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“Glacier algae” grow on melting glacier and ice sheet surfaces across the cryosphere, 
causing the ice to absorb more solar energy and consequently melt faster, while also 
turning over carbon and nutrients. This makes glacier algal assemblages, which are 
typically dominated by just three main species, a potentially important yet under-researched 
component of the global biosphere, carbon, and water cycles. This review synthesizes 
current knowledge on glacier algae phylogenetics, physiology, and ecology. We discuss 
their significance for the evolution of early land plants and highlight their impacts on the 
physical and chemical supraglacial environment including their role as drivers of positive 
feedbacks to climate warming, thereby demonstrating their influence on Earth’s past and 
future. Four complementary research priorities are identified, which will facilitate broad 
advances in glacier algae research, including establishment of reliable culture collections, 
sequencing of glacier algae genomes, development of diagnostic biosignatures for remote 
sensing, and improved predictive modeling of glacier algae biological-albedo effects.
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INTRODUCTION

Glacier surfaces are home to diverse and active microbial communities (Hodson et  al., 
2008; Stibal et  al., 2012; Anesio et  al., 2017). The coincidence of liquid water and sunlight 
during summer months supports substantial phototrophy at the glacial surface. One key 
group of supraglacial primary producers are heavily pigmented green microalgae of the 
Mesotaeniaceae (Zygnematophyceae, Streptophyta), first documented by Adolf Erik Nordenskiöld 
during his explorations of Greenland (Nordenskiöld, 1872). The importance of these microalgae 
is manifested both through the insights they can provide into the development of the 
world’s terrestrial flora and their acceleration of glacier wastage, expanding the rationale 
for their study. This minireview aims to synthesize current knowledge on these algae, drawing 
on recent research pertaining to their phylogeny, physiology, ecology, and impacts in 
supraglacial systems. To avoid confusion with the better known “ice algae” associated with 
sea ice habitats (Boetius et  al., 2015) or chlorophyte algae associated with snow pack 
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environments (Hoham and Duval, 2001), we  propose here 
the adoption of “glacier algae” to refer to this group of surface 
ice inhabiting Streptophytes.

TAXONOMY AND PHYLOGENETICS

For almost 150  years, numerous reports have described algal 
communities that reside on bare ice surfaces around the globe 
(e.g., Nordenskiöld, 1872; Kol and Taylor, 1942; Yoshimura et al., 
1997; Remias et  al., 2009; Yallop et  al., 2012). The low diversity 
of assemblages has resonated throughout more than 20 studies, 
with just three key species typically present (Figure 1); the 
chained filamentous Ancylonema nordenskiöldii, two varieties of 
the unicellular Mesotaenium berggrenii distinguishable by their 
size and number of chloroplasts within freshly divided cells 
(Kol, 1968; Ling and Seppelt, 1993; Remias et  al., 2009) and 
the unicellular Cylindrocystis brebissonii. Descriptions of these 
cylindrical cells, which contain chloroplasts, pyrenoids, and “dark 
violet cell sap,” have been provided by Kol and Taylor (1942) 
and Yoshimura et  al. (1997) based on their explorations in 

Alaska and the Himalayas, respectively, with more recent 
ecophysiological and ultrastructural descriptions provided by 
Remias et  al. (2009, 2012a,b). While other algal species have 
also been reported from glacial ice surfaces, e.g., Chlamydomonas 
nivalis and Raphidonema sempervirens, these are assumed remnants 
of, or depositions from, other environmental niches such as 
snow or soils (Takeuchi, 2013; Lutz et  al., 2017) and are not 
true ice environment specialists.

Glacier algae belong to the Streptophyta, a subphylum of the 
Chloroplastida that split from the Chlorophytes during the 
Cryogenian geologic period, when the Earth was extensively 
covered with snow and ice (Lewis and McCourt, 2004; Becker 
and Marin, 2009; Leliaert et  al., 2012; Becker, 2013) (Figure 2). 
Streptophytes are composed of the Charophytes, a paraphyletic 
assemblage of freshwater algae in which glacier algae reside, 
and all land plants (Leliaert et  al., 2012). Of the former, the 
majority of diversity is contained within the Zygnematophyceae, 
which includes coccoid, filamentous, and colonial forms 
distinguished by the absence at any stage in the life cycle of 
flagella and their unique method of sexual reproduction, 
conjugation of non-flagellated gametes (Gontcharov, 2008; Guiry, 
2013). Members are found in both aquatic (solely freshwater) 
and terrestrial habitats (Lewis and McCourt, 2004) and can 
occupy a number of extreme environments including acid bogs, 
alkaline streams, desert crusts, snow, and ice (Hall et  al., 2008). 
All three glacier algae species belong to the Zygnematophyceae, 
within the family Mesotaeniaceae (the saccoderm desmids) 
(Gontcharov, 2008; Hall et  al., 2008; Remias et  al., 2009, 2012a).

The phylogenetic positioning of the Zygnematophyceae as 
the closest living relatives to extant land plants (Wodniok 
et  al., 2011), and partial support for the Mesotaeniales as 
basal among the Zygnematophyceae (Wickett et  al., 2014; De 
Vries et  al., 2016), leads to the inference that glacier algae 
are informative for early land plant evolution. The process 
of land plant evolution from within a single freshwater 
Streptophyte algal lineage represented a singularity in Earth’s 
history (Wickett et  al., 2014; De Vries et  al., 2016; De Vries 
and Archibald, 2018), leading to one of the most profound 
geobiological transitions in the history of the planet (Dahl 
et  al., 2010; Kump, 2014; Delwiche and Cooper, 2015; Selosse 
et  al., 2015). Exaptations of ancestral Streptophytes to 
environmental stressors likely favored their transition to land, 
i.e., adaptations evolved for some purpose in water that later 
proved advantageous on land (Waters, 2003; Delwiche and 
Cooper, 2015; De Vries and Archibald, 2018). Adaptations 
key for the transition from aquatic to terrestrial habitats 
included the ability to tolerate extremes in temperature, 
desiccation, irradiance, and UV radiation (Waters, 2003; 
Delwiche and Cooper, 2015; De Vries and Archibald, 2018), 
and it is thus conceivable that supraglacial environments may 
have played a role in driving the evolution of key land plant 
biological features. If the common ancestor of extant 
Streptophyte algae and land plants inhabited glacier surfaces, 
this may represent a fundamental change in the way we  think 
about the driving forces behind the processes of land 
plant terrestrialization.

(A)

(B)

(D) (E) (F)

(C)

FIGURE 1 | Glacier algae and the supraglacial environment: (A) RGB 
composite image of the southwestern Greenland Ice Sheet (GrIS) margin near 
Kangerlussuaq, derived from European Space Agency Sentinel-2 data. Note 
the conspicuous “dark zone” running parallel to the ice sheet margin for 
which glacier algal blooms are thought responsible. (B) GrIS surface ice within 
the dark zone dominated by a glacier algal bloom during the 2016 ablation 
season. (C) Glacier algae assemblage sampled from the surface of the GrIS. 
(D) M. berggrenii; (E) A. nordenskiöldii; and (F) C. brebissonii (contributed by 
Nozomu Takeuchi). Scale bars are 20 km (A) and 10 μm (C–F).
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FIGURE 2 | Streptophyte phylogeny and congruent age estimates, highlighting the Zygnematophyceae as sister lineage to land plants, and the timing of the 
Chlorophyte/Streptophyte division during the Cryogenian period (adapted with permission from Morris et al., 2018). Blue density plots show 95% highest posterior 
density of age estimates.
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ECOLOGY AND PHYSIOLOGY

The upper surface (~2  cm) of supraglacial ice in which glacier 
algal blooms occur is characterized by extremes in environmental 
stressors. During summer ablation seasons, positive air 
temperatures and significant short-wave radiation drive ice 
surface melting, producing a hydrologically dynamic environment 
(Muller and Keeler, 1969; Cook et  al., 2016). Concomitantly, 
photoinhibitory levels of photosynthetically active radiation (PAR, 
400–700  nm, e.g., ~1,700  μmol photons m−2  s−1 on a sunny, 
cloudless day; Yallop et  al., 2012) and UV stress (Morgan-Kiss 
et al., 2006) couple with low nutrient concentrations (e.g., <1 μM 
P l−1 Hawkings et  al., 2016; 1.3  μM DIN l−1 Wadham et  al., 
2016) and diurnal freeze–thaw cycles (Cook et  al., 2016) to 
produce an extremely challenging environment. During winter 
periods, surface ice communities further experience sub-zero 
temperatures, complete darkness, and burial under snow packs.

Blooms of algae on glacier and ice sheet surfaces have now 
been reported from across the cryosphere, including Antarctica 
(Ling and Seppelt, 1993), Alaska (Takeuchi, 2001, 2013; Ganey 
et  al., 2017), Siberia (Takeuchi et  al., 2006, 2015; Tanaka et  al., 
2016), the Himalayas (Yoshimura et  al., 1997), Svalbard (Remias 
et  al., 2012a), and Greenland (Uetake et  al., 2010; Yallop et  al., 
2012; Stibal et  al., 2017; Williamson et  al., 2018), indicating their 
apparent ubiquity in supraglacial systems. Blooms initiate following 
snow line retreat, with algal biomass observed to increase in surface 
ice through time (Stibal et  al., 2017; Williamson et  al., 2018). In 
contrast to snow algae (Hoham and Duval, 2001), the absence 
of a flagellated life stage prevents active motility of glacier algae, 
and thus, colonization of new ice environments during bloom 
events is likely dependent on local hydrological or aeolian forcing 
(Kristiansen, 1996). On the Greenland Ice Sheet (GrIS), population 
doubling times have been estimated at 3.75–5.5 days (Stibal et  al., 
2017; Williamson et  al., 2018), with cell densities observed to 
range from 9.1 × 104 to 29.5 × 104 cells ml−1 at marginal locations 
(Yallop et  al., 2012), from <100 to 8.5  ×  104 cells ml−1 ~30  km 
into the southwesterly region of the ice sheet (Stibal et  al., 2017), 
and from 1.6  ×  104 cells ml−1 to 0 cells ml−1 from ~30  km inland 
to the snow line (Williamson et  al., 2018). The influences on 
spatial patterning in biomass are multifaceted. Observations of 
algal biomass on mountain glaciers (e.g., Yoshimura et  al., 1997; 
Takeuchi and Kohshima, 2004; Takeuchi et al., 2009) show declines 
in biomass with increasing altitude, while observations from the 
GrIS’s “dark zone” (a conspicuous area of dark ice that appears 
across the west and southwestern sectors of the ice sheet each 
summer; Figure 1; Wientjes and Oerlemans, 2010) show a decrease 
in biomass away from the ice sheet margin (Williamson et  al., 
2018). Considered jointly, these intimate that longer melt seasons 
support algal biomass development through promoting solar 
radiation input, nutrient availability, and diminished snow cover 
(Yoshimura et  al., 1997). Decreases in biomass can be  driven by 
rainfall-associated flushing events (Stibal et al., 2017), and biomass 
is potentially restricted close to the terminus of glaciers by mineral 
dust covering that can limit photosynthesis and/or by increased 
meltwater flushing on steeper slopes (Takeuchi, 2013). Interspecific 
interactions also influence the relative dominance of glacier algae 
at the glacier scale, with specialists dominating more stable ice 

environments and generalist species becoming dominant in areas 
characterized by less stable conditions, e.g., frequent changing 
between snow and ice environments (Yoshimura et  al., 1997).

The most visually striking adaptation of glacier algae to their 
environment is the production of a specialist pigment absorbing 
ultraviolet and visible light (purpurogallin carboxylic acid-6-O-
Beta-D-glucopyranoside), contained within lipid bodies and 
vacuoles occupying a large proportion of the cell (Figure 1; 
Remias et  al., 2009, 2012a,b). In addition to the suite of light-
harvesting and photoprotective pigments typical of green microalgae 
(Remias et al., 2009, 2012b; Williamson et al., 2018), this phenolic 
pigment is primarily assumed to serve a photoprotective role, 
shading the underlying chloroplasts from the significant PAR 
and UV regime apparent in supraglacial systems (Remias et  al., 
2009, 2012b; Williamson et  al., 2018). It also likely serves to 
convert the abundant light energy to heat, allowing melt water 
generation local to the cell (Dial et al., 2018). To date, the capacity 
of glacier algal phenols to provide photoprotection has been 
indirectly evidenced by a lack of saturation during photosynthesis-
irradiance curves (Remias et al., 2012a,b) and fluorescence-based 
rapid light curves (Yallop et  al., 2012), ranging up to 2000  μmol 
photons m2  s−1. Given that the photosynthetic machinery is 
adversely affected by several cold associated stressors (i.e., freezing 
and desiccation reduce cell membrane fluidity impacting electron 
transport; low temperatures mimic high-light stress by decreasing 
the efficiency of metabolic electron sinks; Lyon and Mock, 2014), 
it is likely that glacier algae purpurogallins serve to protect the 
cell against multiple stressors.

Little further information on glacier algae adaptations to 
life in surface ice is available, with this knowledge gap strongly 
exacerbated by their reluctance to be cultured under laboratory 
conditions (Remias et  al., 2009, 2012a). Though conjugation 
in A. nordenskiöldii field populations has been observed in 
Svalbard (Remias et al., 2012a,b) and the GrIS (C. Williamson, 
personal observation), the production of a dormant zygospore 
does not appear to be  an overwintering strategy, with glacier 
algae observed to overwinter in a non-cyst-like, vegetative state 
(Remias et  al., 2009). This likely permits rapid resumption of 
physiological activity on initiation of the relatively short summer 
growth season. Glacier algae also demonstrate increased 
concentrations of sugars and polyols (i.e., compatible solutes) 
(Roser et  al., 1992; Chapman et  al., 1994), consistent with 
known cold tolerance mechanisms in other psychrophilic 
microalgae (Welsh, 2006; Casanueva et  al., 2010; Lyon and 
Mock, 2014). However, knowledge on other features typically 
associated with cold tolerance in microalgae, e.g., membrane 
fluidity, production of specialist enzymes, “cold-shock” proteins 
or extracellular polymeric substances, is currently lacking.

IMPACTS TO ENVIRONMENT

The pigmentation of glacier algae (Remias et  al., 2009, 2012b; 
Williamson et al., 2018) coupled with abundances achieved during 
summer blooms (Yallop et al., 2012; Stibal et al., 2017; Williamson 
et al., 2018) can have profound implications for both the physical 
(melt) and chemical (nutrient and carbon cycling) surface ice 

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Williamson et al. Glacier Algae Past and Future

Frontiers in Microbiology | www.frontiersin.org 5 April 2019 | Volume 10 | Article 519

environment. Given that albedo, i.e., the probability that light 
entering ice will be  scattered back into the atmosphere rather 
than absorbed, is an important control of surface ice melting 
(Box et  al., 2012; Tedesco et  al., 2016), the processes that serve 
to darken surface ice (reduce albedo) hold significant potential 
to impact melting. Through the production of highly absorbing 
phenolic pigments (see previous section), glacier algae act as 
effective light absorbing particles (LAPs) and hold large potential 
to accelerate the melting of glaciers and ice sheets through 
biologically driven albedo reduction (Takeuchi, 2013; Takeuchi 
et  al., 2015; Cook et  al., 2017; Stibal et  al., 2017; Tedstone et  al., 
2017; Ryan et  al., 2018). It has been suggested that wider melt 
zones under warmer climates may provide larger areas for glacier 
algae colonization, raising the possibility of a melt-enhancing 
positive feedback (Yallop et  al., 2012).

While the impacts of glacier algae-driven albedo reduction 
remain to be  quantified at the scale of glaciers, ice sheets, or 
across the cryosphere, glacier algal blooms have been suggested 
by both observational (Yallop et  al., 2012; Stibal et  al., 2017; 
Ryan et  al., 2018) and modeling efforts (Tedstone et  al., 2017) 
to be responsible for long-term declines in GrIS surface albedo 
that have paralleled accelerating surface melt, particularly along 
the western margin of the ice sheet in the “dark zone.” Given 
that melt of the GrIS is the single largest contributor to global 
sea level rise (Box and Sharp, 2017; Bamber et  al., 2018), the 
potential contribution of glacial algal blooms to global sea 
level rise remains a highly active field of research.

Additional to feedbacks on surface melt, glacier algal blooms 
may also impact carbon and nutrient cycling within surface 
ice environments, with consequences for downstream ecosystems 
(Stibal et al., 2012). Glacier algae photosynthesize at surprisingly 
high rates considering their thermodynamically unfavorable 
cold environment (Remias et  al., 2009, 2012a; Cook et  al., 
2012; Yallop et  al., 2012; Williamson et  al., 2018). Recent 
estimates of glacier algal net productivity in southwestern 
Greenland ranged from ~0.5 to 1  mg C l−1 d−1, based on ice 
containing dense algal communities (~104 cells ml−1; Yallop 
et  al., 2012; Williamson et  al., 2018). While few attempts have 
been made to constrain the importance of glacier algae for 
supraglacial carbon budgets, recent modeling efforts for regions 
of the southwestern GrIS have highlighted the major contribution 
that blooms can make to supraglacial carbon fixation (Cook 
et al., 2012; Williamson et al., 2018), with an average net carbon 
fixation of ~16  ±  8  kg C km2 estimated for the 2016 ablation 
season (Williamson et al., 2018). This can lead to accumulation 
of autochthonous organic carbon within glacier algal-rich habitats 
(Musilova et  al., 2017). Labile organic carbon not consumed 
in situ by secondary production may be exported via meltwater 
flushing for utilization within downstream subglacial and 
periglacial ecosystems (Musilova et al., 2017; Smith et al., 2017).

FUTURE RESEARCH PRIORITIES

Here, we  identify four complementary research priorities that 
will facilitate broad advances in glacier algae research, serving 
to generate knowledge on the life histories, physiology, ecology, 

and genomics of the algae themselves, allowing projection of 
their occurrence and impacts across the cryosphere into the future.

Establishment of Reliable Culture 
Collections
Efforts to establish reliable culture collections of glacier algae 
remain a priority as these will undoubtedly facilitate widespread 
knowledge advances. To date, short-term incubation studies 
using freshly collected field material have yielded initial insights 
into glacier algae physiology (Remias et  al., 2012a,b) and are 
starting to be complemented by in situ manipulative experiments; 
though the latter typically require significant logistical (and 
thus financial) commitments and are themselves hindered by 
a lack of equipment optimized for constraining physiology 
within icy environments. To the best of the collective authors’ 
knowledge, no group has yet been able to establish a reliable 
culture collection of the true ice environment specialists  
M. berggrenii and A. nordenskiöldii, preventing even the most 
basic of progress in understanding the life histories of these 
species or their abilities to thrive under supraglacial conditions. 
Overcoming this impasse will open up the field to a plethora 
of new discoveries relating to topics such as physiological 
tolerances, cold adaptation mechanisms, and the production 
of novel compounds. This research will also underpin efforts 
to project the occurrence of glacier algal blooms across the 
cryosphere and their impacts to surface ice environments and 
downstream ecosystems. Uniting current efforts and the collective 
knowledge of disparate research groups may serve to advance 
this area and minimize duplication of efforts.

Sequencing of Glacier Algae Genomes
The near absence of genome level data for glacier algae has 
significantly exacerbated current knowledge gaps for these species. 
This information void has prevented comparative genomics 
approaches required to investigate, for example, the evolution 
of cold adaptation mechanisms across lineages, and has precluded 
exploration of the importance of supraglacial habitats for the 
evolution of a terrestrial flora. Given current culturing impasses, 
metagenomic or single-celled sequencing approaches may be best 
employed to achieve this goal. Additional to the wealth of 
information that genome interrogation will provide, the availability 
of glacier algae reference genomes will facilitate a suite of 
transcriptomic studies that will significantly advance our 
understanding of how life functions within icy environments.

Develop Diagnostic Biosignatures for 
Glacier Algae Remote Sensing
While an increased understanding of the physiological tolerances 
of glacier algae derived from culturing studies will improve 
our ability to model the occurrence and magnitude of glacier 
algal blooms, the remoteness and vastness of the cryosphere 
necessitate a remote-sensing approach to validate models and 
constrain bloom occurrence cryosphere-wide. This will serve 
to monitor spatial and temporal dynamics in bloom development 
across a myriad of environmental conditions, providing the data 
needed to project bloom occurrence into the future. It is also 
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critical for constraining the importance of glacier algae for the 
mass balance of glaciers and ice sheets and, by extension, their 
contribution to global sea level rise. For snow algae, Takeuchi 
et  al. (2006) remotely quantified algal biomass using a simple 
band ratio technique, while Painter et  al. (2001) used the 
chlorophyll absorption feature at 680 nm. Huovinen et al. (2018) 
demonstrated the potential for spectral mixing analysis to separate 
biological and mineral components and quantify algal biomass, 
which outperforms band ratios and specific pigment spectral 
features. However, this has not yet successfully been applied 
to glacier algae due to specific challenges related to the optics 
of the underlying ice and glacier algae pigmentation. The 
purpurogallin pigment characteristic of glacier algae may well 
obscure diagnostic spectral features associated with other 
individual pigments. Secondary spectral features may also need 
to be  identified that distinguish the biosignatures of glacier 
algae and snow algae, which may co-occur following snow line 
retreat. There may also be  complex optical effects related to 
the mixing of biological and non-biological LAPs and the highly 
variable optical properties of the weathered ice surface itself. 
To date, bio-optics of cryospheric algae have relied upon theoretical 
estimates of absorption and scattering derived from mixing 
models that combine in vivo absorption coefficients of known 
pigments (Cook et  al., 2017). Empirical measurements of the 
bulk optical properties of glacier algal cells will be  required to 
validate existing models and constrain realistic biological optical 
effects, enabling biosignature determination. Future studies should 
build upon the past successes in the remote sensing of snow 
algae (Painter et al., 2001; Takeuchi et al., 2006; Huovinen et al., 
2018) and also employ multispectral sensors and pair remotely 
sensed spectral reflectance measurements with sampling of surface 
ice allowing integrated ground truthing of remote observations.

Improve Predictive Modeling of Glacier 
Algae Biological-Albedo Effects
Biological albedo is a potentially significant component of the 
energy balance of glaciers and ice sheets that is yet to be  fully 
quantified. While several studies have now indicated a primary 
role for glacier algae in controlling ice albedo in Greenland’s 
“dark zone” (Yallop et al., 2012; Stibal et al., 2017), quantifying 
the albedo reduction that can be  attributed to glacier algae 
remains challenging. Difficulties in separating biotic, biogenic, 
and abiotic albedo reduction in empirical measurements 

necessitate a theoretical predictive modeling approach (Cook 
et  al., 2017), which itself requires validation through empirical 
measurements of the bulk single scattering optical properties 
of glacier algae cells. It will also be  important to constrain 
the vertical distribution of glacier algae within surface ice at 
the scale of millimeters, given the dramatic effect this can 
have on albedo reduction in radiative transfer models (see 
Cook et  al., 2017). Currently, the practical limit of ~2  cm 
vertical sampling resolution for field measurements limits the 
two-way transfer of information between radiative transfer 
models and empirical measurements. Improving the integration 
of measurements with theoretical foundations is a priority to 
enhance the utility of such models (Cook et  al., 2017). This 
will enable incorporation of the impacts of glacier algal blooms 
into regional climate models (Benning et al., 2014; Stibal et al., 
2017; Noël et  al., 2018), allowing improved estimation of their 
contribution to global sea level rise under future climate scenarios.
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