N-
acetylmuramic acid products, the so-called anhydromuropeptides 
(Holtje et  al., 1975; Thunnissen et  al., 1995; Callewaert and 
Michiels, 2010). PG peptidases can be classified into two groups: 
carboxypeptidases (removing the C-terminal amino acid of 
peptide stems) and endopeptidases (cleaving within the peptide 
cross-links), and both can be  referred to as DD-, LD-, or 
DL-peptidases based on the isomeric form of the two amino 
acids that are split (Vollmer et  al., 2008b).

PGHs are ubiquitous among all eubacteria (Shockman et al., 
1996; Firczuk and Bochtler, 2007; Layec et  al., 2008; Sharma 
et  al., 2016). Many species present a large number of PG 
cleaving enzymes, and while for some of them, functional 
redundancy has been observed under laboratory conditions 
(van Heijenoort, 2011; Rolain et  al., 2012; Singh et  al., 2012), 
and specific functions have been demonstrated for others 
(Schaub et al., 2016; Santin and Cascales, 2017). During growth, 
PGHs are capable of fulfilling the PG-remodeling demands 
acting on the murein sacculus without disrupting the structural 

integrity of the cell wall, but a regulatory failure of their activity 
could easily lead to uncontrolled PG degradation and consequent 
cell lysis (autolysis) (van Heijenoort, 2011). Therefore, bacterial 
PGHs (so-called autolysins) must be  regulated in order to 
prevent accidental lysis (Rice and Bayles, 2008). Regulation of 
bacterial PGH activity has been characterized at different levels 
including gene expression, subcellular localization, the formation 
of multi-enzyme catalytic complexes, or modification of the 
PG substrate (Holtje and Tuomanen, 1991; Vollmer et al., 2008b; 
Chapot-Chartier, 2010; Morlot et  al., 2010).

The cleavage of covalent bonds in the murein sacculus during 
cell wall metabolism leads to the release of PG-derived material. 
Depending on the cleaving enzyme, different fragments can 
be  released from the PG sacculus: both lysozymes 
and  lytic  transglycosylases release disaccharide-peptides, but 
while the hydrolytic reaction of lysozymes generates a 
terminal  reducing NAM (Callewaert and Michiels, 2010), lytic 
transglycosylases produce anhydromuropeptides which present 
a 1,6-anhydro ring at the NAM (anhNAM) (Holtje et al., 1975); 
monosaccharide-peptides (named here muramyl peptides) can 
also be  produced by the activity of N-acetylglucosaminidases 
(Votsch and Templin, 2000). Even though peptidase or amidase 
activities do not release muropeptides or muramyl-peptides 
themselves, their role remodeling the high-molecular-weight 
murein sacculus or its soluble fragments (e.g., amidase activity 
releases NOD1-stimulatory free peptides) certainly shape the 
number and the chemical composition of the released molecules 
(Lenz et  al., 2016).

FIGURE 2 | Peptidoglycan recycling and muropeptide release. PG cleaving enzymes digest the sacculi delivering PG fragments to the periplasm, which can 
be either released to the environment or transported into the cytoplasm through PG transporters. Once in the cytosol, PG fragments might enter the recycling 
pathway to finally be reincorporated into the newly polymerized PG mesh or used as an own-energy source by the cell. Part of PG-turnover products is released to 
the environment, where are detected by other cells and can act as signaling molecules. EM: extracellular matrix.
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PG fragments are solubilized from the murein sacculus 
in active bacteria by a process termed cell wall turnover 
(Figure 2) that leads to the excision of muropeptides, 
shedding, and cell wall catabolism (Chaloupka, 1962; Doyle 
et  al., 1988). As mentioned, up to half of the pre-existing 
PG is turned over and discharged from the wall every 
generation in both Gram-positive and Gram-negative bacteria 
(Mauck et  al., 1971; Wong et  al., 1974; Dworkin, 2014). 
The released material can be  reimported into the bacterial 
cytoplasm and reused for PG synthesis or as nutrient or 
energy sources through an efficient PG recycling pathway 
(Chaloupka and Strnadova, 1972; Goodell and Schwarz, 1985; 
Park and Uehara, 2008; Borisova et  al., 2016) or liberated 
to the environment. Accordingly, the bacterial PG recycling 
pathway modulates to some extent the bioavailability of 
soluble fragments (Johnson et  al., 2013).

PG Recycling
Historically, it has been assumed that PG recycling was limited 
to Gram-negative bacteria since, in comparison, larger amounts 
of PG turnover products were isolated from the growth medium 
of several Gram-positives (Mauck et  al., 1971). Nevertheless, 
orthologs of some recycling enzymes are present in most 
Gram-positive bacteria (Park and Uehara, 2008; Litzinger et al., 
2010; Reith and Mayer, 2011). In fact, recent studies have 
shown that PG recycling also occurs in different Gram-positives 
(Borisova et  al., 2016; Kluj et  al., 2018), although reuse of 
PG sugars and peptide turnover products for murein synthesis 
in these organisms is currently unclear. PG recycling has been 
more extensively studied in Gram-negative bacteria (Johnson 
et  al., 2013; Dhar et  al., 2018) where recycling begins with 
degradation of the PG by the activity of PGHs. LTs are the 
main enzymes involved in high-molecular-weight sacculus 
degradation and therefore play a key role in PG recycling 
(Dominguez-Gil et  al., 2016).

Most bacteria encode multiple LTs (e.g., 8 have been described 
in E. coli and 11  in P. aeruginosa), which can be  divided into 
soluble periplasmic LTs (named Slts) or membrane-attached 
LTs (named Mlts), and can perform the cleavage at the end 
of the glycan strands (exolytic) and/or in the middle of the 
PG chains (endolytic) (Dik et  al., 2017). Although redundancy 
in generating soluble anhydromuropeptides has been observed 
by single and multiple deletion analysis (Korsak et  al., 2005; 
Lamers et al., 2015), a unique contribution from some hydrolytic 
enzymes has also been proven (Kraft et  al., 1999). Particularly, 
Slt70 of E. coli is considered to be  the major LT involved in 
PG-turnover, as it has been shown to be  the main enzyme 
following β-lactam treatment (Cho et  al., 2014).

Depending on the efficiency and regulation of the PG-recycling 
pathway of the bacterium, anhydromuropeptides can either 
be  transported to the cytoplasm (where they are subsequently 
processed by the activity of several enzymes) or released to 
the environment by a currently unknown mechanism (Figure 2). 
In E. coli, the gate of entry for the internalization of soluble 
anhydromuropeptide monomers (NAG-anhNAM-peptides) into 
the cytoplasm is the AmpG permease, an inner transmembrane 

protein that specifically takes up anhydromuropeptides or free 
anhydrodisaccharides (Cheng and Park, 2002). Deletion of the 
gene encoding AmpG prevents the uptake of anhydromuropeptides 
leading to their accumulation in the medium (Jacobs et  al., 
1994; Wiedemann et al., 1998; Garcia and Dillard, 2008; Nyholm, 
2009) revealing the importance of recycling as a limiting factor 
for PG-fragment release. Once in the cytosol, 
anhydromuropeptides are further hydrolyzed by a mechanism 
involving a set of dedicated enzymes (extensively reviewed in 
Johnson et  al., 2013;  Dhar et  al., 2018). The specific activities 
of NagZ (N-acetylglucosaminidase) and AmpD (N-L-alanine 
amidase) on molecules presenting anhNAM structure yield NAG, 
anhNAM, and free peptides in the cytoplasm (Holtje et  al., 
1994; Cheng et  al., 2000; Votsch and Templin, 2000; Lee et  al., 
2009). Resulting tetrapeptides are hydrolyzed by the action of 
the L,D-carboxypeptidase LdcA (Templin et  al., 1999) into 
tripeptides, which can be  degraded into individual amino acids 
for utilization as nutrient or energy sources (Schroeder et  al., 
1994; Schmidt et  al., 2001; Uehara and Park, 2003) or attached 
directly to UDP-NAM by the murein peptide ligase Mpl (Mengin-
Lecreulx et  al., 1996; Das et  al., 2011). Ligated UDP-NAM-
tripeptides and processed sugar products can then be  recycled 
by entering the pathway for de novo PG synthesis (White and 
Pasternak, 1967; Uehara  et  al., 2005, 2006).

The internalization of anhydromuropeptides and subsequent 
breakdown in order to supply a demanding nutrient or energy 
sources seems unlikely under favorable growth conditions 
(Uehara and Park, 2008), and even if enzymes involved in 
PG degradation are expressed during growth (Park and Uehara, 
2008; Maqbool et  al., 2012), it has been estimated that 97% 
of the recovered material is reutilized for new PG synthesis 
(Goodell, 1985). Furthermore, even if the switching control 
between PG recycling and catabolism is not clear yet, some 
genes encoding for enzymes involved in degradation of the 
peptide have been shown to be  de-repressed under nutrient 
starvation (Shimada et  al., 2013) pointing out a tight control 
between these two processes.

Distribution and Function(s) of  
PG Recycling
While PG turnover is widespread in bacteria, it remains unclear 
how prevalent PG recycling is. Since this pathway relies upon 
the transport of anhydromuropeptides into the cytosol, the existence 
of AmpG-like permeases may be required for PG recycling. Though 
PG recycling has only been experimentally proven in certain 
species, AmpG is present in diverse Gram-negatives (Uehara and 
Park, 2008) but apparently absent in Gram-positives (Reith and 
Mayer, 2011). This observation may fit with a limited number of 
known LTs in Gram-positives (Dik et al., 2017) and their apparently 
restricted function to PG enlargement (Tsui et  al., 2016), spore 
formation/germination (Heffron et  al., 2009), or induction of 
autolysis (Wydau-Dematteis et  al., 2018). On the other hand, 
abundant lysozyme-like enzymes, N-acetylglucosaminidases and 
amidases, have been described to act at the cell wall compartment 
in Gram-positive bacteria (Lopez et  al., 1997; Smith et  al., 2000; 
Vollmer and Bertsche, 2008). These activities liberate PG fragments 
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presenting terminal-reducing NAM and free peptides, which can 
be  taken up by other specific transporters, offsetting the lack of 
an AmpG permease (Reith and Mayer, 2011).

The presence of orthologs of other genes involved in the 
pathway also points toward the existence of a dedicated route 
for recycling PG-degradation products. In this regard, genes 
involved in the processing and reutilization of PG sugars are 
widespread among both Gram-negative and Gram-positive 
bacteria (Jaeger and Mayer, 2008; Borisova et al., 2014), suggesting 
an extensive role and consequently important function(s) of 
PG recycling. Though the primary function of PG recycling 
is not clear (it is not essential under experimental conditions) 
(Jacobs et  al., 1994; Cheng et  al., 2000), it has been reported 
to be  involved in a range of diverse processes. It is still widely 
thought that reutilization of PG fragments as carbon and energy 
sources is potentially critical to promote growth under nutrient-
limiting conditions, but for E. coli there is no clear evidence 
supporting this hypothesis. Nevertheless, reutilization of PG 
recycled products has been observed to be essential in particular 
cases. The use of recycled NAM for cell wall synthesis apparently 
increases survival of Bacillus subtilis and Staphylococcus aureus 
under starvation conditions during stationary phase (Borisova 
et al., 2016), which is consistent with previous findings showing 
that in Gram-positive bacteria MurQ and NagZ expression is 
higher in stationary phase (Litzinger et  al., 2010; Botella et  al., 
2011). In the Gram-negative oral anaerobe Tannerella forsythia, 
which is unable to synthesize its own PG sugars, scavenging 
environmental muropeptides (released by cohabiting bacteria) 
through an AmpG-like transporter is vital for PG-synthesis 
(Ruscitto et  al., 2017). Additionally, in two Cyanobacteria 
species, PG recycling has been suggested to be  an energy-
saving strategy to promote growth under light-limiting conditions 
(Jiang et  al., 2010).

Aside from the importance of the reutilization of PG products, 
other functions proposed for PG recycling are more related 
to the production and accumulation of solubilized cell wall 
fragments when the pathway is not working efficiently. In this 
regard, a variety of messenger functions have been attributed 
to PG fragments, which are compiled below.

Alternative Ways to Produce Soluble  
PG Fragments
The essentiality and uniqueness of the bacterial PG make this 
structure an excellent antibacterial target (Kohanski et al., 2010; 
Muller et al., 2017). It is therefore not surprising that lysozymes, 
which exhibit a highly specific cleavage activity on PG, are 
widespread (Callewaert and Michiels, 2010). Although the 
antimicrobial action of lysozymes is also intimately related to 
their structure (Ibrahim et  al., 2001), their catalytic activity 
disrupts PG by hydrolyzing the β-1,4 glycosidic bonds linking 
adjacent PG monomers, resulting in cell lysis and successive 
release of muropeptides. Production of lysozymes constitutes 
a natural defence mechanism against bacterial pathogens 
(Bertsche et  al., 2015), and consequently, pathogenic bacteria 
have developed different mechanisms to evade lysozyme action 
such as modification of the PG (Yadav et  al., 2018), alteration 

of the charge, and strength of the envelope or the production 
of lysozyme inhibitors (Ragland and Criss, 2017).

As a defence mechanism, plants and animals have exploited 
PG structure and developed mechanisms to monitor the presence 
of bacteria through PG recognition proteins (PGRPs) (Royet 
et al., 2011; Gust, 2015), some of which also present PG-cleavage 
activity separate from their ability to sense bacterial PG (Royet 
and Dziarski, 2007; Royet et  al., 2011). These PGRPs present 
N-acetylmuramoyl-L-alanine amidase activity that hydrolyzes 
the amide bond between NAG and L-alanine in peptidoglycan 
and removes the stem peptides from the glycan chain, 
contributing to the release of PG fragments to the environment.

Furthermore, many Gram-negative bacteria can interact with 
other microbes and the host by releasing outer membrane 
vesicles (OMVs) to the environment (Kulp and Kuehn, 2010). 
Formation of OMVs has also been suggested as another 
mechanism of delivering peptidoglycan in several Gram-negative 
human pathogens (Kaparakis et  al., 2010; Bielig et  al., 2011).

DETECTION OF RELEASED 
MUROPEPTIDES

Specific roles for a variety of soluble PG fragments as messenger 
molecules have been known for decades (Adam and Lederer, 
1984) and have come into focus more recently. Microbe-associated 
molecular patterns (MAMPs) are defined as molecular signatures 
highly conserved in bacteria but absent from the host cells 
(Boller and Felix, 2009). MAMPs are detected by specific 
receptors termed pattern recognition receptors (PRRs) that are 
able to bind PG among other molecules (including 
lipopolysaccharides, lipoteichoic acids, lipoproteins, microbial 
DNA and RNA, flagellin, fungal cell wall glucans, or chitin) 
(Strober et  al., 2006; Cinel and Opal, 2009; Mogensen, 2009; 
Diacovich and Gorvel, 2010). In the host, MAMP recognition 
leads to the activation of PRR-induced signal pathways that 
trigger the expression of a broad range of molecules, including 
adaptor molecules, cytokines, chemokines, cell adhesion 
molecules, and immunoreceptors, which induce proinflammatory 
and antimicrobial responses (Akira et  al., 2006).

Despite the abundance of PG-containing microbiota and 
the numerous studies implicating PG as an immunostimulatory 
signal (Boneca, 2005), little is known about the systemic 
concentration of PG fragments in the environment or host, 
even though it is well documented that muropeptides serve 
also as signaling molecules and that a collection of receptor 
systems have evolved to detect these molecules.

PG Sensors
In the last two decades, multiple structural motifs and 
proteins have been described to bind PG. Interestingly, not 
a single class of microorganism is sensed by only one type 
of receptor, hence ensuring a rapid and potent response 
while allowing for some specificity during, for example, 
infection. In this review, we  summarize those receptors that 
recognize and bind PG.
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Lysin Motif
LysM (LysM) is considered a general PG-binding domain that 
binds specifically to molecules containing repetitions of NAG 
such as chitin, peptidoglycan, and short oligosaccharides (Buist 
et  al., 2008; Mesnage et  al., 2014). The LysM, usually 42–48 
amino acids in length, is an ubiquitous modular cassette present 
across all kingdoms except for Archaea (Zhang et  al., 2009). 
Usually, multiple motifs within one LysM domain are separated 
by spacing sequences (typically Ser-Thr-Asp/Pro) forming a 
flexible region in-between (Buist et al., 2008; Ohnuma et al., 2008). 
While it was initially identified in bacterial cell wall degrading 
enzymes [e.g., E. coli lytic tranglycosylase MltD (Bateman and 
Bycroft, 2000), Enterococcus faecalis N-acetylglucosaminidase AtlA 
(Mesnage et al., 2014), B. subtilis D,L-endopeptidase CwlS (Wong 
et al., 2014), or Lactococcus lactic N-acetylglucosaminidase AcmA 
(Steen et al., 2005)], LysM is also present in many other proteins 
involved in PG synthesis or remodeling (Buist et  al., 2008; 
Buendia et  al., 2018). The study of several proteins involved in 
bacterial peptidoglycan synthesis and remodeling has shown that 
even when PG peptide stems are not necessary for LysM binding, 
they modulate the binding affinity (Mesnage et  al., 2014). In 
plants, the recognition of PG by LysM containing proteins 
initiates a signaling cascade that can suppress the host immune 
response (Gust, 2015). Furthermore, several LysM-containing 
proteins have been described to be involved in diverse processes, 
including recognition of bacteria, during bacteria-plant symbiosis, 
bacteriophage infection, and assembly of bacterial spores 
(Andre  et  al., 2008; Buist et  al., 2008; Zipfel, 2014; Gust, 2015; 
Dworkin,  2018).

PASTA Domain
Penicillin-binding and Ser/Thr kinase-associated (PASTA) proteins 
are essential tools for bacteria to sense and respond to the host 
environment and antibiotic stress as they play a central role in 
virulence and β-lactam resistance via their ability to regulate 
metabolism, cell division, and cell wall homeostasis through the 
recognition of muropeptides (Shah et  al., 2008; Pensinger et  al., 
2018). The PASTA motif is involved in recognizing not only self-PG 
fragments but also exogenous muropeptides (Shah et  al., 2008). 
Ligands are mostly species-specific, but a preference for muropeptides 
from species producing cell walls of similar composition (for 
example, containing mDAP in the third position in the peptide 
stem) has also been described (Lee et  al., 2010; Mir et  al., 2011).

NOD-Like Receptors
Nucleotide binding and oligomerization domain proteins 
(NODs) are intracellular regulatory proteins that respond to 
a variety of signaling molecules including PG-derived fragments 
(Girardin et al., 2003c; Martinon and Tschopp, 2005; McDonald 
et  al., 2005; Dziarski and Gupta, 2006; Strober et  al., 2006; 
Le Bourhis et  al., 2007; Sorbara and Philpott, 2011; Keestra-
Gounder and Tsolis, 2017). NLRs show a conserved architecture, 
containing a C-terminal leucine-rich repeat domain, a central 
nucleotide binding and oligomerization domain, and 
N-terminal caspase activation and recruitment domain (Inohara 
and Nunez, 2003; Martinon and Tschopp, 2005). NOD1 and 

NOD2 are the best characterized NLRs, so far. NOD1 recognizes 
molecules containing D-Glu-mDAP (including PG free, mono-, 
and disaccharide peptides) (Girardin et  al., 2003a), which 
are primarily found in Gram-negative bacteria with some 
exceptions such as Bacillus spp., Mycobacterium sp., Listeria 
spp., and Lactobacillus plantarum (Girardin et  al., 2003c; 
Bourhis et  al., 2007; Mahapatra et  al., 2008; Bernard et  al., 
2011), while NOD2 senses NAM-D-Ala-D-Glu unit, 
ubiquitously present in both Gram-positive and Gram-negative 
mono- and disaccharide di-, tri-, and tetrapeptides (Girardin 
et  al., 2003b; Dagil et  al., 2016). PG fragments from 
non-invasive bacteria are transported into the eukaryotic 
cytosol through bacterial secretion systems, endocytosis, or 
specific membrane transport systems [PEPT: PepT1, PepT2, 
and pannexin (Vavricka et  al., 2004; Charrier and Merlin, 
2006; Kanneganti et  al., 2007; Swaan et  al., 2008)] or are 
delivered via OMVs (Philpott et  al., 2014; Kaparakis-Liaskos 
and Ferrero, 2015; Canas et  al., 2018), where they are sensed 
by both NOD receptors. The detection of PG by NOD proteins 
results in the activation of intracellular signaling cascades 
that triggers the nuclear factor-κB (NF-κB), innate response 
involved in inflammatory responses, and antimicrobial activity 
(Fritz et  al., 2006; Meylan et  al., 2006; Franchi et  al., 2009).

Peptidoglycan Recognition Proteins
Peptidoglycan recognition proteins (PGRPs) are evolutionarily 
conserved innate immunity molecules homologous to bacteriophage 
type 2 amidases found in animals and humans that present 
bactericidal activity (Dziarski, 2004; Royet and Dziarski, 2007). 
All PGRPs have a carboxy-terminal amidase domain (named PGRP 
domain) with a specific binding site for muramyl penta-, tetra-, 
or tri-peptides (Royet and Dziarski, 2007), but some mammalian 
PGRPs also have an additional binding site specific for bacterial 
lipopolysaccharide (Tydell et  al., 2006; Sharma et  al., 2011). So 
far, diverse PGRPs have been identified in insects [e.g., Drosophila 
has 13 PGRPs (Royet et  al., 2011; Kurata, 2014)] and mammals 
[e.g., humans and mice have four (PGLYRP 1–4) (Liu et al., 2000; 
Lu et  al., 2006; Cho et  al., 2007; Diziarski and Gupta, 2010)] that 
recognize diverse PG fragments depending on their affinity and 
have a function in antibacterial immunity and inflammation. 
Instead of activating the innate system, PGRPs directly kill bacterial 
cells by binding PG, either to muramyl-peptides exposed by lytic 
endopeptidases in Gram-positive bacteria or uniformly to the outer 
membrane in Gram-negative bacteria (Kashyap et  al., 2017). 
PGRP-PG interaction activates bacterial two-component systems 
(CssR-CssS and CpxA-CpxRin in Gram-positive and Gram-negative 
bacteria, respectively) that induce bacterial lysis by membrane 
depolarization and the simultaneous induction of oxidative, thiol, 
and metal stresses, which produce bacterial killing (Royet et  al., 
2011; Kashyap et  al., 2014, 2017). Some data also suggest that 
the amidase domain acts as a scavenger to degrade PG and control 
the immune response (Mellroth et  al., 2003).

C-Type Lectin-Like Receptors
C-type lectin-like receptors (CTLRs) are a major class of PRR 
that present an extracellular carbohydrate recognition domain 
that putatively binds sugar moieties within the glycan backbone 
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of bacterial PG or the fungal glucan mannan, in a calcium-
dependent manner (Plato et  al., 2013; Sukhithasri et  al., 2013). 
Upon ligand recognition, specialized CTLRs trigger or inhibit 
a variety of signaling pathways, thus initiating pathogen 
phagocytosis, cytokine production, and activating diverse immune 
responses (Mayer et al., 2017). CTLRs bind to various pathogens, 
including viruses, fungi, parasites, and bacteria, and little is known 
about their specific role (if any) in PG detection. Regenerating 
gene family protein 3A (Reg3A) and mannose-binding lectin 
(MBL) protein are the only ones proven so far to bind PG 
(Sukhithasri et  al., 2013). Reg3A is a lectin family protein that 
recognizes bacterial PG and presents bactericidal activity against 
Gram-positive bacteria (Lehotzky et al., 2010; van Ampting et al., 
2012), while MBL is an oligomeric, calcium-dependent serum 
protein that recognizes both bacterial and fungal cell wall 
components leading to the activation of the lectin complement 
pathway (Shi et  al., 2004; Nadesalingam et  al., 2005).

Hexokinases
Known as the first enzyme involved in glycolysis that catalyzes 
the phosphorylation of glucose to glucose-6-phosphate, 
hexokinases are also eukaryotic cytosolic sensors for PG. Recently, 
it has been suggested that the monomeric sugar NAG, generated 
during PG hydrolysis, can trigger the activation of the 
inflammatory programs in immune cells through binding and 
dissociating the cytosolic hexokinase (Gerriets et  al., 2015; Wolf 
et  al., 2016). Active hexokinases are associated with the 
mitochondrial outer membrane but are released when inhibited 
by NAG, similar to when glucose-6-phosphate (the product of 
hexokinase) accumulates the cytosol and promotes activation 
of the NLRP3 inflammasome, which regulates the processing 
and secretion of interleukin (IL)-1b and IL-18 (Shimada et  al., 
2010). Although the mechanism by which this occurs has not 
yet been described, a model has been proposed in which 

hexokinase acts as a pattern recognition receptor, alerting the 
cell to the degradation of bacterial PG in phagosomes and 
activating an inflammatory response via disruption of the glycolytic 
pathway and the mitochondrial function (Wolf et  al., 2016).

MECHANISMS TO AVOID 
PG  RECOGNITION

Bacteria have evolved sophisticated molecular strategies to subvert 
host defences by interfering with molecules involved in pathogen 
recognition and signaling. Both pathogenic and commensal bacteria 
are able to modify their PG in order to change the interaction 
with receptors and therefore avoid triggering the host immune 
responses (Boneca, 2005; Davis and Weiser, 2011). PG modifications 
fall into two main groups: (1) modification of glycan backbone 
to resist catalytic activity of PG-hydrolytic enzymes (N-deacetylation, 
N-glycolylation, O-acetylation) and (2) modifications of the stem 
peptides to evade immune recognition (L-Ala peptide substitutions, 
D-Glu and mDAP amidation, and mDAP substitution by 
L-ornithine). Thus, these modifications constitute a tactic that 
provides resistance to cell lysis and helps bacteria to evade the 
host immune system. For specificities about PG modifications, 
we refer to excellent reviews on the topic (Moynihan et al., 2014; 
Ragland and Criss, 2017; Yadav et  al., 2018).

MUROPEPTIDES AS 
SIGNALING  MOLECULES

PG remodeling produces soluble PG fragments that can have 
a role in bacteria-bacteria and bacteria-host communication 
and act as signaling molecules that trigger adaptive responses 
(Figure 3, Table 1).

FIGURE 3 | Muropeptides as signaling molecules.
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TABLE 1 | Messenger functions of muropeptides.

PG fragment Structure Sensing molecule Function

Dissacharide tripeptide PrkC and homologs 
(STPKs)

Induction of germination (Shah et al., 2008; Dworkin and Shah, 2010)

Exit from dormancy (Keep et al., 2006; Mukamolova et al., 2006)

mDAP-type PG  
(tri-, tetra-, pentapeptides)

NA Induction of rippling in M. xanthus (Shimkets and Kaiser, 1982)

Monomeric NAG sugar Ngt1

NA

NA

Hyphal growth induction (Alvarez and Konopka, 2007)

Antimicrobial induction in P. aeruginosa (Korgaonkar and Whiteley,  
2011) and Streptomyces coelicolor (Rigali et al., 2006)

CURLI fiber expression in E. coli (Konopka, 2012; Naseem et al., 2012)

Muramyl-dipeptide Cyr1p Hyphal growth induction (Xu et al., 2008)

Anhydro-murotetrapeptide 
(Tracheal cytotoxin, TCT)

NA

PGRP2

PGRP3-4

Signaling for morphogenesis (Koropatnick et al., 2004)

Hydrolysis of pro-inflammatory PG fragments (Troll et al., 2010)

Induction of inflammatory response (Goodson et al., 2005)

Anhydro-muramyltripeptide AmpR β-Lactamase induction: AmpC (Uehara and Park, 2002, 2008)

Disaccharide pentapeptide BlrB β-Lactamase induction: Amp, Cep, Imi (Tayler et al., 2010)

Dipeptide BlaI/MecI β-Lactamase induction: BlaZ, BlaP, MecA (Amoroso et al., 2012)

Dipeptide D-Glu-mDAP  
(mono and disaccharide peptides 
containing this structure)

NOD1 NF-κB Innate response activation (Girardin et al., 2003a,b)

Muramyl-dipeptide  
(disaccharide di-, tri-, 
tetrapeptides)

NOD2 NF-κB Innate response activation (Fritz et al., 2006; Meylan et al., 
2006; Franchi et al., 2009)
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Developmental Transitions
Many bacteria have sophisticated mechanisms to undergo 
morphological changes in response to environmental stress 
including the formation of spores, dormant cells, persisters, 
or viable but non-culturable cells (Oliver, 2005; Wood et  al., 
2013; Li et  al., 2014; Huang and Hull, 2017). Cells in these 
states monitor their environment seeking for improved conditions 
to reverse non-active states and reinitiate growth. Taking into 
account the quantity of PG release by bacteria (Doyle et  al., 
1988), it is plausible that muropeptides play a role as interspecies 
signal molecules to promote microbial growth under favorable 
conditions (Keep et  al., 2006).

For example, B. subtilis spores are able to germinate in the 
presence of low concentration of muropeptides (disaccharide 
tripeptides containing mDAP) released by actively growing cells 
(Shah et  al., 2008; Dworkin and Shah, 2010). Muropeptide-
driven exit from dormancy requires the PrkC kinase, a member 
of the serine/threonine kinase (STPK) family, which has an 
intracellular kinase domain and an extracellular PG binding 
domain with multiple PASTA repeats (Yeats et  al., 2002; 
Squeglia  et  al., 2011). PrkC binds PG, initiating a signal 
cascade  that leads to spore germination (Shah et  al., 2008). 
STPKs have a variety of roles in bacteria and are found in 
most Gram-positive bacteria. To date, PrkC homologues have 
been identified in S. pneumoniae (StkP), S. mutans (PknB), 
M. tuberculosis (PknB), C. difficile (PrkC), and S. aureus (PknB) 
(Fernandez  et  al., 2006; Sebaihia et  al., 2006; Donat et  al., 
2009; Maestro et  al., 2011; Mir et  al., 2011). Interestingly, S. 
aureus PknB homolog responds not only to mDAP PG-type 
but also to the L-Lys-containing muropeptides (Dworkin and 
Shah, 2010), suggesting that bacteria expressing this kinase 
can react to signals from all species that produce PG.

Muropeptides are also implicated in the exit from dormancy 
of Micrococcus and Mycobacterium through the resuscitation-
promoting factor (Rpf), a muralytic enzyme that cleaves the β-1,4 
glycosidic bond in the glycan backbone of PG (Mukamolova et al., 
2002, 2006). Combined with other hydrolytic enzymes, Rpfs might 
generate mDAP-containing muropeptides, which can bind to STPKs 
and trigger resuscitation in an analogous manner to spore 
germination in B. subtilis (Shah et  al., 2008; Kana and Mizrahi, 
2010). Furthermore, these mDAP-muropeptides might be detected 
by other receptors like Nod1 (Girardin et  al., 2003a,c), suggesting 
that mycobacteria may, in addition, utilize those to modulate 
host innate immune responses during infection  (Jo, 2008).

The predatory bacterium Myxococcus xanthus is able to 
respond to prey signals and alter its chemotactic and developmental 
pattern by forming fruiting bodies, where the vegetative cell 
differentiates into spores (Berleman et  al., 2006; Keane and 
Berleman, 2016). One key phenomenon during fruiting body 
formation is the establishment of rhythmically advancing waves 
of cells (known as rippling) that has been shown to be  induced 
by PG (Shimkets and Kaiser, 1982). This behavior is stimulated 
not only by M. xanthus PG fragments but also by a variety 
of proteobacteria and Gram-positive bacteria PG (e.g., E. coli, 
B. subtilis) (Shimkets and Kaiser, 1982).

Altogether, these findings suggest a pathway for bacterial 
resuscitation from a non-growing state via the detection of 

cell wall fragments in the environment, which seems to be  a 
widely used strategy in the microbial world (Keep et al., 2006).

Interspecies Interactions
PG fragments serve as signals in a range of host interactions 
(both pathogenic and symbiotic relationship of bacteria with 
plants and animals) and also in prokaryote-prokaryote encounters. 
For example, Bacillus cereus mediates commensalism with 
bacteria from the Cytophaga-Flavobacterium group in the 
soybean rhizosphere (Peterson et  al., 2006). PG isolated from 
B. cereus stimulates the growth of Flavobacterium johnsoniae 
in vitro, pointing out to a beneficial relationship between these 
rhizosphere microorganisms. It has been suggested that 
F. johnsoniae secretes a cell wall degrading enzyme that permits 
the mobilization of B. cereus PG fragments as a carbon source 
for their growth, although the responsible enzyme and mechanism 
are still unknown (Peterson et  al., 2006).

In C. albicans, muramyl dipeptides exhibit a potent hypha-
inducing activity by directly binding to adenylyl cyclase Cyr1p 
LRR domain that stimulates cAMP production and subsequent 
hyphal growth (Xu et  al., 2008). In addition, when C. albicans 
undergoes hyphal morphogenesis as a response to the presence 
of PG, P. aeruginosa is able to form a dense biofilm on the 
filamentous hyphal cells and kill them. Interestingly, C. albicans 
has developed a mechanism to protect itself by responding to 
the quorum factor 3-oxo-C12 homoserine lactone produced 
by Pseudomonas, which restricts its growth to a budding pattern 
that is not attacked by the bacteria (Hogan and Kolter, 2002; 
Naseem et  al., 2012).

There are also several examples of PG fragments triggering 
the production of antimicrobial compounds within bacterial 
communities. P. aeruginosa is found in acute and chronic 
wounds forming a biofilm resistant to antimicrobials. Recent 
studies proved that exogenous NAG and other PG fragments 
derived from commensal Gram-positive bacteria elevate the 
virulence of P. aeruginosa, which is able to respond to the 
presence of PG fragments by producing pyocyanin, a potent 
antimicrobial phenazine (Korgaonkar and Whiteley, 2011; 
Korgaonkar et al., 2013). As Pseudomonas lives in polymicrobial 
communities, this mechanism might be of advantage to monitor 
surrounding microorganisms in order to eliminate competitors 
or provide additional nutrients for growth. In a similar way, 
NAG also induces the production of antimicrobials in the soil 
bacterium Streptomyces coelicolor (Rigali et  al., 2006).

Another pathogenic bacterium, E. coli, also responds to 
NAG molecules derived from PG degradation by reducing 
CURLI fibers and type 1 fimbriae synthesis, both being essential 
for pathogenesis (Konopka, 2012; Naseem et  al., 2012). In this 
case, regulation of these bacterial structures could balance the 
interaction between the pathogen and the host immune response, 
delaying the inflammation and allowing the dissemination of 
the bacteria within the host.

Induction of Antibiotic Resistance
Some bacteria are able to induce β-lactamases expression in 
the presence of high levels of antibiotics (e.g., Citrobacter freundii, 
P. aeruginosa, and Stenotrophomonas), a phenomenon that is 
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tightly linked to PG recycling (Dietz et  al., 1997b; Zeng and 
Lin, 2013; Yin et  al., 2014). In Gram-negative bacteria, two 
major mechanisms have been characterized: the AmpG-AmpR-
AmpC pathway and the BlrAB two-component system. Regulation 
of the β-lactamase AmpC relies on the relative concentrations 
of cytoplasmic anhydromuropeptides. In the absence of β-lactam 
pressure, the UDP-muramyl-pentapeptide PG precursor is bound 
to the transcriptional regulator AmpR, inhibiting the expression 
of the ampC gene (Jacoby, 2009). However, in the presence of 
β-lactams, PG synthesis is blocked due to the inhibition of 
PBPs transpeptidase activity (Moya et  al., 2009; Cho et  al., 
2014) leading to dysfunctionality of PBPs and resulting in an 
accumulation of anhydromuropeptides (mainly anhydro-
muramyl-tripeptides) in the periplasm (Cho et  al., 2014). This 
accumulation displaces UDP-muramyl-pentapeptide from AmpR 
(Uehara and Park, 2002, 2008), and thus, ampC is expressed 
and β-lactamases are secreted to the periplasm, where they 
hydrolyze the antibiotic (Holtje et  al., 1994; Jacobs et  al., 1994; 
Jacobs, 1997; Dietz et  al., 1997a). Similarly, in S. aureus and 
Bacillus licheniformis, accumulation of cytoplasmic dipeptides, 
D-Glu-L-Lys or D-Glu-mDAP, respectively, is responsible 
for  triggering the inactivation of BlaI/MecI repressors, leading 
to  the  synthesis of β-lactamases BlaZ, BlaP, and MecA 
(Amoroso  et  al., 2012). In Aeromonas hydrophila, β-lactamase 
production is regulated by a different system in which expression 
of AmpC is controlled through the two-component system 
BlrAB. Upon β-lactam exposure, disaccharide pentapeptides 
accumulate in the periplasm, inducing the autophosphorylation 
of BlrB, which phosphorylates BlrA, activating the transcription 
of the AmpC, Cep, and Imi β-lactamases simultaneously (Tayler 
et  al.,  2010). Additionally, the BlrAB two-component system 
(also  known as CreBC) has been associated with β-lactam 
resistance  in P.  aeruginosa and Stenotrophomonas maltophilia 
(Moya  et  al.,  2009; Huang et  al., 2015).

In the past years, the use of combination therapy with 
β-lactams and vancomycin to treat methicillin-resistant 
Staphylococcus aureus (MRSA)-infected patients has caused the 
emergence of β-lactam-induced vancomycin-resistant MRSA 
(BIVR-MRSA). The presence of β-lactams inhibits PG 
biosynthesis, producing the accumulation of large amounts of 
PG precursors (specifically lipid II) with free D-Ala-D-Ala 
terminals that bind with vancomycin, depleting its concentration. 
Even if it is well characterized that the muropeptide NAG- 
NAM-L-Ala-D-Gln-L-Lys-(ɛ-amino-4Gly)-D-Ala-2Gly triggers 
vancomycin resistance (Ikeda et  al., 2010), the mechanism 
underlying BIVR phenomenon remains to be  elucidated.

Though induction mechanisms differ, all mentioned pathways 
are controlled by the amount of soluble PG fragments and so 
are linked to cell wall turnover and PG recycling.

BACTERIA-HOST INTERACTIONS

The interaction of bacteria with host cells through PG signaling 
molecules is well known, and the PG-mediated responses have 
been characterized in the past years. In mammals, plants, and 

some insects, PG-derived fragments are recognized by the innate 
immune system and promote host defence against bacterial 
infections (Royet et  al., 2011; Gust, 2015; Capo et  al., 2016; 
Pashenkov et  al., 2018; Wolf and Underhill, 2018), indicating 
that PG recognition is an evolutionarily conserved process.

PG is involved in establishing symbiosis during Vibrio fischeri 
colonization of the Euprymna scolopes squid light organ (Koropatnick 
et  al., 2004). In this marine mutualism, the squid uses light 
produced by V. fischeri to avoid predators during its nocturnal 
behavior. Juvenile squids make use of the ciliated epithelial cells 
in the light organ to acquire the V. fischeri symbiont from the 
environment in each generation. Bacterial cells swim through 
ciliated ducts to gain access to deep crypt spaces, where they 
lose the flagellum and establish a permanent association with the 
host. Once colonized, V. fischeri releases tracheal cytotoxin (TCT, 
1,6-anhydro-disaccharide tetrapeptides containing mDAP), which 
in synergy with LPS derivatives triggers the normal morphogenesis 
of the light organ. Morphogenesis involves the loss of ciliated 
epithelium, the shortening and eventual loss of appendages 
(Koropatnick et  al., 2004, 2007; Brennan et  al., 2014), and the 
reduction of mucus secretion (Nyholm et al., 2000), which prevents 
the entry of other bacteria. E. scolopes has four known PGRPs 
that are expressed in the light organ, which could be  responsible 
for TCT sensing (Goodson et al., 2005; Royet et al., 2011). PGRP3 
and PGRP4 are proposed to function as PG receptors on the 
surface of light organ cells, while PGRP2 is thought to be secreted 
into the lumen of the crypts helping maintain an appropriate 
level of V. fischeri. PGRP2 also hydrolyzes PG fragments preventing 
the inflammatory response activation, which allows the beneficial 
coexistence of the symbiont with the host (Troll  et  al., 2010).

The two Gram-negative pathogens Neisseria gonorrhoeae and 
Bordetella pertussis also release high amounts of muropeptides 
during infection: a mixture of 1,6-anhydrodisaccharide tri- and 
tetrapeptides (Sinha and Rosenthal, 1980, 1981) and TCT 
(Rosenthal et  al., 1987), respectively. PG fragments are sensed 
by the intracellular NOD1 and NOD2 proteins that trigger 
the NF-κB and the mitogen-activated protein kinase pathways, 
finally stimulating the activation of the innate immune response, 
the release of proinflammatory cytokines, and cell damage. In 
B. pertussis infection, the release of TCT causes the death and 
detachment of ciliated cells from the epithelium of the trachea 
(Goldman et  al., 1982; Heiss et  al., 1993), while a similar 
pathology is observed during gonococcal infection of human 
fallopian tubes (Melly et  al., 1984; Woodhams et  al., 2013; 
Chan and Dillard, 2017). Likewise, detection of PG fragments 
of other pathogens (e.g., Shigella spp.) by NOD proteins can 
stimulate the innate immune response too (Philpott et al., 2000; 
Girardin et  al., 2001; Nigro et  al., 2008).

Moreover, it has been proposed that in humans, PG fragments 
might present other signaling functions apart from modulating 
the inflammatory response. Aside from defending the host 
against pathogens, the immune system is also involved in 
accommodating host colonization by symbiotic microorganisms 
and maintaining microbiota-host homeostasis. PG fragments 
are therefore part of the mechanism that controls interactions 
between the microbiota and host and has effects on host 
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physiology and development outside the gastrointestinal system 
(Royet et  al., 2011). Gut microbiota is a source of PG that 
can be  translocated from the intestinal mucosa into circulation 
in the absence of pathogens (Clarke et  al., 2010).

For example, recent studies strongly suggest that PG fragments 
from the intestinal microbiota have the potential to affect the 
immune system and govern the inflammatory response through 
NOD proteins (Hergott et  al., 2016). In a similar way, and 
even though the underlying mechanisms remain to 
be  elucidated, gut microbiota has been proposed to modulate 
brain development and behavior. PG fragments derived from 
commensal gut microbiota can be  translocated into the brain 
by crossing the blood-brain barrier and can induce inflammation 
(Fillon et  al., 2006; Arentsen et  al., 2017). During mice brain 
development, PG fragments are sensed by pattern recognition 
receptors (PRRs) expressed during a specific temporal window, 
in concordance with the PG accumulation observed in the 
cerebellum and in parallel with the bacterial colonization 
process (Arentsen et  al., 2017). Interestingly, any perturbation 
of the gut microbiota (e.g., antibiotic treatment) alters the 
expression of those PRRs in the brain, suggesting that this 
disruption may alter the developing brain, making it more 
susceptible to disorders or increasing the risk for immune 
diseases (Arentsen et  al., 2017, 2018). Still, little is known 
about the structure of the PG molecule that generates these 
effects or the mechanism behind it.

Finally, somnogenic activity has been attributed to some 
PG fragments derived from gut microbiota, such as muramyl 
peptides containing DAP (Krueger, 1985; Krueger and Opp, 
2016). According to the reported data, this somnogenic property 
is structure-dependent, with muramyl-tripeptide being the 
smallest active molecule able to induce sleep.

CONCLUSIONS

The role of PG as a MAMP has long been recognized, especially 
as signaling molecules that modulate the innate immune response 
in some animals and plants. As during normal cell growth, 
bacteria release PG turnover products to the environment, and 
different organisms have developed sophisticated mechanisms 
to detect and respond to these molecules. Besides their role 
in infection or immune response development, bacteria use 
PG fragments as signaling cues to track the state of their cell 
wall or to monitor surrounding microorganisms. As many 
bacteria live within polymicrobial communities, this might be a 

beneficial mechanism to eliminate competitors or to obtain 
additional nutrients for growth. As a result of these functions, 
PG-fragments can be  considered as signaling molecules.

The amount of PG turnover products released to the 
environment is dependent on the PG recycling pathway, and 
so, it is expected that bacteria regulate this process. Information 
regarding the regulation of AmpG or other transporters with 
similar activity is therefore crucial for a complete understanding 
of the function(s) of released anhydromuropeptides and other 
PG fragments; however, few studies have focused on this 
kind of protein (Cheng and Park, 2002; Chahboune et  al., 
2005; Zhang et  al., 2010; Chan and Dillard, 2016; Li et  al., 
2016). A recently described assay to quantify AmpG-mediated 
transport (Perley-Robertson et  al., 2016) may help to 
understand important aspects regarding the regulation of 
this permease in years to come. Likewise, other interesting 
tools have recently been developed to investigate PG recycling 
by studying other enzymes involved in this pathway 
(DeMeester  et  al., 2018).

The development of highly sensitive analytical methods and 
the use of synthetic muropeptides could help to elucidate the 
specific receptors that are able to bind PG as much as to 
determine the agonist PG structures and their role as signaling 
molecules. Overall, PG sensing seems to be a global mechanism 
that leads to different responses, so it is conceivable the existence 
of multiple PG-sensing pathways. More research is needed to 
clarify the different sensing mechanisms, to determine the 
interplay level of the different receptors (or to identify new 
ones), or understand the responses generated by muropeptides 
during bacteria-bacteria or bacteria-host interactions.
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