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The acronym ESKAPE includes six nosocomial pathogens that exhibit multidrug
resistance and virulence: Enterococcus faecium, Staphylococcus aureus, Klebsiella

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter

spp. Persistent use of antibiotics has provoked the emergence of multidrug resistant
(MDR) and extensively drug resistant (XDR) bacteria, which render even the most
effective drugs ineffective. Extended spectrum β-lactamase (ESBL) and carbapenemase
producing Gram negative bacteria have emerged as an important therapeutic challenge.
Development of novel therapeutics to treat drug resistant infections, especially those
caused by ESKAPE pathogens is the need of the hour. Alternative therapies such
as use of antibiotics in combination or with adjuvants, bacteriophages, antimicrobial
peptides, nanoparticles, and photodynamic light therapy are widely reported. Many
reviews published till date describe these therapies with respect to the various agents
used, their dosage details and mechanism of action against MDR pathogens but very
few have focused specifically on ESKAPE. The objective of this review is to describe
the alternative therapies reported to treat ESKAPE infections, their advantages and
limitations, potential application in vivo, and status in clinical trials. The review further
highlights the importance of a combinatorial approach, wherein two or more therapies
are used in combination in order to overcome their individual limitations, additional studies
on which are warranted, before translating them into clinical practice. These advances
could possibly give an alternate solution or extend the lifetime of current antimicrobials.

Keywords: ESKAPE, multidrug resistance, alternative therapy, combination therapy, phage therapy, antimicrobial

peptides, silver nanoparticles, photodynamic light therapy

INTRODUCTION

Wonder drug penicillin started the era of antibiotics in 1928 and since then it has tremendously
developed modern medicine. Persistent use of antibiotics, self-medication, and exposure to
infections in hospitals has provoked the emergence of multidrug resistant (MDR) bacteria
responsible for 15.5% Hospital Acquired Infection (HAIs) in the world (Rice, 2008; Allegranzi
et al., 2011; Ibrahim et al., 2012; Pendleton et al., 2013). The term “ESKAPE” encompasses
six such pathogens with growing multidrug resistance and virulence: Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter spp. (Rice, 2008). ESKAPE pathogens are responsible for majority of nosocomial
infections and are capable of “escaping” the biocidal action of antimicrobial agents (Rice, 2008;
Navidinia, 2016).
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A systematic review of clinical and economic impact
of antibiotic resistance reveals that, ESKAPE pathogens are
associated with the highest risk of mortality thereby resulting
in increased health care costs (Founou et al., 2017). World
Health Organization (WHO) has also recently listed ESKAPE
pathogens in the list of 12 bacteria against which new antibiotics
are urgently needed (Tacconelli et al., 2018). They describe
three categories of pathogens namely critical, high and medium
priority, according to the urgency of need for new antibiotics.
Carbapenem resistant A. baumannii and P. aeruginosa along
with extended spectrum β-lactamase (ESBL) or carbapenem
resistant K. pneumoniae and Enterobacter spp. are listed in the
critical priority list of pathogens; whereas, vancomycin resistant
E. faecium (VRE) and methicillin and vancomycin resistant
S. aureus (MRSA and VRSA) are in the list of high priority
group. The mechanisms of multidrug resistance exhibited by
ESKAPE are broadly grouped into three categories namely, drug
inactivation commonly by an irreversible cleavage catalyzed by
an enzyme, modification of the target site where the antibiotic
may bind, reduced accumulation of drug either due to reduced
permeability or by increased efflux of the drug (Santajit and
Indrawattana, 2016). They are also able to form biofilms that
physically prevent the immune response cells of host as well as
antibiotics to inhibit the pathogen. Moreover, biofilms protect
specialized dormant cells called persister cells that are tolerant
to antibiotics which cause difficult-to-treat recalcitrant infections
(Lewis, 2007).

The general antimicrobial therapy to effectively treat
infections involves the use of antibiotics either singly or in
combination. With every passing year, the overall number
of antibiotics effective against ESKAPE is declining, which
is predisposing us toward a future with antibiotics that are
ineffective. Analysis of the antibiotic lists recommended in the
Clinical & Laboratory Standards Institute (CLSI) guidelines
revealed that many antibiotics suggested against ESKAPE
since 2010 have been deleted with addition of relatively few
antibiotics/antibiotic combinations. Furthermore, there are
incidences of resistance reported against some of these newly
added antibiotics (Table 1). It is, therefore, imperative to find
alternative ways to treat infections especially those caused by
ESKAPE pathogens.

Alternative therapies that are currently in practice or under
trial include the use of antibiotics in combination or with
adjuvants, bacteriophage therapy, use of antimicrobial peptides,
photodynamic therapy, antibacterial antibodies, phytochemicals
and nanoparticles as antibacterial agents (Mandal et al., 2014;
Kaur, 2016). There are several reviews published which describe
alternative/novel therapies against MDR pathogens, however,
not many have specifically focused on the ESKAPE group as a
whole. These reviews describe the various therapeutic agents used
with respect to their dosage, mode of action, pharmacokinetics
and pharmacodynamics, stability, and toxicity. Although many
alternative therapies reported have shown promising results
in vitro, their efficacy when applied in vivo may not be the
same due to one or several limitations. It therefore, becomes
necessary to understand the action of these therapeutic agents
in vivo. This review highlights therapies used to treat ESKAPE

infections namely, antibiotics in combination or with adjuvants,
bacteriophage therapy, antimicrobial peptides, photodynamic
light therapy, and nanoparticles which have received significant
attention in the last 5 years. Hereby, we have also tried
to include studies especially focusing on in vivo efficacy of
above mentioned therapy/therapeutic agents, their advantages
and limitations. Figure 1 summarizes the major limitations of
each alternative therapy which has been elaborately discussed
in the following sections. To improve the efficiency and/or
minimize the limitations of any therapy/therapeutic agents,
combinatorial approaches are suggested. It involves use of two or
more monotherapies together (co-administered, functionalized,
or conjugated) which is also further described. Altogether,
combinatorial approach could be a prospect for exploring novel
alternate solutions against ESKAPE.

ANTIBIOTICS IN COMBINATION

Antibiotics in combination have been tested as a treatment
method by a number of researchers because the possibility of
a pathogen to develop resistance against a combination of two
drugs is much less than that against a single drug. Similarly, the
synergistic effect of combined antibiotics is more than that of
the individual antibiotic. A combination of drugs also increases
the spectrum of coverage (Vazquez-grande and Kumar, 2015)
and has been found to be beneficial in severe infections caused
by multiple pathogens (Ahmed et al., 2014). Some of these
combinations tested against the ESKAPE are listed in Table 2.
The problem of antibiotic resistance is so severe that it has
become necessary to try combinations of the most recently
synthesized antibiotics and/or last resort antibiotics to study their
potential in antimicrobial therapy. The Gram positive members
of the ESKAPE, E. faecium and S. aureus, have been tested against
a combination of fosfomycin and daptomycin which has shown
to successfully clear infection (Hall Snyder et al., 2016; Coronado-
Álvarez et al., 2018). The former is a broad spectrum antibiotic
that has shown promising results against Gram negative bacteria
while the latter is a last resort antibiotic used to treat infections
caused by E. faecium and S. aureus. Despite being a resistant
pathogen there is a lack of substantial research in antibiotic
combination therapy against E. faecium over the last 5 years.Most
combinations tested against S. aureus in vitro include daptomycin
or vancomycin with other antibiotics including ceftaroline, a
newly added antibiotic to the CLSI guidelines. The effect of these
and other such combinations have also been tested in various
mouse models which cleared away the S. aureus infection with
minimal to no toxicity. Colistin (polymyxin E) is the last resort
antibiotic prescribed against Gram negative bacilli. In recent
years, research has been conducted to treat infections caused by
K. pneumoniae and A. baumannii using a combination of colistin
or tigecycline with other antibiotics and has shown promising
results in vitro and in cohort studies.

Some molecules when combined with antibiotics make an
ineffective drug effective. These molecules, named “adjuvants”
or “resistance breakers,” have little to no antimicrobial activity
of their own (González-Bello, 2017) but inhibit the mechanism
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TABLE 1 | Antibiotics added/revised and eliminated against ESKAPE from CLSI document M100 since 2010.

Antibiotics added/with revised breakpoint Tested against pathogen

Ef S K A P E

Amikacin, Amoxicillin-clavulanate, Ampicillin-sulbactam, Cefaclor,
Cefamandole, Cefdinir, Cefmetazole, Cefonicid, Cefotetan,
Cefpodoxime, Cefprozil, Cefuroxime, Kanamycin, Loracarbef,
Netilmicin, Oxacillin, Tobramycin

0

Aztreonam 1 1

Cefazolin, Cefepime, Ceftazidime 0 1 1

Cefoperazone, Moxalactam 0 0

Cefotaxime, Ceftizoxime, Ceftriaxone 0 1 0 1

Ceftaroline 1 1 1

Ceftazidime-avibactam, Ceftolozane-tazobactam 1 1

Cephalothin 0 0 0

Colistin, Piperacillin 1

Dalbavancin, Telavancin, Oritavancin, Tedizolid 1 1

Doripenem, Imipenem, Meropenem 0 1 1 1 1

Ertapenem 0 1 1 1

Mezlocillin 0

Nalidixic acid 0 0

Piperacillin-tazobactam, Ticarcillin-clavulanate 0 1

Ticarcillin 0 0 0 0

Please note that the table includes ONLY those antibiotics which are deleted or newly added since 2010.

0 = Antibiotics deleted from CLSI guidelines between 2010 and 2018; 1, New antibiotics added in the CLSI guidelines since 2010; 1 = No resistance reported till date; 1 =

Resistance reported; Ef, E. faecium; S, S. aureus; K, K. pneumoniae; A, A. baumannii; P, P. aeruginosa; E= Enterobacter spp.

S = (Long et al., 2014; Chan et al., 2015; Nigo et al., 2017); K = (Zowawi et al., 2015; Vuotto et al., 2017; Stanley et al., 2018); A = (Göttig et al., 2014; Goic-Barisic et al., 2017;

Nowak et al., 2017; Caio et al., 2018; Chuang and Ratnayake, 2018); P = (Prakash et al., 2014; Gill et al., 2016; Alipour et al., 2017; Mohapatra et al., 2018; Palavutitotai et al., 2018);

E = (Lee et al., 2015; Babouee Flury et al., 2016; Zeng et al., 2016; Kulengowski et al., 2018).

of resistance by increasing the uptake of the antibiotic through
the bacterial membrane, blocking of efflux pumps, and changing
the physiology of resistant cells (i.e., dispersal of biofilms to
planktonic cells) (Kalan and Wright, 2011; Bernal et al., 2013).
Essential oils and phenothiazines enhance the antimicrobial
activity of drugs and also inhibit the transmission of resistance
to other populations (Bueno, 2016).

The most popularly known adjuvants are β-lactamase
inhibitors while the most recent adjuvant tested to restore
meropenem activity is vaborbactam which inhibits K.
pneumoniae carbapenemase activity (Jorgensen and Rybak,
2018). It has also undergone a clinical trial; registered on
ClinicalTrials.gov under identifier NCT02020434; which proved
the combination to be safe after testing 41 subjects (Rubino
et al., 2018). However, it has a limited inhibition activity as it
has been unable to do so with class B and class D β-lactamases.
Other β-lactamase inhibitors include avibactam, nacubactam,
and tazobactam (Monogue et al., 2018a,b). Metal chelators like
EDTA, deferasirox, and deferoxamine also inhibit β-lactamases
as these enzymes require metal ions for their activity (Aoki
et al., 2010; Santos et al., 2012; Yoshizumi et al., 2013). These
chelators have been tested in combination with antibiotics like
imipenem, tobramycin, and vancomycin against S. aureus, P.
aeruginosa, and E. coli in murine models with successful decrease
in bacterial load. Quorum quenchers, molecules that inhibit
quorum sensing thereby inhibiting biofilm formation, have also

shown potential to cure infection in combination with certain
antibiotics (Balamurugan et al., 2015; Chatterjee et al., 2016).
1-[(2,4-Dichlorophenethyl)amino]-3-Phenoxypropan-2-ol is
so far the most promising antimicrobial agent as it has been
reported to kill not only persister cells of P. aeruginosa but also
non-persister cells of all the other ESKAPE members. It has
also been shown to enhance killing of antibiotic resistant strains
in both planktonic and biofilm forms. Its combination with a
variety of antibiotics is shown to kill all of the ESKAPE making it
an ideal candidate as an adjuvant (Defraine et al., 2017).

Even though there is increased activity of antibiotics when
used in combination against pathogens in vitro, there are
limited studies demonstrating the same in vivo and some
among those have proven disadvantageous. If monotherapy
selects for a narrow spectrum of resistance, a combination
of two or more antibiotics selects for a broad spectrum
of resistance defeating the purpose of combination therapy
entirely (Vestergaard et al., 2016). Certain combinations that
are meant to treat infections tend to have the opposite effect
resulting in far worse damage. One antibiotic can lead to
the induction of a resistance mechanism against a second
antibiotic administered in combination leading to antagonistic
effect (Fallah, 2018). A clinical trial conducted in Italy in
which infections caused by XDR A. baumannii were treated
with a combination of colistin and rifampin showed no
improvement in survival rates. In fact, this combination led
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FIGURE 1 | Major challenges of antibacterial monotherapies.

to increased hepatic toxicity (Durante-Mangoni et al., 2013). A
similar study using a combination of colistin, tigecycline and
carbapenems against A. baumannii showed futile results (López-
Cortés et al., 2014). Metal chelators have shown to sequester
ions not only from bacterial cells but also from host tissue cells
(Yoshizumi et al., 2013).

Themost recent alternative to antibiotics or their combination
that shows a promising future is antibiotic hybrids which have
been defined by Domalaon et al. (2018) as synthetic constructs
of two or more pharmacophores belonging to an established
agent known to elicit a desired antimicrobial effect. This
method provides the advantage of combination therapy through
the mono therapy approach, where chances of resistance are
curbed, while overcoming the problem of non-complementary
pharmacodynamic profiles of the individual antibiotics.

The ESKAPE tend to become resistant to either or both
antibiotics used in combination with every passing year due not
only to natural selection of resistant strains but also horizontal
gene transfer from them to sensitive strains. This warrants testing
of still new combinations. The result is a never-ending cycle from
which there is no escape. It can therefore be concluded that
antibiotics in combination may not always be effective and that
there is a need for extensive research of alternative strategies.

BACTERIOPHAGE THERAPY

Phages are century old therapeutic agents that were used for
the treatment of bacterial infections. The discovery of antibiotics

was an influential factor in side-lining this ambition (Mann,
2005). The focus on phage therapy has sharpened ever since
antimicrobial resistance has been on a dramatic rise. Lytic
phages against ESKAPE pathogens have been isolated from
hospital wastewater, making them easily available therapeutic
agents (Latz et al., 2016). Bacteriophages used for therapy
present many advantages such as high host specificity (prevent
damage to normal flora, do not infect the eukaryotic cells),
low dosages for treatment, rapid proliferation inside the
host bacteria, etc. that make them ideal candidates to treat
bacterial infections (Domingo-Calap and Delgado-Martínez,
2018). Unlike antibiotics, the advantage of using phages is that,
they develop new infectivity and regain an upper hand over
bacteria as they mutate alongside their host (Pirnay et al., 2018).

Several studies carried out in vitro have proven phages to be
effective as antibacterial agents against biofilm and planktonic
cells of ESKAPE (Pallavali et al., 2017; Dvořáčková et al., 2018;
Jamal et al., 2019). Table 2 gives information of phage therapy
studied in various animal models as well as recent case studies
and case reports of patients infected with ESKAPE pathogens.
Phage therapy carried out in animal wound infection models
have shown reduced mortality and enhanced wound healing.
Additional studies carried out in vivo have also demonstrated
efficacy and safety (non-toxic with reduced inflammatory
responses) of phages used in treatment of bacterial infections.

Phage therapy, though promising, comes with some
limitations. It can, however, be overcome by appropriate
modifications (Wittebole et al., 2014; El-Shibiny and El-Sahhar,
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2017; Domingo-Calap and Delgado-Martínez, 2018). High
specificity of the phages can be considered as both advantageous
and a limiting factor. Monophage therapy involves the need to
check the efficacy of the phage by testing it in vitro against the
disease-causing bacteria before applying it to a patient which
can be a difficult process. The use of phage cocktails, comprising
of a combination of phages acting against different bacterial
species or strains, can avoid these problems (Chan et al., 2013).
International experts believe that an ideal phage cocktail should
be prepared using phages belonging to different families or
groups such as having broad host range, high adsorption ability
to the highly conserved cell wall structures in bacteria. Using such
phage cocktails may reduce the emergence of phage resistant
bacterial population. However, others advocate strategies
wherein individual active phages are applied sequentially to the
patient. In clinical practice, however, it appears to be difficult
(Rohde et al., 2018).

Genomic characterization of phages is very important so as to
predict their “safety” in therapeutic applications as demonstrated
by several experts in this field. Phages can be vectors for
horizontal gene transfer in bacteria, sometimes being involved
in exchange of virulence or antibiotic resistance genes making
a microbe more pathogenic or resistant to an antibiotic (Chen
and Novick, 2009). Phages reported for therapeutic applications
should not harbor virulence or antibiotic resistance genes as
well as integrases, site-specific recombinases, and repressors of
the lytic cycle that may accelerate the transfer/integration of
these genes in the host bacterial genome. Algorithms that can
be used for predicting lifestyle of a phage, and its virulent traits
are available but their database needs to be updated with more
genome sequences of phages (Mcnair et al., 2012). Two recent
reviews excellently describe the work flow to select ideal phage
candidates for therapeutic purposes (Casey et al., 2018; Philipson
et al., 2018). Recent studies demonstrating in vivo efficacy of
phages against ESKAPE infections have used fully characterized
phages that show no virulence or antibiotic resistance genes, are
considered safe as they do not exhibit any allergic or immune
response, and are also reported to remain stable at varied
pH and temperature which make them ideal candidates for
therapy (Fish et al., 2016; Kishor et al., 2016; Wang et al., 2016;
Zhou et al., 2018).

Similarly, it has also been reported that the bacterial strains
used for phage production should ideally be free of functional
prophages. These prophages may get induced and contaminate
the phage preparation. However, a recent report discusses the risk
benefit evaluation that needs to be done in highly experimental
treatments of patients infected with MDR pathogens such as
ESKAPE (Rohde et al., 2018).

Another limitation reported is the stability of phages and
their proper administration in order to reach the site of action.
Phage formulations are ingested orally, administered nasally or
applied topically (Malik et al., 2017; Cooper et al., 2018). Studies
have shown improved efficacy of phage when entrapped with
liposomes (Singla et al., 2016; Chadha et al., 2017; Malik et al.,
2017; Chhibber et al., 2018). Phages can be targeted at the
infection site in the form of powdered formulations (Chang et al.,
2018). Phage derived product like phage encoded lytic enzymes

showing function similar to lysozyme can also be used as an
antibacterial agent or can be combined with other antimicrobials
like antibiotics to improve efficacy of treatment (Lin et al.,
2017). A phage derived protein, “endolysin” is reported for its
antibacterial and antibiofilm activity against ESKAPE (Viertel
et al., 2014; Gong et al., 2016; Rios et al., 2016; Lin et al., 2017;
Zhang et al., 2018). V12CBD a recombinant protein derived from
bacteriophage lysine, PlyV12, was able to attenuate virulence of S.
aureus, and enhance its phagocytosis in mice (Yang et al., 2018b).

Several commercial phage preparations which can be used
against ESKAPE are available some of which include, “Stafal,”
“Sextaphage,” “PhagoBioDerm,” and “Pyophage”. Stafal (Bohemia
Pharmaceuticals, Slovakia) is an antistaphylococcal phage
preparation, Sextaphage (Microgen, ImBio Nizhny Novgorod,
Russia) is a cocktail against P. aeruginosa and E. coli
while, Pyophage (Georgian Eliava Institute of Bacteriophage,
Microbiology, and Virology) contains bacteriophages specifically
eliminating causative agents of pyoinflammatory and enteric
diseases. PhagoBioDerm, a polymeric bandage impregnated with
cocktail of phages, ciprofloxacin, and other active ingredients
ensured for sustained release of phages to treat ulcers or wound
infections caused by S. aureus and P. aeruginosa (Markoishvili
et al., 2002). Clinical potential of these preparations has
been investigated further to determine their broad spectrum
activity against other strains in vitro, in vivo efficacy in animal
models as well as through several case studies or clinical trials
described below.

Recent human case studies involving treatment of ESKAPE
associated infections with different phages are described in
Tables 2, 3. Readers may refer to previous reviews published
on phage therapy which have described in numerous studies
(Abedon et al., 2011; Chan et al., 2013; Górski et al., 2017; Lin
et al., 2017; Sybesma et al., 2018). Most of the case studies report
phage therapy given to patients on a compassionate care basis
where antibiotic treatment fails.

Several case studies have demonstrated the efficacy of phage
therapy in treating patients suffering from eye infections
(Fadlallah et al., 2015), pancreatitis (Schooley et al., 2017),
diabetic foot ulcer (Fish et al., 2016), and urinary tract
infection (Ujmajuridze et al., 2018). Fadlallah et al. (2015),
reported a case study of a 65 year old woman suffering
from a secondary eye infection by VRSA, treated with a
well-characterized commercially available lytic phage, SATA-
8505 (ATCC PTA-9476) against MRSA. After 6 months of
treatment, the patient was diagnosed as negative for cultures
of VRSA. This case study suggests that bacteriophage eye-
drops can be used as an alternative treatment of infectious
keratitis by MDR pathogens. Fish et al. (2016), reported a
case involving nine patients suffering from diabetic foot ulcer,
who were treated with a preparation of anti-staphylococcal
phages (Sb-1) on a compassionate care basis. The average
healing time reported was ∼7 weeks. However, one ulcer, with
poor vascularity required 18 weeks of treatment. Similarly,
Ujmajuridze et al. (2018), reported a preclinical pilot study for
a double blind RCT registered at ClinicalTrials: NCT03140085
(Leitner et al., 2017). Pyophage were used in this study to treat
nine patients suffering from UTI infections. The first phase
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iń
sk
a
et

al
.,
20

16

A
N
T
IM

IC
R
O
B
IA
L
P
E
P
T
ID

E
S
(A
M
P
)
+

N
P
S
;

E
f

in
vi
tr
o

S
yn

th
et
ic
p
ep

tid
e-
im

m
ob

iliz
ed

go
ld

na
no

p
ar
tic
le
s;

25
0

µ
g/
m
l

R
ed

uc
ed

b
ac

te
ria

ll
oa

d
(b
y
0.
4
O
D
un

its
)

K
uo

et
al
.,
20

16

S
in
vi
tr
o

A
M
P
TP

35
9
co

va
le
nt
ly
lin
ke

d
to

si
lv
er

co
at
ed

si
ng

le
w
al
le
d
ca

rb
on

na
no

tu
b
es

10
0%

re
d
uc

tio
n

C
ha

ud
ha

ri
et

al
.,
20

16

(C
o
n
ti
n
u
e
d
)

Frontiers in Microbiology | www.frontiersin.org 10 April 2019 | Volume 10 | Article 539

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Mulani et al. Emerging Strategies to Combat ESKAPE Pathogens

T
A
B
L
E
3
|
C
on

tin
ue

d

Ta
rg
e
t

E
S
K
A
P
E

m
e
m
b
e
r

S
tu
d
y
m
o
d
e
l

A
g
e
n
t
u
s
e
d
a
n
d
d
o
s
a
g
e
d
e
ta
il
s

E
ffi
c
a
c
y
:
lo
g
re
d
u
c
ti
o
n
o
f
p
a
th
o
g
e
n

u
s
in
g
c
o
m
b
in
a
ti
o
n
;
%

s
u
rv
iv
a
l
o
f
h
o
s
t,

a
d
d
it
io
n
a
l
a
d
v
a
n
ta
g
e

R
e
fe
re
n
c
e
s

S
&
P

in
vi
tr
o

P
ae

ni
p
ep

tin
an

al
og

(s
yn

th
et
ic
lin
ea

r
lip
op

ep
tid

e
an

al
og

s)
+

rif
am

p
ic
in
,

cl
ar
ith

ro
m
yc
in
,o

r
er
yt
hr
om

yc
in

R
ed

uc
tio

n
in

ce
ll
co

un
t
of

b
io
fil
m
s-
S
.

a
u
re
u
s
−
5
lo
gs

an
d
P.
a
e
ru
g
in
o
s
a
−
3
lo
gs

M
oo

n
et

al
.,
20

17

K
in
vi
tr
o

S
P
R
74

1,
a
ca

tio
ni
c
p
ep

tid
e
d
er
iv
ed

fro
m

P
ol
ym

yx
in

B
+

an
tib

io
tic
s

12
8-
fo
ld

re
d
uc

tio
n
in

M
IC

w
ith

rif
am

p
in

an
d

cl
ar
ith

ro
m
yc
in

–
C
or
b
et
t
et

al
.,
20

17

A
N
T
IM

IC
R
O
B
IA
L
P
H
O
T
O
D
Y
N
A
M
IC

L
IG

H
T
T
H
E
R
A
P
Y
(a
P
D
T
)
+

A
N
T
IB

IO
T
IC

E
f

in
vi
vo

(G
.m

el
lo
ne

lla
in
fe
ct
io
n
m
od

el
)

Li
gh

t-
66

0
±

15
nm

,0
.9

J/
cm

2
P
S
:

M
et
hy

le
ne

b
lu
e
(M

B
);
T
im

e
30

s
+

va
nc

om
yc
in
-5
0
m
g/
kg

10
0%

re
d
uc

tio
n;

∼
60

%
su

rv
iv
al

C
hi
b
eb

e
Ju

ni
or

et
al
.,

20
13

S
in
vi
tr
o

U
V
C
lig
ht
−
25

4
nm

,6
.4

m
W

+
va
nc

om
yc
in

(1
6

µ
g/
m
L)

or
q
ui
nu

p
ris
tin

/
d
al
fo
p
ris
tin

(3
2

µ
g/
m
L)

or
lin
ez
ol
id

(6
4

µ
g/
m
L)

40
%

re
d
uc

tio
n
in
b
ac

te
ria

ll
oa

d
w
ith

va
nc

om
yc
in

or
q
ui
nu

p
ris
tin

/
d
al
fo
p
ris
tin

an
d

20
%

in
w
ith

lin
ez
ol
id
;S

yn
er
gy

re
d
uc

ed
vi
ab

ilit
y
of

ce
lls

w
ith

in
th
e

b
io
fil
m

co
ns

id
er
ab

ly

E
l-A

zi
zi
an

d
K
ha

rd
or
i,

20
16

S
in
vi
tr
o

LE
D
lig
ht

65
0
nm

,2
.8
–2

2.
4
J/
cm

2
.

P
S
-M

B
6.
25

–4
00

µ
g/
m
L,

ci
p
ro
flo

xa
ci
n

(0
.5

µ
g/
m
L)

5
lo
g
re
d
uc

tio
n
in

b
ac

te
ria

ll
oa

d
;4

lo
g

re
d
uc

tio
n
in

b
ac

te
ria

lc
el
lc
ou

nt
in

b
io
fil
m

R
on

q
ui
et

al
.,
20

16

a
P
D
T

+
E
F
F
L
U
X
P
U
M
P
IN

H
IB

IT
O
R

S
in
vi
tr
o

Li
gh

t-
22

J/
cm

2
;P

S
-
M
B
-2
00

µ
g/
m
L
+

E
P
I-
ve
ra
p
am

il
31

2
µ
g/
m
L

3.
38

lo
g
re
d
uc

tio
n
in

b
io
fil
m

d
e
A
gu

ia
r
C
ol
et
ti
et

al
.,

20
17

S
in
vi
tr
o
a
n
d
in
vi
vo

(M
ur
in
e

w
ou

nd
in
fe
ct
io
n
m
od

el
)

aP
D
T
us

in
g
N
or
A
E
P
I-
M
B
hy

b
rid

,
IN
F5

5-
(A
c)
en

-M
B

in
vi
tr
o
:6

lo
g
re
d
uc

tio
n;
in
vi
vo

:1
00

%
re
d
uc

tio
n
w
ith

in
4
d
ay
s;

en
ha

nc
ed

w
ou

nd
he

al
in
g

R
in
eh

et
al
.,
20

17

A
in
vi
tr
o
an

d
in
vi
vo

(M
ur
in
e

w
ou

nd
in
fe
ct
io
n
m
od

el
)

in
vi
tr
o
:a

P
D
T
us

in
g
N
or
A
E
P
I-
M
B
hy

b
rid

,
IN
F5

5-
(A
c)
en

-M
B

in
vi
tr
o
:5

lo
g
re
d
uc

tio
n;
in
vi
vo

:1
00

%
re
d
uc

tio
n
w
ith

in
6
d
ay
s;

en
ha

nc
ed

w
ou

nd
he

al
in
g

R
in
eh

et
al
.,
20

18

A
N
T
IB

A
C
T
E
R
IA
L
B
L
U
E
L
IG

H
T
(a
B
L
)
+

A
g
N
P

S
&
P

in
vi
tr
o
,i
n
vi
vo

(m
ur
in
e

b
ur
n
w
ou

nd
in
fe
ct
io
n

m
od

el
)a

nd
C
as

e
st
ud

y
(c
hr
on

ic
w
ou

nd
in
fe
ct
io
n

of
ho

rs
e)

A
gN

P
-
ch

em
ic
al
ly
sy
nt
he

si
ze
d
(1
5–

20
nm

)
+

Li
gh

t-
aB

L-
46

0
nm

,2
h
ex

p
os

ur
e
af
te
r

A
gN

P
ap

p
lic
at
io
n

in
vi
tr
o
:1

0
lo
g
re
d
uc

tio
n
in

b
ac

te
ria

lc
ou

nt
in

b
io
fil
m
s;

in
vi
vo

:1
00

%
re
d
uc

tio
n
in

2
h
in

m
ic
e;

R
ed

uc
tio

n
in

w
ou

nd
b
io
b
ur
d
en

;
C
as

e
st
ud

y:
W
ou

nd
he

al
ed

co
m
p
le
te
ly

w
ith

in
4
w
ee

ks
in

th
e
ho

rs
e

N
ou

r
E
lD

in
et

al
.,
20

16

P
in
vi
tr
o

Li
gh

t-
65

0
nm

,P
S
:S

od
iu
m

sa
lt
of

te
tr
as

ul
fo
na

te
d
hy

d
ro
xy
al
um

in
um

p
ht
ha

lo
cy
an

in
e
[A
l(O

H
)P
c(
S
O
3N

a)
4]

+
A
.

p
ul
lu
la
ns

sy
nt
he

si
ze
d
A
u-
A
gN

P
s-

14
nm

(2
0
p
p
m
)

3
lo
g
re
d
uc

tio
n

M
al
is
ze
w
sk
a
et

al
.,
20

18

(C
o
n
ti
n
u
e
d
)

Frontiers in Microbiology | www.frontiersin.org 11 April 2019 | Volume 10 | Article 539

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Mulani et al. Emerging Strategies to Combat ESKAPE Pathogens

T
A
B
L
E
3
|
C
on

tin
ue

d

Ta
rg
e
t

E
S
K
A
P
E

m
e
m
b
e
r

S
tu
d
y
m
o
d
e
l

A
g
e
n
t
u
s
e
d
a
n
d
d
o
s
a
g
e
d
e
ta
il
s

E
ffi
c
a
c
y
:
lo
g
re
d
u
c
ti
o
n
o
f
p
a
th
o
g
e
n

u
s
in
g
c
o
m
b
in
a
ti
o
n
;
%

s
u
rv
iv
a
l
o
f
h
o
s
t,

a
d
d
it
io
n
a
l
a
d
v
a
n
ta
g
e

R
e
fe
re
n
c
e
s

B
L

+
A
g
N
P

+
A
N
T
IB

IO
T
IC

S

S
in
vi
tr
o

Li
gh

t-
aB

L-
46

0
nm

,2
50

m
W
,1

h,
va
rio

us
an

tib
io
tic
s
+

A
gN

P
-
ch

em
ic
al
ly

sy
nt
he

si
ze
d
(1
5–

20
nm

).
D
ou

b
le

co
m
b
in
at
io
n-

A
gN

P
at

su
b
M
IC

+

an
tib

io
tic
s/

aB
L;

Tr
ip
le
co

m
b
in
at
io
n-

A
gN

P
+

an
tib

io
tic
+

aB
L

10
0%

re
d
uc

tio
n
in

8
h,

sy
ne

rg
is
tic

ac
tiv
iti
es

of
A
gN

P
w
he

n
us

ed
in

d
ou

b
le
or

tr
ip
le

co
m
b
in
at
io
ns

.

A
kr
am

et
al
.,
20

16

a
P
D
T

+
A
M
P

S
,A

,E
f

in
vi
tr
o

M
B
,M

B
-P

D
T
at

45
J/
cm

²
or

C
hl
or
in

6,
C
e6

-P
D
T
at

30
J/
cm

²
+

A
M
P
-
au

re
in

1.
2,

A
U
at

16
µ
M

S
.
a
u
re
u
s
-
6
lo
g
re
d
uc

tio
n,
A
.
b
a
u
m
a
n
n
ii-

5
lo
g
re
d
uc

tio
n,
E
.
fa
e
c
iu
m
-2
.5

lo
g
re
d
uc

tio
n

d
e
Fr
ei
ta
s
et

al
.,
20

18

P
in
vi
tr
o

R
os

e
B
en

ga
l(
R
B
)-
an

tim
ic
ro
b
ia
lp

ep
tid

e
co

nj
ug

at
e
to

en
ha

nc
e
th
e
so

no
d
yn

am
ic

th
er
ap

y

7
lo
g
re
d
uc

tio
n,

in
cr
ea

se
in

d
iff
us

io
n
of

R
B

2.
6
fo
ld

th
ro
ug

h
th
e
b
io
fil
m

C
os

tle
y
et

al
.,
20

17

P
in
vi
tr
o

A
M
P
(C
A
M
E
L
or

p
ex

ig
an

an
)a

P
D
T
R
B
at

15
–6

0
J/
cm

2
.a

P
D
T
w
ith

R
B
an

d
P
E
X
at

5µ
M

ea
ch

O
R
R
B
an

d
C
A
M

at
10

µ
M

ea
ch

5
lo
g
re
d
uc

tio
n

N
ak

on
ie
cz
na

et
al
.,
20

18

a
P
D
T

+
A
D
J
U
V
A
N
T

P
in
vi
tr
o
an

d
in
vi
vo

(m
ur
in
e

w
ou

nd
in
fe
ct
io
n
m
od

el
)

in
vi
tr
o
:g

re
en

lig
ht

0,
10

,a
nd

20
J/
cm

2
;

P
S
-
R
B
-
10

0
nM

;K
I-
0–

10
0
m
M
;i
n
vi
vo

:
gr
ee

n
lig
ht
-2
0
J/
cm

2
;P

S
-
50

0
µ
M

R
B

al
on

e
or

m
ix
ed

w
ith

1M
K
I

in
vi
tr
o
:7

lo
g
re
d
uc

tio
n;

in
vi
vo

-1
00

%
re
d
uc

tio
n;

In
hi
b
iti
on

of
w
ou

nd
b
io
b
ur
d
en

W
en

et
al
.,
20

17

P
in
vi
tr
o
an

d
in
vi
vo

(m
ur
in
e

cu
ta
ne

ou
s
ul
ce

r
in
fe
ct
io
n

m
od

el
)

in
vi
tr
o
:L

E
D
41

0
nm

,6
an

d
9
J/
cm

2
;P

S
-

5-
A
m
in
ol
ev
ul
in
ic
ac

id
(A
LA

)-
0.
05

–0
.5
%
,

E
D
TA

-2
N
a
0.
00

1–
0.
00

5%
;i
n
vi
vo

:L
E
D

41
0
nm

,6
an

d
9
J/
cm

2
;K

Y
je
lly

w
ith

5-
A
LA

-0
.1

an
d
0.
5%

,E
D
TA

-2
N
a
0.
00

1
an

d
0.
00

5%
.

in
vi
tr
o
:C

om
b
in
at
io
n
w
as

le
ss

ef
fic
ie
nt

th
an

E
D
TA

-2
N
a
in

b
io
fil
m

in
hi
b
iti
on

;
in
vi
vo
:
6
lo
g
re
d
uc

tio
n
in

w
ou

nd
b
io
b
ur
d
en

w
ith

60
%

he
al
in
g
w
ith

in
13

d
ay
s

K
at
ay
am

a
et

al
.,
20

18

S
&
A

in
vi
tr
o
an

d
in
vi
vo

(m
ur
in
e

sk
in

ab
ra
si
on

m
od

el
)

in
vi
tr
o
:U

VA
Li
gh

t
36

0
±

20
nm

-
0–

20
J/

cm
2
-e
xp

os
ur
e;

w
hi
te

lig
ht
-
40

0–
70

0
nm

,
0–

12
0
J/
cm

2
;P

S
-
C
60

-f
ul
le
re
ne

(L
C
16

)-
20

µ
M

w
ith

or
w
ith

ou
t
K
I(
1
M
−
30

µ
l);
in

vi
vo

:U
VA

Li
gh

t
36

0
±

20
nm

-
20

J/
cm

2
-

ex
p
os

ur
e;

w
hi
te

lig
ht
-
40

0–
70

0
nm

12
0

J/
cm

2
;P

S
-
C
60

-f
ul
le
re
ne

(L
C
16

)-
20

0
µ
M

w
ith

or
w
ith

ou
t
K
I(
10

m
M
)

in
vi
tr
o
:1

–2
lo
g
re
d
uc

tio
n;

in
vi
vo

:1
–2

lo
g
re
d
uc

tio
n
in
A
.

b
a
u
m
a
n
n
ii
on

ly

Z
ha

ng
et

al
.,
20

15

E
f,
E
n
te
ro
c
o
c
c
u
s
fa
e
c
iu
m
;
S
,
S
ta
p
h
yl
o
c
o
c
c
u
s
a
u
re
u
s
;
K
,
K
le
b
s
ie
lla

p
n
e
u
m
o
n
ia
;
A
,
A
c
in
e
to
b
a
c
te
r
b
a
u
m
a
n
n
ii;
P,
P
s
e
u
d
o
m
o
n
a
s
a
e
ru
g
in
o
s
a
;
a
n
d
E
,
E
n
te
ro
b
a
c
te
r
s
p
p
.

Frontiers in Microbiology | www.frontiersin.org 12 April 2019 | Volume 10 | Article 539

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Mulani et al. Emerging Strategies to Combat ESKAPE Pathogens

of this study involved adaptation cycles of the commercial
Pyophage preparation to increase its sensitivity toward the
uropathogens. In the second phase, six of the nine patients
responded to the adapted bacteriophage showing up to five
log reduction in CFU of the infecting bacteria. Another study
by Schooley et al. (2017) described the case of a 68 year old
male diabetic patient having necrotizing pancreatitis which was
complicated by an MDR A. baumannii. The patient responded
to a phage therapy which consisted of a cocktail of nine phages
against A. baumannii.

Few cases showing partial success of phage therapy in treating
the infection are also reported (Jennes et al., 2017; Duplessis
et al., 2018). Jennes et al. (2017) reported a case study of 61-
year-old man diagnosed with septicaemia caused by a colistin-
only-sensitive P. aeruginosa. Blood cultures turned negative
immediately after BFC1 phage therapy but sores remained
infected. No adverse side effects were observed during this
therapy. In another study, a 2-year-old boy with a history
of DiGeorge syndrome and complex congenital heart disease
developed post-operative recalcitrant P. aeruginosa bacteraemia.
A cocktail of two phages were used to target the infecting
pathogen turning the blood cultures negative. However, the
bacteraemia re-occurred after the discontinuation of phage
therapy (Duplessis et al., 2018). It is however felt that commonly
approved guidelines for application of phages is warranted in
order to compare the efficacies of various phage treatments.

Several clinical trials have demonstrated the safety of phages
and phage lytic enzymes which are in agreement with the
studies carried out in animal models or as reported in numerous
case studies. Although, many phase I and/or phase II clinical
trials to demonstrate the efficacy of phages against ESKAPE
infections have been registered in the past few years, the
number of well-documented and completed trials are too
low to draw meaningful conclusions (Sybesma et al., 2018).
Moreover, the number of patients enrolled for the trials have
severely limited the conclusions. A notable example of this
is “PhagoBurn,” a multicentric randomized single blind and
controlled clinical study on phage therapy to treat burn wound
infections caused by P. aeruginosa and E. coli (ClinicalTrials.gov
registry, NCT02116010). Twenty seven patients were enrolled
for the trial which resulted in being too low from the pre-
calculated 220 patients expected to give statistically significant
results. Restrictive patient inclusion criteria, shorter duration of
patient enrolment, and low incidence of burn wound infection
during the period of study were described as possible reasons
for the very few eligible patients (Servick, 2016). The 27 patients
were randomly assigned to the phage treatment group and safety
control group for further investigation. A cocktail of 12 phages
(PP1131) with lytic activity against P. aeruginosa were added to
an alginate template that was applied directly to the wound of
the treated group. A diluted phage cocktail was used due to its
high endotoxin content. The control group received a topical
application of the standard care treatment (1% sulfadiazine
silver). Few adverse events were reported both in phage treated
and safety control group. The trial, however, was terminated
prematurely due to insufficient efficacy of PP1131. A supporting
study showed that the bacteria isolated from patients with the

failed treatment were resistant to low phage doses used for
this study. This, however, was the first Randomised Clinical
Trial (RCT) performed following both good manufacturing
practices as well as good clinical practices and was approved
by three national health regulators (Belgium, France, and
Switzerland). Further studies with increased phage concentration
and higher number of participants are needed (Jault et al.,
2019). In case of phage lytic enzymes, the first-in-human phase
I clinical trial study for phage endolysin-based candidate drug
SAL200, after a single intravenous administration among healthy
volunteers showed no clinically significant detrimental effect
(Youn Jun et al., 2017).

The other recent ongoing trial includes a randomized
placebo controlled double blind clinical trial (ClinicalTrials.gov
registry, NCT03140085) to study the efficacy and safety
of commercially available Pyophages for treating UTI
infections in patients planned for transurethral resection
of prostate. Eighty-one patients were expected to enroll
for this interventional study design planned between Nov
2015–Dec 2018 that may provide necessary insights into this
potentially transforming alternative treatment option (Leitner
et al., 2017). Similarly, another multicentric, randomized,
two-parallel group, double blind controlled trial expected to
enroll 60 patients was registered (ClinicalTrials.gov registry,
NCT02664740) to compare efficacy of anti-staphylococcal
phages verses standard treatment and placebo for diabetic
foot ulcers infected by S. aureus. This study has not yet begun
recruiting patients.

To further overcome limitations of phage therapy, phages
can be combined with antibiotics which may show synergistic
action by making either a phage or antibiotic or both to act more
effectively (Table 3). Reduction in the formation of bacterial
biofilms has also been reported when antibiotic treatment is
used in combination with phages (Jo et al., 2016; Chaudhry
et al., 2017). Endolysin produced by bacteriophages, proves
to be more beneficial than lysing cell wall and facilitating
entry of the antibiotic inside the bacteria (Rios et al., 2016).
Phage PEV20 and ciprofloxacin exhibited a synergistic effect
in vitro against P. aeruginosa (Lin Y. et al., 2018). Another
interesting study reported that P. aeruginosa, while developing
phage resistance when under attack by OMKO1 phage, changed
the efflux pump mechanism which ultimately increased the
sensitivity of P. aeruginosa to antibiotics. Such an approach
creates a win-win situation causing the killing of the bacteria
either through phage or by antibiotic action (Chan et al.,
2016). Similarly, it has been reviewed that such changes in
the surface receptors of any bacterium may also reduce its
virulence (Rios et al., 2016). A case study reported OMKO1
phage in combination with ceftazidime could successfully
treat a complicated postoperative P. aeruginosa infection in
a patient who underwent an aortic arch replacement surgery
(Chan et al., 2018). The success or failure of phage antibiotic
combination therapy is still in a state of immaturity as the
mechanisms involved in synergy have not been fully understood
and the data of in vivo models and case reports is scarce.
Further investigations are warranted in order to make any
conclusive remarks.
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ANTIMICROBIAL PEPTIDES (AMPs) IN
THERAPY

Antimicrobial peptides (AMPs) are short, positively charged,
diverse host defense oligopeptides produced by all living forms
including protozoa, bacteria, archaea, fungi, plants, and animals
(Wang et al., 2010). They show a broad spectrum of activity
against a wide range of pathogens. The capacity of AMPs to
interact with bacterial cell membrane and thereby cause cell lysis
makes them a potential alternative to combat MDR pathogens
(Berglund et al., 2015). Furthermore, in contrast to conventional
antibiotics, AMPs physically damage the bacterial cell through
electrostatic interactions thereby making it difficult for bacteria
to develop resistance against AMPs (Pfalzgraff et al., 2018).

Considering the critical status of ESKAPE pathogens, several
attempts have been made to find out AMP based effective
therapeutics. To date, there are numerous natural as well as
bioengineered AMPs reported to show in vitro (Björn et al., 2016;
Cappiello et al., 2016; Liu et al., 2017; Gandt et al., 2018; Irani
et al., 2018; Téllez et al., 2018) as well as in vivo (Björn et al., 2016;
Liu et al., 2017) antimicrobial, antibiofilm, anti-inflammatory,
and wound healing abilities with minimum cytotoxicity. Histatin
5, a natural histidine rich cationic human salivary peptide, is
an example. This peptide shows a strong in vitro anti-biofilm
as well as potent bactericidal activity (≥70%) against ESKAPE
(Du et al., 2017). Similarly, a de novo-engineered cationic
peptide, WLBU-2, and a natural AMP LL-37 at 1/3X MIC has
demonstrated 90% biofilm inhibition as compared to that shown
by antibiotics such as tobramycin, ciprofloxacin, ceftazidime,
and vancomycin at 1X MIC (Lin Q. et al., 2018). In 2017,
Gaglione et al. examined human ApoB derived recombinant
peptides namely r(P)ApoBL and r(P)ApoBS. Both peptides
showed effective in vitro wound healing, anti-inflammatory,
antimicrobial, and antibiofilm properties against MDR strains of
S. aureus and P. aeruginosa.

Similar to their remarkable in vitro properties, AMPs also
exhibit promising in vivo activity against ESKAPE. For example,
peptide HLR1r, a structural derivative of human milk protein,
lactoferrin, at very low concentration (5 mg/kg) was found to
show anti-infectivity against MRSA infected wound excision
model in rat along with in vitro anti-inflammatory and non-
cytotoxic effects suggesting use of HLR1r in topical formulation
to treat skin infections (Björn et al., 2016). PT-13 a peptide
derived from seeds and leaves of Populus trichocarpa crude
extract also demonstrated effective in vivo antibacterial activity
in S. aureus infected G. mellonella model (Al Akeel et al.,
2018). In another instance, a synthetic analog of Feleucin-K3
has shown to clear P. aeruginosa induced bacteremia in mice
model with good stability and very low cytotoxicity (Xie et al.,
2018). Also, a hydrogelformulation containing K-11, a hybrid
peptide of melittin, cecropin A1 and magainin-2 has shown
to possess wound healing ability against A. baumannii infected
murine excision model proposing its possible use as a topical
anti-infective therapeutic agent (Rishi et al., 2018).

Over the past decades, intense efforts taken by the scientific
community and pharmaceutical industries together has made

it possible to introduce certain peptides such as vancomycin,
telavancin, telaprevir, teicoplanin, enfuvirtide, daptomycin,
dalbavancin, bacitracin etc. for clinical use (Gomes et al., 2018). A
clinical trial conducted on rabbits and humans using the peptide
melamine proved it to be a stable and safe antibacterial coating
for eye lenses (Dutta et al., 2014). Similarly, Pexiganan (analog of
magainin), LL-37 (analog of human cathelicidin peptide), hLF1-
11, and PXL-01 (derivatives of human milk protein), Novexatin
(derivative of human defense peptide), Iseganan (derivative
of porcine leukocytes), PAC-113 (derivative of human saliva
histatin-3 peptide) etc. are few examples of AMPs which also are
under clinical trials (Mahlapuu et al., 2016).

Unfortunately, such a low number of AMPs seeking clinical
approval is quite discouraging. Despite their successful in vitro
and/or in vivo broad-spectrum activities, numerous AMPs have
not yet crossed the hurdle of clinical trial. Amongst the few
challenges that hamper the in vivo efficacy of AMPs are their
cytotoxicity to mammalian cells, liability to degradation by tissue
proteases, loss of activity at low salt concentrations or in presence
of plasma proteins and higher production cost (Mahlapuu et al.,
2016; Rios et al., 2016). The issue of peptide degradation can be
solved by structural modification of AMPs such as addition of
non-natural amino acids or their D-isomers, peptide cyclisation,
acetylation, and amidation of N-terminus. Introduction of
peptide mimetics or the use of suitable delivery system like
liposome encapsulation can be done to improve their stability
and reduce toxicity (Seo et al., 2012; Reinhardt and Neundorf,
2016). Additionally, efficiency of AMPs can be enhanced by
combining AMPs with antibiotics (Gaglione et al., 2017; Zheng
et al., 2017; Pletzer et al., 2018) or nanoparticles (Chaudhari et al.,
2016; Kuo et al., 2016). Otvos et al. (2018), reported a synergestic
effect of A3-APO, a proline-rich AMP, and colistin when studied
in aK. pneumoniae infected bacteremiamicemodel. The basis for
in vitro decrease inMIC of A3-APOwhen combined with colistin
can be explained by considering the fact that colistin kills bacteria
by interfering with bacterial membrane assembly and, therefore,
slight reductions in bacterial membrane integrity potentiate A3-
APO antibacterial action. Surprisingly, the same combination
also showed a 100% survival in mice. This observation can
be a direct consequence of A3-APO ability to induce immune
augmentation or the deactivation of bacterial toxins. Enhanced
in vitro bactericidal activity against S. aureus was also found in
the case where LL-37, a human cathelicidin peptide, combined
with gold nanoparticles as compared to vancomycin alone (Wang
et al., 2018). In this case, gold nanoparticles increased the
local density of positive charges and peptide mass and thereby
enhanced the bactericidal properties of LL-37.

To summarize, owing to their in vitro and in vivo broad-
spectrum antibacterial activities AMPs offer a hopeful alternative
to conventional therapeutics. However, to overcome challenges
in developing a safe, stable and efficient commercial product, a
thorough understanding of their structure and interaction with
bacterial as well as host cells is still needed. It will also be helpful
to find better AMP formulation strategies to obtain maximum
therapeutic actions. Overall, considering the extensive research
being carried out on different AMPs against various infectious
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agents, the future of peptide based commercial drug formulations
looks hopeful.

PHOTODYNAMIC LIGHT THERAPY

Antimicrobial light therapy, either alone or combined with a
photosensitizer (PS), results in a photooxidative stress response
that leads to microbial death. Excitation of PS with light of
an appropriate wavelength leads to formation of an excited
triplet state. An excited PS can transfer electrons or energy to
biomolecules or molecular oxygen, resulting in the formation of
reactive oxygen species (ROS) or singlet oxygen radicals, which
are toxic to cellular targets such as nucleic acids, proteins and
lipids (Mai et al., 2017; Yang M.-Y. et al., 2018). Some of the
most frequently used PSs include phenothiazinium derivatives
(methylene blue, toluidine blue), xanthine derivatives (rose
bengal), porphyrin, chlorin, or fullerene derivatives amongst
many others (Abrahamse and Hamblin, 2016; Cieplik et al.,
2018). Antimicrobial photodynamic therapy is widely used for
treating dental, skin, and soft tissue infections. For a more
detailed description of the current state and future prospects of
light therapy with respect to the various photosensitisers, light
sources, andmethods used, mechanism of antimicrobial action or
antibiofilm potential, the reader may be referred to the excellent
reviews published recently (Cieplik et al., 2018; Hu et al., 2018;
Tomb et al., 2018; Wozniak and Grinholc, 2018). However, none
of these reviews have especially focused on in vivo studies of
aPDT against ESKAPE pathogens.

There has been extensive research on designing the PSs so
as to improve their pharmaceutical potential. An ideal PS used
for antimicrobial therapy should have greater permeability to
cross the microbial cell wall/cell membrane, selective toxicity
toward the microbial cell with minimal or no damage to the
host tissue and an absorption coefficient appropriate for effective
penetration at the site of action. The PS chosen should not have a
long half-life which causes prolonged photosensitization in the
host cells even after the infection is cured. It should also not
be effluxed out by the microbial efflux systems (Cieplik et al.,
2018; Hu et al., 2018; Tomb et al., 2018; Wozniak and Grinholc,
2018). Efficacy of aPDT also depends on the light fluence, PS
concentration and treatment time (Tomb et al., 2017; Sueoka
et al., 2018; Ullah et al., 2018).

PSs chosen preferably have a large absorption coefficient
in the visible spectrum, especially in the long wavelength
(red near infrared) region, to allow effective penetration of
light in the infected tissue (Table 2). Many researchers have
attempted to improve the availability of PS by potentiating
or functionalizing it with other molecules including galactose,
amino acids, efflux pump inhibitors, potassium iodide, EDTA etc.
A variety of PSs functionalized with addends are used to target
ESKAPE pathogens. A boron-dipyrrolemethene (BODIPY)-
based polygalactose, named pGEMA-I (7.3 kDa) with increased
water solubility was used to demonstrate antibacterial and
antibiofilm activity against P. aeruginosa, without much affecting
the viability of normal cells. It was demonstrated that the selective
recognition of the pathogen was due its carbohydrate binding

lectin protein (LecA) which interacted with the galactose moiety
of the PS (Zhao et al., 2018). C60-fullerene (LC16) bearing
deca-quaternary chain and deca-tertiary-amino groups facilitates
electron-transfer reactions via the photoexcited fullerene for
antimicrobial effect studied in A. baumannii and S. aureus
(Huang et al., 2014; Zhang et al., 2015). Another drawback
of aPDT is that the ROS generation may cease after the light
irradiation is turned off thus allowing un-killed bacteria to
re-grow. Potentiating aPDT with potassium iodide allows the
formation of iodine/tri-iodide that may remain active in the
wound for a longer duration sufficient enough to prevent
bacterial re-growth (Zhang et al., 2015; Wen et al., 2017).

In vitro studies have shown that blue light (aBL) has a broad
spectrum antibacterial and antibiofilm activity against all six
ESKAPE members (Halstead et al., 2016). In vivo data also
corroborated this finding and further confirmed that using a low
penetrating blue light of 415 ± 10 nm should be a preferred
choice of treatment in case of topical wound infections as it
causes minimal damage to the uninfected tissue cells below
(Amin et al., 2016; Wang et al., 2017; Katayama et al., 2018).
Some studies additionally report that an exogenous PS may
not be required (Amin et al., 2016; Wang et al., 2017). Their
finding was supported by experimental data showing that the
endogenous porphyrins present in the bacterial cell membrane
play a role in triggering the photoxidative response (Amin et al.,
2016). aBL using 5-aminolevulinic acid with disodium EDTA
(ALA-EDTA/2Na) had antibacterial and antibiofilm potential
thus showing significant wound healing of P. aeruginosa infected
cutaneous ulcers inmicemodel (Katayama et al., 2018). However,
the role of EDTA in increasing the antibacterial action of aBL
needs further investigation. The physiological mechanism behind
wound healing was studied in a S. aureus infected burn model
in mice revealing that the enhanced levels of factors promoting
angiogenesis and epithelial regeneration (bFGF, TGFβ1, and
VEGF) led to the inhibition of inflammatory factors (TNFα and
IL6) in the aPDT treated group as compared to the control
(Mai et al., 2017).

Sueoka et al. (2018) studied the time dependant effect of
aPDT-TON 504 on P. aeruginosa and showed that a repeated
exposure to light emitting diode (LED) enhanced the inhibitory
effect on bacterial growth. This enhanced effect was possibly
because the bacteria that survived the initial aPDT were injured
by singlet oxygen generated due to excitation of remaining
photosensitizer. On the contrary there are also a few reports
investigating the development of resistance/tolerance to aBL. It
was observed that initial exposure to low doses of aBL increased
the tolerance of methicillin susceptible S. aureus (MSSA) to
subsequent doses of high intensity aBL-405 nm. It is likely that
increased tolerance to high intensity light may be due to up-
regulation of bacterial stress responses which needs detailed
investigations. However, a second set of experiment showed
that repeated sub-lethal exposures of 405 nm light indicate no
evidence of tolerance in S. aureus (Tomb et al., 2017).

A considerable amount of literature has been published on
combined efficacy of aPDT and antibiotics demonstrated in vitro
(El-Azizi and Khardori, 2016; Ronqui et al., 2016). Synergistic
effects of aPDT-antibiotic combination resulted in inactivation
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of several virulence factors in P. aeruginosa isolates (Fila et al.,
2017). aPDT when used in combination with vancomycin
prolonged the survival of Galleria mellonella infected with a
vancomycin resistant strain of E. faecium as compared to either
of the two therapies used alone (Chibebe Junior et al., 2013).
Wozniak and Grinholc (2018) in their comprehensive review
analysis have, however, pointed out that most of the aPDT carried
out in combination with antibiotics lack a standard methodology
followed to evaluate the synergistic effect.

One of the strategies for improved PS delivery involves
the use of nanoparticles which are co-administered to allow
the PS entry across the membrane or for a synergistic ROS
response resulting in an antimicrobial action. A combination of
tetrasulfonated hydroxyl aluminumphthalocyanine (AlPcS4) and
bimetallic gold/silver nanoparticles (Au/Ag-NPs) synthesized
using a cell-free filtrate of Aureobasidium pullulans showed
significantly higher killing as compared to the agents used
individually (Maliszewska et al., 2018). Au/Ag-NPs possibly
disrupted the cell membrane allowing enhanced uptake of the
PS, AlPcS4. In vitro and in vivo studies demonstrated that
AgNPs used in combination with blue light showed synergistic
antimicrobial and antibiofilm activities against P. aeruginosa
infection. Interestingly, this combination was also effective for
the treatment of a chronic wound caused by mixed infection in a
horse (Nour El Din et al., 2016). More recently, an in vitro study
carried out using A. baumannii isolates, demonstrated that the
antibacterial action of ZnO-NPs with blue light irradiation was
due to their ability to damage the cytomembrane but not DNA
(Yang M.-Y. et al., 2018).

Over expressing multidrug efflux pumps, commonly found
in resistant pathogens, are reported to affect the intracellular
concentration of PS used in aPDT, thus limiting its action
(Tegos and Hamblin, 2006). Tegos et al. (2008) carried out
in vitro experiments by co-incubating various combinations of
PS with efflux pump inhibitors to select the best combination
showing antibacterial activity. Photodynamic killing mediated by
toluidine blue (TBO), when used in combination with PaβN,
or INF271 (as EPIs) was most effective against P. aeruginosa
and S. aureus isolates, respectively. Similarly, an in vitro study
demonstrated that verapamil, an efflux pump inhibitor, when
combined with aPDT, required a lower light dose for effective
antibacterial, and antibiofilm action against S. aureus (de Aguiar
Coletti et al., 2017). In further development of such an approach,
it was recently demonstrated that INF55-(Ac)en–MB, synthetic
antimicrobial hybrids designed by covalently linking a PS
(methylene blue) to efflux pump inhibitors (INF55 and INF271)
were more effective in treating wound infections caused by S.
aureus or A. baumannii studied in mice models (Rineh et al.,
2017, 2018).

It is also worth noting that synergistic effect of aPDT
when used in combination with antimicrobial peptide was also
demonstrated recently (de Freitas et al., 2018; Nakonieczna et al.,
2018). Aurein 1.2 augmented the aPDT activity mediated by
methylene blue or chlorin-e6 against strains of S. aureus, A.
baumannii and more importantly against vancomycin resistant
E. faecium, whereas the AMP aPDT combination with curcumin
(as PS) had no effect thus revealing a PS-dependent mechanism

(de Freitas et al., 2018). Later, Nakonieczna et al. (2018) carried
out a similar study showing synergistic effect of rose bengal-
aPDT with two synthetic AMPs, CAMEL, and pexiganan against
35 isolates of P. aeruginosa. Notably, it was also shown that this
combination was non-toxic to human keratinocytes. Conjugates
such as ZnPc(Lys)5 (a zinc phthalocyanine derivative coupled
with pentalysine) also showed a synergistic antibacterial action
which was sufficient to heal S. aureus wound infection in mice
models (Ullah et al., 2018).

Overall, photodynamic therapy appears to be a promising
option for treatment of infections caused due to ESKAPE
pathogens, particularly effective in topical applications. aPDT
co administered or conjugated with antibiotics, antimicrobial
peptides, nanoparticles, or efflux pump inhibitors show a
synergistic effect. However, it is difficult to compare efficacy
between different combinatorial approaches due to lack of
uniform methodologies. More studies on investigation of
toxicity and biocompatibility of various combinations should
be investigated using in vivo models for translating them into
clinical practice.

SILVER NANOPARTICLES IN THERAPY

Nanomedicine is one of the emerging branches for treating drug
resistant pathogens. Metal nanoparticles have wide biomedical
applications as antimicrobial agents due to their unique physical
and chemical properties (Beyth et al., 2015; Hemeg, 2017).
Amongst metal nanoparticles, silver nanoparticles (AgNPs)
synthesized using physical, chemical or biological methods have
shown promising antibacterial activity due to theirmulti-targeted
approach which reduces the probability of resistance (Möhler
et al., 2018; Siddiqi et al., 2018). AgNPs act by releasing
Ag+ ions which results in disruption of electron transport or
signal transduction pathway or leads to generation of ROS,
ultimately damaging important biomolecules such as cell wall,
cell membrane, cellular DNA, and/or proteins (Dakal et al., 2016;
Qayyum et al., 2017).

AgNPs act by inhibiting or disrupting planktonic cells as
well as biofilms of MDR pathogens. Even though earlier reports
have suggested the cytotoxic effects of AgNPs (Mohanty et al.,
2012), recently in vitro and in vivo studies have demonstrated the
safe usage of AgNPs (Möhler et al., 2018). AgNPs synthesized
using aqueous leaf extract of Corchorus capsularis exhibited
antibacterial activity against S. aureus and P. aeruginosa and
were found to be non-toxic to mouse fibroblast cells (Kasithevar
et al., 2017). Electrochemically synthesized AgNPs showing
antimicrobial activity against planktonic and biofilm forming
P. aeruginosa strain were non-toxic to G. mellonella larvae
model (Pompilio et al., 2018). Recently, sunlight mediated
AgNPs synthesized using Capsicum annuum was tested in S.
aureus infected zebra fish model which proved to be effective
in inhibiting biofilm formation. Histological studies revealed
that they are non-toxic and hence can be tested for efficacy in
higher mammalian in vivo models (Lotha et al., 2018). A single-
blind clinical trial (Clinical Trial Registration: NCT01243320
and NCT01405794) carried out in 60 healthy human volunteers,
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showed that commercial AgNPs when administered orally at
dose of 10 and 32 ppm and monitored over 14 days were found
to be non-toxic. The study revealed no significant changes in
metabolic, hematologic and pro-inflammatory responses as well
as nomorphological changes in vital organs (Munger et al., 2014).

One of the widely explored applications of AgNPs is their use
in the form of composite dressings or hydrogels for treatment
of topical wound infections. AgNPs incorporated in chitosan
composite dressings offer sustained release of Ag+ ions at
low dosage which are non-toxic to fibroblast cells. Studies in
mice models suggested that AgNPs/chitosan composite dressings
and low molecular weight chitosan-coated silver nanoparticles
were effective in reducing bacterial load, were non-toxic and
biocompatible, had low absorption in body and promoted
better wound healing against S. aureus and P. aeruginosa
(Liang et al., 2016; Peng et al., 2017). Similarly, studies using
three other polymer dressings made of chitosan, nylon, and
collagen incorporated with AgNPs exhibited in vitro antibacterial
activities against ESKAPE pathogens (Radulescu et al., 2016;
Rath et al., 2016; Ding et al., 2017). These dressings did
not exhibit inflammatory responses, showed re-epithelization
of cells and better wound contraction leading to accelerated
wound healing in mice models. Sodium carboxymethyl cellulose
hydrogel loaded with polyethylene glycol coated AgNPs showed
antibacterial activity, re-epithelization, and wound healing in
MRSA infected mice model (Mekkawy et al., 2017). Similarly,
topical application of nanosilvernanohydrogels in combination
with Aloe vera accelerated wound contraction and enhanced
wound healing due to the moist environment provided by Aloe
vera (Anjum et al., 2016). In yet another formulation, AgNPs
coated on to MCM-41 type mesoporous silica nanoparticles
prevented their aggregation and allowed sustained release of
Ag+ ions displaying a long-term antibacterial activity against S.
aureus. These antibacterial nanofibrous membranes could reduce
inflammatory response and accelerate wound healing in wistar
rats (Dong et al., 2016). A randomized clinical trial was carried
out to test the antibacterial effect of two silver dressings and
their healing time in burn patients. It was demonstrated that
the hydrofiber silver dressing (AquacelR) was preferred over the
nanocrystalline silver dressing (ActicoatTM) due to reduction of
bioburden, quick wound healing, ease of using, comfort to the
patients, and low cost (Verbelen et al., 2014). On the other hand
ActicoatTM showed complete wound healing within 12 weeks in
64% of the patients with leg ulcers as compared to those who were
treated with Iodosorb dressings (cadexomer iodine) (Miller et al.,
2010).

Polymer-based nanomaterials and metal NPs are
used in antimicrobial coatings on surface of medical
devices, such as catheters and implants for prevention of
infections. AgNPs when embedded in electrospun hyaluronic
acid/polycaprolactonenanofibrous membranes coated on flexor
tendon animal models prevented bacterial infection during the
early postsurgical period (Chen et al., 2015; Shalumon et al.,
2018). Likewise, implants coated with nanocomposite layer
of polysaccharide 1-deoxylactit-1-yl chitosan and AgNPs in a
mini-pig animal model showed good biocompatibility with the
bone tissue (Marsich et al., 2013). All these studies demonstrated

that the entrapped AgNPs allowed controlled release of Ag+

ions displaying prolonged antibacterial and antibiofilm action as
well as reduced inflammatory responses. A randomized clinical
trial demonstrated the efficacy of triple-lumen central venous
catheters impregnated with AgNPs (AgTive) which showed
reduced bacterial colonization as compared to conventional
catheters in intensive care unit patients (Antonelli et al., 2012).

Repeated exposure of AgNPs at sub inhibitory concentrations
may lead to resistance in bacterial pathogens. To overcome
this limitation, a combination of AgNPs with antibiotics has
been suggested in order to increase the therapeutic efficacy of
either, resulting in reduction of dose and hence toxicity. In
vitro studies demonstrating AgNPs co-incubated with different
antibiotics showed synergistic antibacterial activities against
ESKAPE (Ghosh et al., 2012; Panáček et al., 2015; Golińska et al.,
2016; Habash et al., 2017; Singh et al., 2018; Wypij et al., 2018).
Synergistic antibacterial activity of AgNPs in combination with
polymyxin B was demonstrated in A. baumannii infected mouse
model with 60% survival rate as compared to the controls treated
with antibiotic or AgNPs alone (Wan et al., 2016).

Despite the use of AgNPs as a potential therapeutic agent,
literature survey indicates a paucity of data obtained from in vivo
studies carried out to test the toxicity, efficacy, pharmacokinetic,
and immuno-modulatory response of the AgNPs. Further
investigations through well-defined studies and clinical trials
will lead to applications of AgNPs in wound dressings or
medical devices.

CONCLUDING REMARKS

There is an urgent need to restock our armamentarium
of antimicrobials in order to stay ahead of the ever rising
drug resistant ESKAPE pathogens. There is an insufficiency
of effective antibiotic combinations in addition to the dry
pipeline of new drugs. Huge efforts have been taken to
use antibiotics in combination with adjuvants targeting
important metabolic mechanisms/pathways contributing to drug
resistance (permeablisers, lactamase inhibitors, efflux pump
inhibitors, quorum sensing inhibitors, toxin inhibitors etc.) The
modest success received to date with such antibiotic-adjuvant
combinations has paved way to explore other alternative
strategies to combat drug resistance. There is a significant rise
in the interest shown by the scientific community to use novel
therapeutic agents such as phages, antimicrobial peptides, metal
nanoparticles, and photodynamic light which, although, have
some limitations as discussed above. Some of the commonly
described limitations of these therapies include stability and
toxicity of the therapeutic agent, its targeted delivery at the site of
infection, or immune response developed by the host against the
therapeutic agent. Ongoing research has therefore led to further
develop or modify these novel therapeutic agents or therapies so
as to surmount the limitations as well as to overcome the barriers
of bacterial resistance.

This review summarizes studies that demonstrate potential
alternative therapies using in vivo models some of which
have extended further to the level of clinical trials. The
interest in phage therapy to treat bacterial infections is fast
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growing leading to development of commercial preparations
such as “Stafal,” “Sextaphage,” “PhagoBioDerm,” and “Pyophage”
against MDR pathogens. Similarly, use of silver nanoparticles
as antibiofilm coatings in surgical implants, antimicrobial
agents in topical applications or as formulations in wound
dressings has shown promising activities in animal models.
Clinical trials using commercially available nanosilver coated
dressings (ActicoatTM, AquacelR) or catheters (AgTive) is
another noteworthy advancement. AMPs have received great
attention due to their broad spectrum activity; however, they
have shown limited pharmaceutical potential due to their
toxicity, stability, and production costs. Photodynamic light
therapy which is widely used for cancer therapy has also
been demonstrated to be an effective strategy for clearing
wound infections. However, additional studies demonstrating the
efficacy and safety of these therapeutic agents against ESKAPE
infections are desired. Similarly, randomized clinical trials would
enable these therapeutic agents to cross the regulatory hurdles
and find application in clinical practice.

It was observed that, majority of these studies have used
animal models infected by S. aureus, A. baumannii, and P.
aeruginosa to test the efficacy of the therapeutic agent. The
probable reason for this could be that these pathogens mostly
cause topical infections (wound, burn and abscess) and because
majority of the limitations (targeted delivery, stability, immune
response, toxicity etc.) described for each therapy can be
minimized though not avoided in such models. It would be
important to study the effect of these therapeutic agents against
systemic infections caused by ESKAPE members. It was also
observed that, the methods used for estimating efficacy of any
therapeutic agent were not uniform. Table 2 reveals that, the in
vivo efficacy of various therapies is given either in terms of log or
percent reduction of microbial load or as percent survival of the
infected host (animal model). The methods followed to estimate
the reduced pathogen loads as well as dosages used for treatment
also vary. It is therefore not appropriate to compare these
studies to identify the best therapeutic agent/therapy against any
ESKAPE member.

In addition to the growing concern in searching and
evaluating the clinical potential of the above discussed alternative
therapies, research on combinatorial approach, based on the
synergistic action of two or more therapies is also gaining
attention. Most commonly studied combinations involve use
of a therapeutic agent/ therapy (phage, aPDT, AMP, or AgNP)
in combination with antibiotic/s or in some cases with an
efflux pump inhibitor or quorum sensing inhibitor. Another
interesting option used was the combination of the therapeutic

agents in a conjugate or hybrid (antibiotic-antibiotic, antibiotic-
EPI, PS-AMP, PS-EPI etc.) for an increased efficacy against
the pathogen. Most of these studies demonstrated that the
combinatorial approach helped overcome the limitation caused
by individual therapeutic agent. For example, an antibiotic
combined with an efflux pump inhibitor or a photosensitizer
conjugated with an AMP improved their entry and retention into
the target pathogen for enhanced antimicrobial action. Similarly,
combinations of antibiotics with nanoparticles or AMPS reduced
the toxicity caused by these agents which were required at high
dosages when used alone. The synergistic action allows for an
increased bioavailability of the drug or therapeutic agent, broad
antimicrobial spectrum, reduced toxicity, and decreased chances
of development of resistance. However, Table 3 shows that most
of the studies demonstrating potential of combinatorial approach
are currently based on in vitro evaluation only. Data supporting
the potential of a combinatorial therapy with respect to the
mechanism of synergy, its in vivo efficacy, toxicity, and immune
response is scarce and needs further investigation.

Finally, cost effectiveness of the above described therapeutic
agents/therapy over the conventional antimicrobial agents also
play a crucial role in their clinical application. Production cost
for any therapeutic agent will strongly depend on the various
regulatory hurdles they pass to come into clinical practice.
An agent or therapy which is too expensive may not be a
preferred choice for treatment in under developed countries
or weaker economies thus leading to over-use of conventional
antimicrobials thus contributing to the growing drug resistance.

To conclude, a uniform research methodology used to test
the efficacy of these therapeutic agents in accordance with well-
defined standards will make it possible to reliably compare
the data presented by various research groups. Well-performed
clinical trials of these therapeutic agents used as monotherapy
or as a combinatorial approach will allow us to derive the real
potential of these therapeutic combinations for being translated
into clinical practice.
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Górski, A., Jończyk-Matysiak, E., Łusiak-Szelachowska, M., Miȩdzybrodzki, R.,
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