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Ultraslow spreading ridges account for one-third of the global mid-ocean ridges. Their
impact on the diversity and connectivity of benthic deep-sea microbial assemblages is
poorly understood, especially for hydrothermally inactive, magma-starved ridges. We
investigated bacterial and archaeal diversity in sediments collected from an amagmatic
segment (10◦–17◦E) of the Southwest Indian Ridge (SWIR) and in the adjacent northern
and southern abyssal zones of similar water depths within one biogeochemical province
of the Indian Ocean. Microbial diversity was determined by 16S ribosomal RNA (rRNA)
gene sequencing. Our results show significant differences in microbial communities
between stations outside and inside the SWIR, which were mostly explained by
environmental selection. Community similarity correlated significantly with differences
in chlorophyll a content and with the presence of upward porewater fluxes carrying
reduced compounds (e.g., ammonia and sulfide), suggesting that trophic resource
availability is a main driver for changes in microbial community composition. At the
stations in the SWIR axial valley (3,655–4,448 m water depth), microbial communities
were enriched in bacterial and archaeal taxa common in organic matter-rich subsurface
sediments (e.g., SEEP-SRB1, Dehalococcoida, Atribacteria, and Woesearchaeota)
and chemosynthetic environments (mainly Helicobacteraceae). The abyssal stations
outside the SWIR communities (3,760–4,869 m water depth) were dominated by OM1
clade, JTB255, Planctomycetaceae, and Rhodospirillaceae. We conclude that ultraslow
spreading ridges create a unique environmental setting in sedimented segments
without distinct hydrothermal activity, and play an important role in shaping microbial
communities and promoting diversity, but also in connectivity among deep-sea habitats.

Keywords: Southwest Indian Ridge, seamounts, deep-sea, connectivity, diversity, bacteria, archaea

INTRODUCTION

The deep seafloor beyond the shelf break comprises about 67% of the Earth’s lithosphere (Jørgensen
and Boetius, 2007), making it the largest ecological realm worldwide. The increasing anthropogenic
impact such as climate change, littering and industrial exploitation of deep-sea resources raises
global concerns about the future of deep-sea biodiversity and the lack of marine conservation
approaches for seabed habitats (Danovaro et al., 2017). In deep sea sediments, the largest fraction
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of taxonomic richness and biomass is contributed by members
of the Bacteria and Archaea, which represent around 90% of
the total benthic biomass and have a key role in organic matter
remineralization and nutrient cycles (Jørgensen and Boetius,
2007; Wei et al., 2010). Thus, the investigation of spatial
patterns of microbial diversity is crucial to better understand the
mechanisms controlling the diversity and connectivity between
deep-sea habitats. Deciphering factors that influence spatial
turnover is relevant to the assessment of ecological function
dynamics in the deep-sea. Advances in high-throughput 16S
rRNA gene sequencing techniques have enabled the comparative
analysis of microbial biogeographic patterns across marine
environments (e.g., Sogin et al., 2006; Zinger et al., 2014),
including the deep seafloor (Schauer et al., 2010; Durbin and
Teske, 2011; Sylvan et al., 2012; Jacob et al., 2013; Anderson
et al., 2015; Ristova et al., 2015; Ruff et al., 2015; Bienhold
et al., 2016). Distance-decay relationships (i.e., a decrease in
taxonomic similarity with increasing geographic distance) and
a relatively high degree of endemism, investigated at various
taxonomic resolution, have been reported both at local and
regional (tens to hundreds of kilometers; Schauer et al., 2010;
Jacob et al., 2013; Ishibashi et al., 2015; Shulse et al., 2016;
Walsh et al., 2016) and at global scales (Ruff et al., 2015; Mino
et al., 2017). Selection, drift, dispersal and mutation are the
four evolutionary and ecological interplay processes that shape
the microbial biogeography (Hanson et al., 2012). The presence
of substantial endemism and distance-decay relationships has
been interpreted as a rather rapid diversification (selection
and drift) and limited dispersal across ocean basins (Hanson
et al., 2012; Bienhold et al., 2016). Whilst environmental
selection has been shown to play an important role in shaping
deep-sea benthic microbial communities (e.g., Bienhold et al.,
2012, 2016), the physical mechanisms responsible for dispersal
limitation (e.g., currents and seafloor geomorphology) are poorly
understood (Zinger et al., 2014). Patterns of deep-sea bacterial
biogeography observed at the global scale suggest that seafloor
geomorphology (i.e., mid-ocean ridges and oceanic trenches),
deep-water masses and landmasses may represent barriers to
dispersal (Nunoura et al., 2015; Bienhold et al., 2016; Salazar et al.,
2016; Wenzhöfer et al., 2016).

Mid-ocean ridges (MOR) are undersea mountain ranges
forming the largest continuous topographic feature on Earth,
a global network almost 85,000 km long (Kennett, 1982). At active
MOR oceanic lithosphere formation coincides with substantial
fluxes of heat. Seafloor hydrothermal circulation is generated by
downward percolation of seawater, through the fractured ocean
crust, that is heated at depth. When the fluid becomes buoyant
it rises rapidly back to the seafloor where it is expelled into the
overlying water column. This fluid generates strong geochemical
and physical gradients and provides a chemical energy source
for microbial growth, which supports chemosynthesis-based food
chains and promotes high physiological diversity (German et al.,
2011; Sievert and Vetriani, 2012; Gollner et al., 2015; Goffredi
et al., 2017). Despite the substantial passive dispersal of microbes
in the ocean (De Rezende et al., 2013), there is increasing evidence
that geochemistry and geographical isolation play a role in
structuring vent microbial communities (e.g., Flores et al., 2012;

Akerman et al., 2013; Campbell et al., 2013; Mino et al.,
2017), as has been observed for vent macrofauna (e.g., Rogers
et al., 2012). MOR vent fields have been estimated to occur
every 25–90 km, but only a small fraction thereof have been
mapped and investigated, indicating that microbial diversity and
biogeography patterns are largely unknown for most of the
ridge segments (Beaulieu et al., 2015). Even less it is known
about the microbial diversity at inactive segments where surface
expressions of hydrothermalism are absent. It has been proposed
that ridges can be stepping stones and pathways for the dispersal
of slope fauna into the open ocean and/or may act as barriers to
the dispersal of abyssal seafloor fauna (Wilson and Kaufmann,
1987; Vinogradova, 1997; Dinter, 2001; Mironov, 2006; Gebruk
et al., 2010), but no studies have yet investigated the role that mid-
ocean ridges may play for the connectivity of deep-sea benthic
microbial communities.

The Southwest Indian Ridge (SWIR) is a major plate boundary
of the world oceans, separating the African and Antarctic plates
and extending from the Bouvet triple junction (BTJ) in the South
Atlantic Ocean to the east Rodrigues triple junction (RTJ) in the
Indian Ocean (Sauter and Cannat, 2013). The SWIR segment in
the southern Atlantic Ocean separates the Agulhas basin to the
north and the Weddell/Enderby plains to the south, which belong
to the same biogeochemical deep-sea floor province as defined
by sedimentary organic carbon content, bottom hydrography
(i.e., temperature and salinity) and organic matter flux (Seiter
et al., 2004; Watling et al., 2013). Due to the presence of Antarctic
cold dense bottom water masses flowing eastward, SWIR forms
a barrier to the northward and southward flow of bottom water
(Larqué et al., 1997; Haine et al., 1998; Orsi et al., 1999; Rutgers
van der Loeff et al., 2016). Furthermore, the SWIR is an ultraslow-
spreading ridge, which is characterized by low magma input and
scant hydrothermal circulation, and by a deep ridge valley that
is on average 4,000 m deep, with ridge flanks that rise up to
1,000 m depth (Dick et al., 2003). These features make the SWIR
an interesting place to test whether ridges can limit the dispersal
of deep-sea benthic microbial communities in the absence of
hydrothermalism. Specifically, we assessed bacterial and archaeal
community structure and diversity based on the 16S rRNA gene
to investigate whether the western section of the SWIR (i) acts
as a physical barrier between communities to the North and
South, limiting microbial dispersal, and (ii) promotes isolation of
microbial communities inside the ridge.

MATERIALS AND METHODS

Sample Collection
The sediment samples were collected in the segment 10◦–17◦E of
the SWIR during the expedition ANTXXIX/8 with the research
vessel Polarstern (PS81) in 2013 (Figure 1A). The SWIR segment
studied here is an amagmatic accretionary ridge segment with a
spreading rate of less than 15 mm yr−1 and the major percentage
of the axial seafloor is constituted by mantle rocks (Dick et al.,
2003). In the earlier investigation of this SWIR segment the
presence of a hydrothermal plume has been suggested based on
turbidity maxima in the water column (Bach et al., 2002). During
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FIGURE 1 | Map of the investigated sites and seafloor pictures. (A) The zoom-in shows the stations inside the Southwest Indian Ridge valley; (B) seafloor photos for
station to the north of the SWIR (N0) and for stations inside the SWIR showing diatom ooze sediments; seafloor picture at A2m also shows resuspended sediment
particles, which were likely responsible of turbidity signals measured at south ridge flank (Schlindwein, 2014). Green, blue and red dots represent stations inside
SWIR, and orange, magenta, gray and black dots represent stations outside SWIR.
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the PS81 expedition we investigated the turbidity plumes but
found them not linked to hydrothermal emissions (Schlindwein,
2014). Clear signals of white or black smoker type venting were
lacking, suggesting that this system is a quiescent ridge segment.
However, the ridge flanks and trough were heavily sedimented,
indicating a productive surface ocean and a relatively substantial
input of plankton debris, foremost diatom ooze (Figure 1B).
Sediment samples have been taken from the seabed at a depth
range of 3,655 and 4,869 m. Surface sediment samples, 0–40 cm
below the seafloor (bsf), were collected with a TV-guided multi-
corer device (TV-MUC) and subsurface samples, from ca. 50
to 600 cm bsf, with a gravity core (GC). For surface sediments
two replicate TV-MUC cores were collected from each site,
one used for porewater and one for sediment sampling. For
subsurface sediments one GC was collected at A1, A2, and A3,
and sediment and porewater were collected from the same GC
(Table 1). Cores were sliced on board (0–1, 1–5, and 5–10 cm
for MUC cores, and every 40 cm for GC cores) and sediment
samples for DNA analysis were stored at −80◦C. Porewater
was collected at intervals of 1 cm, starting from the water
overlying the sediment to the bottom of the core in MUC
cores, and every 40 cm in GC cores. Sediments were sampled
at 2 reference stations (S0 and N0), located to the south and
north of the SWIR, respectively, and at 5 stations inside the
SWIR valley (A1, A2, A2m, A3, and A3m). The stations inside
the ridge were selected based on environmental data and visual
observations: Area 1 (A1) had highest heat flow values (up to
1,000 mW m−2; Schlindwein, 2014); at Area 2 a signature for
a hydrothermal plume had previously been reported by Bach
et al. (2002), but only based on turbidity maxima in the water
column, with stronger turbidity plumes at station A2m than
at station A2 (Figure 1B); Area 3 represents the axial valley
of the ridge, with station A3 sampled in the central part and
station A3m located close to the site where a vesicomyid clam,
a typical inhabitant of reduced chemosynthetic habitats, was
discovered (Supplementary Figure S6). Additionally, in order
to better investigate the effect of the geographical distance and
the SWIR on benthic microbial diversity and connectivity in the
South Atlantic Polar Front, the microbial communities were also
investigated in sediments from two stations (N1 and N2) sampled
during the Polarstern cruise PS79 in 2012 (Ruff et al., 2014),
and located northwest of the SWIR segment investigated here
(Figure 1). Major changes along porewater profiles occurred in
the first top 5 cm of sediments (Figure 2 and Supplementary
Figure S1), hence microbial communities were described for this
top sediment layers (0–5 cm bsf) and for two subsurface layers
(110 and 410 cm), the latters as representative of subsurface
microbial community.

Porewater and Sediment
Biogeochemistry
For surface sediments, two replicate cores were collected from
each site, one used for porewater and one for sediment
sampling. For subsurface sediments, sediment and porewater
were collected from the same gravity core. The subsampling of
cores was performed immediately after recovery in a temperature TA
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FIGURE 2 | The porewater profiles of surface sediments (0–5 cm) outside and inside the SWIR. The gray (southern reference) and black lines (northern reference)
represent outside SWIR stations, the colored lines inside samples. The sulfide plot values for station A3 (PS81/661) refer to the bottom x-axis, for all other stations
the values refer to the top x-axis. DIC, dissolved inorganic carbon; cm bsf, centimeters below seafloor.

controlled lab at 2◦C. Profiles of dissolved components like
inorganic carbon (DIC), nutrients [NH4

+, PO4
3−, NO2−,

NO3
−
+ NO2

−, Si(OH)4], sulfate, sulfide and manganese
(Mn) in the sediments were assessed by extracting porewater
with Rhizons (SMS type MOM 19.21.21F, mean pore size
0.15 µm; Rhizosphere Research Products). For DIC 2 mL
porewater were filled headspace-free into glass vials leaving no
headspace and stored at 4◦C. DIC was assessed via flow injection
analysis (Grasshoff et al., 2007). Nutrients were measured
with a continuous Flow Nutrient Analyzer “QuAAtro39” (Seal
Analytical) according to Grasshoff et al. (2007). Sulfide samples
were fixed in plastic vials pre-filled with 0.5 mL 2% ZnAc before
being stored at 4◦C, and analysis was performed according to
procedures described by Cline (1969). Porewater samples for Mn
analysis were fixed in plastic vials pre-filled with 0.2 mL 1 M HCl
before being stored at 4◦C. Mn concentrations were assessed by
atomic absorption spectrometry. Solid phase sediment samples

were collected by slicing the core in 0–1, 1–5, and 5–10 cm
layers, and were preserved for analyses of porosity, chloroplastic
pigment equivalents (CPEs), total organic carbon (TOC) and
total organic nitrogen (TON). Samples were prepared and
analyzed as described in Böer et al. (2009). At the investigated
water depths (3,655–4,869 m) no photosynthesis occurs, thus the
sedimentary amount of chlorophyll pigments is used as a measure
of the amount and freshness of phytodetritus sinking from the
productive photic water layers.

For CH4 gas analysis 5 mL of sediment was collected with
cut-off 5 mL syringes and added to 10 mL 2.5% NaOH in glass
crimp vials, mixed, stored upside down at 4◦C and then analyzed
by gas chromatography (Focus GC, Thermo Fisher Scientific)
as described in Thang et al. (2012). The entire biogeochemical
dataset has been deposited in the PANGAEA database1.

1https://doi.org/10.1594/PANGAEA.877640
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We used Fick’s law to estimate the vertical diffusive flux J of
geochemical constituents in the sediment cores,

J = −∅ DS
δC
δz

Here ∅ is porosity, Ds =
D0
θ

is the sediment diffusion coefficient,
calculated from the sediment deviated tortuosity θ = 1.1
for a porosity of 0.9 (Matyka et al., 2008) and D0 is the
tracer diffusion coefficient in seawater. We used values of
D0 = 4.64 × 10−6 [cm2 s−1] for sulfate, D0 = 9.17 × 10−6

for sulfide, D0 = 9.03 × 10−6 [cm2 s−1] for ammonium,
D0 = 3.02 × 10−6 [cm2 s−1] for manganese, D0 = 9.03 × 10−6

[cm2 s−1] for nitrate. Coefficients are taken from Schulz (2000).
δC is the difference in concentration [mmol L−1] and δz is the
difference in depth [m].

Microbial Abundance and Activity
For microbial cell count, the top 1 cm of sediment in MUC
cores was fixed in 2% buffered formaldehyde/water and stored
at 4◦C until subsequent analysis. Microbial abundance was
estimated by epifluorescence microscopy after staining with
Acridine Orange following the procedure described by Hobbie
et al. (1977) and modified by Böer et al. (2009). Catalyzed reporter
deposition fluorescence in situ hybridization (CARD-FISH) was
applied to enumerate the active fraction of bacterial and archaeal
assemblages (Amann and Fuchs, 2008). Samples were stored
and processed according to the procedure of Ishii et al. (2004)
and for archaeal cell-wall permeabilization according to Molari
and Manini (2012). Hybridization conditions were applied as
previously described for EUB338I-III, targeting members of the
Bacteria (Amann et al., 1990; Daims et al., 1999), ARCH915
targeting most members of the Archaea (Stahl and Amann,
1991), and NON338 as negative control (Amann et al., 1995).
For checking the reliability of the FISH signal the CARD-FISH
filter was counter-stained with DAPI, and up to 700 EUB-FISH-
stained cells and 100 ARCH-FISH-stained cells were counted per
sample. The relative abundances of Bacteria and Archaea were
based on total AODC counts, as the latter gives more reliable
counts than DAPI in sediment composed by small particle size
(<62.5 µm) (e.g., Schippers et al., 2005). The CARD-FISH
efficiency (i.e., sum of bacterial and archaeal relative abundances)
does not reach 100% of AODC counts, as not all cells are captured
by FISH potentially due to incomplete coverage of probes, low
ribosome content and lack of proper cell-wall permeabilization
(Amann and Fuchs, 2008).

Total microbial activity was estimated by uptake of
14C-labeled inorganic carbon. Dark CO2 fixation (DCF)
rates were estimated following the procedures described by
Molari et al. (2013) including some modifications. DCF rates
were measured incubating 1 mL of sediment slurry (∼1:1 mixture
of sediment and filtrated 0.22-µm bottom seawater) in triplicate
with 12 µL 14C-labeled sodium bicarbonate (0.25 mCi mL−1,
final activity 3 µCi mL−1) in the dark at in situ temperature
(2–4◦C). The incubations were terminated by the addition
of 1 mL formaldehyde in seawater (final concentration 2%)
after 12 h. Two controls per sample were killed with 1 mL

formaldehyde in seawater (final concentration 2%) before
addition of the tracer. Samples were stored at 4◦C until further
processing. At MPI laboratory, the samples were centrifuged
at 12,000 rpm for 5 min, the supernatant was discarded, and
remaining sediment pellets were washed three times with 1×
PBS. The sediment pellets were resuspended with 1 mL 3 M
HCl, transferred into a new 50 mL vial and mixed constantly
by bubbling with pressurized air for 4 h. The samples where
mixed with 8 mL of the Scintillation cocktail Ultima GoldTM

and centrifuged at 3,500 rpm for 30 min. The supernatants
were transferred into a 20 mL scintillation vials and the pellets
were resuspended in 8 mL Ultima GoldTM and centrifuged a
second time. The supernatants were combined and measured
with a liquid scintillation counter up to 10 min. The DPM
were converted in moles of inorganic carbon incorporated
per unit of sediment volume and time using the formula
described by Molari et al. (2013).

DNA Extraction and Sequencing
DNA was extracted from 1 g of homogenized sediment from
0–1, 1–5, 110, and 410 cm sediment layers using the FastDNATM

SPIN Kit for Soil (Q-BIOgene, Heidelberg, Germany) following
the manual protocol. Then, an isopropanol precipitation was
performed on the extracted DNA, and DNA samples were stored
at−20◦C. DNA extracts from 0–1 to 1–5 cm were pooled at equal
volumes and DNA amount prior to sequencing.

Amplicon sequencing was done at the CeBiTec laboratory
(Centrum für Biotechnologie, Universität Bielefeld) on an
Illumina MiSeq machine. For the 16S rRNA gene amplicon
library preparation we used the bacterial primers 341F (5′-CCT
ACGGGNGGCWGCAG-3′) and 785R (5′-GACTACHVGGGTA
TCTAATCC-3′) and the archaeal primers Arch349F (5′-GYGC
ASCAGKCGMGAAW-3′) and Arch915R (5′-GTGCTCCCCCG
CCAATTCCT-3′) (Wang and Qian, 2009; Klindworth et al.,
2013) which amplify the 16S rRNA gene hypervariable region
V3–V4 in Bacteria (400–425 bp fragment length) and the V3–V5
region in Archaea (510 bp fragment length). The amplicon
library was sequenced with the MiSeq v3 chemistry, in a
2 × 300 bp paired run with >50,000 reads per sample, following
the standard instructions of the 16S Metagenomic Sequen-
cing Library Preparation protocol (Illumina, Inc., San Diego,
CA, United States).

The quality cleaning of the sequences was performed
with several software tools. Primer clipping was performed
with cutadapt (Martin, 2011). TRIMMOMATIC (Bolger
et al., 2014) was used to remove the sequences of low quality
(for Bacteria SLIDINGWINDOW:4:10 MINLEN:300; for
Archaea SLIDINGWINDOW:6:13 MINLEN:450); this step was
performed before the merging of reverse and forward reads
for the bacterial dataset and after the merging for the archaeal
dataset in order to enhance the number of retained reads for
long archaeal 16S fragments. The merging of forward and reverse
reads was performed with PEAR (Zhang et al., 2014). Clustering
of sequences into OTUs (operational taxonomic units) was
done using the SWARM algorithm, based on one nucleotide
difference between amplicons (parameter settings: -b 3 -d 1
-f; Mahé et al., 2014). The taxonomic classification was based
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on the SILVA 128 database (Quast et al., 2013). During this
step, sequences with less than 90% of similarity with SILVA
sequences were removed.

The total number of sequences obtained in this study is
reported in Supplementary Table S1. Sequences were deposited
at the European Nucleotide Archive (ENA) under accession
number PRJEB23821; the sequences were archived using the
service of the German Federation for Biological Data (GFBio;
Diepenbroek et al., 2014). Absolute singletons (SSOabs), i.e.,
OTUs consisting of sequences occurring only once in the
full dataset (Gobet et al., 2013), accounted for 92–98% of all
OTUs (20–56% of all sequences) for bacterial and archaeal
datasets, respectively, and they were not included in diversity and
community analyses.

Data Analysis
Alpha-diversity was assessed as species richness, exponential of
Shannon index and inverse of Simpson index, corresponding to
Hill’s numbers of order q = 0 (H0), q = 1 (H1) and q = 2 (H2),
respectively (Hill, 1973; Chao et al., 2014). Estimated richness
(Chao1), shared and unique OTUs (i.e., OTUs that are only
present at one station) were calculated by rarifying the sequences
to the smallest dataset (25,167 sequences for the domain Bacteria
and 1,190 sequences for Archaea) 100 times and taking the
average values, to account for differences in sequencing depth
between samples. Non-parametric Mantel tests based on the
Spearman correlation coefficient with significance assessed based
on 1000 Monte Carlo permutations were used to determine
correlations between genetic, spatial, and environmental distance
matrices (Legendre and Legendre, 1998). To determine the
strength of the relationship between similarity in community
composition, geographic distance, and environmental settings
linear models were fitted. Differences in microbial community
composition were visualized with non-metric multidimensional
scaling plots, and analysis of similarity (ANOSIM; Clarke,
1993) was used to assess significant differences between groups
of samples from outside and within the ridge, and from
surface and subsurface sediments. Redundancy analysis (RDA) in
combination with variation partitioning (VP) was conducted to
test the effect of environment variables on variations in microbial
community composition. The analysis of microbial community
composition was carried out on dominant bacterial and archaeal
taxa, here defined as those composed by OTUs that represent
more than 0.1% of the total number of sequences in each sample.
Principal component analysis (PCA) was performed at bacterial
class and family levels to identify which taxa were responsible
for differences between stations. Prior to the analyses: (i) the
environmental variables were standardized (i.e., z-scored) and
filtered by collinearity based on the variance inflation factor
(VIF) of less than five, which retained chlorophyll a, TOC
and DIC; specifically DIC, ammonia, sulfide, and porosity were
highly correlated (Pearson r > 0.95, p < 0.001), thus we
selected DIC as a proxy for the presence of upward porewater
fluxes carrying reduced compounds (e.g., ammonia and sulfide);
(ii) the OTU dataset was standardized using the Hellinger
transformation (Legendre and Gallagher, 2001). All analyses were
carried out in the R statistical environment (R Development

Core Team, 2013) with the packages vegan (Oksanen et al.,
2016), ggplot2 (Wickham, 2009), devtools (Wickham and Chang,
2015), factoextra (Kassambara, 2015), ade4 (Dray and Dufour,
2007), plyr (Wickham, 2011), reshape (Wickham, 2007), and
usdm (Naimi et al., 2014), as well as with custom R scripts. The
rarefaction curves and the diversity analyses were performed with
the iNEXT package (Hsieh et al., 2016) using default parameters
(i.e., endpoint = double of the sample size; knots = 40).

The phylogenetic trees were constructed with the
RAxML software (Stamatakis, 2014) and the R environment
(R Development Core Team, 2013) using the ape (Paradis et al.,
2004), phyloseq (McMurdie and Holmes, 2015), and ggplot2
(Wickham, 2009) packages. The sequences for the tree backbone
were retrieved from the SILVA SSU Ref database (v128) and it was
built with the maximum likelihood method (1,000 bootstraps).
Sequences obtained in this study with Illumina tag sequencing
were added to the tree backbone using the parsimony method.

RESULTS

Sediment Biogeochemistry
At all sampled stations, the seafloor consisted of diatom ooze,
with exception of the southernmost station (S0), where the
sediment was siliciclastic clay (Table 1). The porewater profiles of
surface sediments showed different patterns between the stations
inside and outside the SWIR (Figure 2). Specifically, anomalies
in DIC, ammonia, phosphate, and sulfide concentrations
were observed at the SWIR western stations (Table 1), with
steepest gradients at A3–A3m (Figure 2 and Supplementary
Figure S1A). A depletion of nitrate below 0.1 m depth was
observed in all cores from inside the SWIR valley, but not at
the reference sites outside the valley (N0 and S0). The shallow
nitrate depletion inside the axial valley suggests a lower oxygen
penetration compared to the reference sites outside the axial
valley. The concentration and C:N ratio of organic matter in
surface sediments did not show remarkable differences between
stations (Supplementary Figure S2). Values increased somewhat
in subsurface SWIR sediments in the western part of the segment
(Supplementary Figure S1B). In the top 5 cm of sediments the
amount of chlorophyll-a (Chl-a) and its contribution to total CPE
increased in the stations located inside the SWIR, with highest
values at A3 (Table 1). In subsurface SWIR sediments the CPEs
increased westward, whereas the Chl-a contribution to CPEs
decreased (Supplementary Figure S1B).

Diffusive porewater flux rates are listed in Table 2. Fluxes
of sulfide, DIC, ammonium and nitrate were observed at A3
and A3m, with the former showing the strongest fluxes. A weak
upward flux of ammonium was also observed in the subsurface
sediments at A2. Nitrate fluxes into the sediment were observed
at the majority of sites inside the axial valley (A3m, A3, and A2),
but not at the reference sites (N0, S0).

Microbial Abundances and Activity
Total cell numbers in the sediments, as determined by
AODC (acridine orange direct counts), ranged between
0.25 cells× 109 cells ml−1 wet sediment and 1.4× 109 cells ml−1
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TABLE 2 | Diffusive flux rates (J) of various geochemical constituents in the SWIR ridge valley areas A2 and A3.

Station Sample ID Environment Constituent Ds J Flux direction

m2 a−1 mmol m−2 a−1

PS81/659 A2 Surface (0–20 cm) Nitrate 2.58 10−2
−14 Downward (upper 5.0 cm)

PS81/656 A2 Subsurface (50–550 cm) Sulfate 1.33 10−2
−1 Downward

Ammonium 2.58 10−2 1 Upward

PS81/661 A3 Surface (0–20 cm) Sulfide 2.54 10−2 34 Upward

DIC 1.38 10−2 600 Upward

Ammonium 2.58 10−2 138 Upward

Nitrate 2.58 10−2
−8 Downward (upper 5.5 cm)

PS81/657 A3 Subsurface (50–550 cm) Sulfate 1.33 10−2
−4 Downward

Sulfide 2.54 10−2 0.8 Upward

DIC 1.38 10−2 5 Upward

Ammonium 2.58 10−2 1 Upward

PS81/636 A3m Surface (0–45 cm) Sulfide 2.59 10−2 10 Upward

DIC 1.37 10−2 32 Upward

Ammonium 2.59 10−2 14 Upward

Nitrate 2.58 10−2
−17 Downward (upper 3.5 cm)

Ds, sediment diffusion coefficient; J, diffusive flux rate; DIC, dissolved inorganic carbon.

TABLE 3 | Benthic microbial abundances and activity.

Station Sample ID Layer Replicate AODC Bacteria Archaea DCF

cm Cells × 109 mL−1 % % nmol C mL−1 d−1 fmol C cell−1 d−1

PS81/681 N0 0–1 R1 1.2 36.8 3.8 3.25 (0.39; 9) 5.01 ( ×10(-3

R2 1.4 54.3 3.1

PS81/626 S0 0–1 R1 1.2 45.4 2.7 2.44 (0.06; 3) 3.75 × 10−3

R2 1.2 58.6 1.9

PS81/649 A1 0–1 R1 0.9 39.4 3.1 3.02 (1.18; 9) 6.96 × 10−3

R2 0.9 51.0 2.5

PS81/659 A2 0–1 R1 0.9 35.0 3.7 1.34 (0.14; 6) 3.25 × 10−3

R2 0.8 55.5 3.3

PS81/639 A2m 0–1 R1 0.6 65.1 1.1 0.64 (0.08; 3) 1.60 × 10−3

R2 0.6 64.8 2.9

PS81/636 A3m 0–1 R1 0.2 18.8 1.7 3.00 (0.42; 3) 28.34 × 10−3

R2 0.2 35.9 0.8

mL, mL of wet sediment. Proportional bacterial and archaeal abundances are relative to the total cell counts (AODC). Cells counts from two sub-replicates of the core
collected in each station are reported. The average and in parenthesis standard deviation and number of observations, respectively, are reported for dark carbon fixation
(DCF) rates.

wet sediment (Table 3). Highest numbers were detected at the
northern reference site (N0) and slightly lower in the axial
valley. The lowest cell numbers were found at the station A3m.
The CARD-FISH efficiency ranged from 43 to 67% (the sum
of bacterial and archaeal cells counts relative to the total cell
counts determined by AODC) and the number of active cells
showed the same pattern as the AODC results. Bacteria with a
median relative abundance of 48± 14% dominated over Archaea
(3± 1%) at all stations (Table 3).

Rates of dark carbon fixation (DCF) were highest at N0
and lowest at A2m (Table 3). However, we did not identify
any clear pattern between stations outside and inside the ridge.
Similar trends were observed for microbial activity per cell, with
exception of A3m that showed a value up to 15 times higher than
the other stations (0.03 fmol C cell−1 d−1).

Microbial Alpha-Diversity
Rarefaction analysis showed that we captured more than 90% of
bacterial and archaeal diversity of non-singletons at the stations
investigated, as the rarefaction curves reached a plateau for Hill
diversity indices H1 and H2, both in surface and subsurface
samples (Supplementary Figure S3). Bacterial diversity indices
did not show any apparent patterns between stations both
in surface and subsurface layers (Supplementary Table S1A);
H1 and H2 were higher in surface than in subsurface sediments
(Supplementary Table S1A). Archaeal communities showed a
substantially lower diversity than bacterial communities, which
could be due to lower intragenomic heterogeneity of the
amplified 16S rRNA gene region compared to region V3–V4 of
Bacteria (Sun et al., 2013; Oton et al., 2016). Archaeal diversity
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indices in surface sediments were more than two times higher
at A3 with the reduced sediments than at all the other stations,
and H1 and H2 decreased westward in subsurface sediments
(Supplementary Table S1B).

Differences in Microbial
Community Composition
The most important bacterial classes in the surface layer (0–5 cm)
of the areas outside the rift valley (S0, N0, N1, and N2), which
alone constituted 23–36% of the total sequence abundance in
each sample, were Gammaproteobacteria, Acidimicrobiia and
Alphaproteobacteria (Figure 3). Stations A1, A2, and A2m on the
SWIR were dominated by these taxa as well (14–18%), but also by
JTB23, Betaproteobacteria, Deltaproteobacteria, Flavobacteria,
and Verrucomicrobiae, which all together represented between
31 and 36% of the total microbial community. The SWIR stations
A3 and A3m exhibited a higher diversity of the most abundant
taxa, i.e., about 37% of the bacterial community were represented
by Atribacteria, Bacteroidetes BD2-2, “Ca. Marinimicrobia”
(SAR406), Omnitrophica, Thermoflexia, Aminicenantes,
Cytophagia, Sphingobacteriia, Acetothermia, Anaerolineae,
BD2-11 terrestrial group, Ignavibacteria, JG30-KF-CM66,
LCP-89 and Subgroup 21, in addition to the taxa already
mentioned above. Dissimilarities in bacterial community
composition between stations in area A3 and other stations
were mainly explained by Bacteroidetes BD2.2, Thermoflexia,
Dehalococcoidia, “Ca. Marinimicrobia” (SAR406), Anaerolineae,
Atribacteria, Parcubacteria, Pla3 Lineage, Spirochaetes, and
Deltaproteobacteria (Supplementary Figure S4). Specifically,
surface sediments of Area 3 were enriched in Desulfobacteraceae
(mostly SEEP-SRB1), Desulfarculaceae (mostly Desulfatiglans),
Thermoflexaceae (Thermoflexus), Spirochaetaceae, and mostly at
A3m, also by Helicobacteraceae (Sulfurimonas and Sulfurovum)
(Figure 4 and Supplementary Table S2). In all subsurface
samples the dominant bacterial taxa were Dehalococcoida,
Atribacteria, and Aminicenantes (Figure 3). Archaea were
dominated by Marine Group I in all surface samples (63–98%
of the archaeal sequences), except for station A3, where the
dominant taxon was Woesearchaeota (DHVEG-6) with a relative
sequence proportion of 39% (Figure 3). Furthermore, in Area
3 and in subsurface sediments the archaeal communities were
also composed of Diapherotrites, Altiarchaeales, Lokiarchaeata,
Thermoplasmata, and Group C3.

Microbial community composition in surface sediments
differed significantly between stations outside and inside the
SWIR (ANOSIM, r > 0.40, p < 0.05); these differences were more
pronounced when Area 3 (A3–A3m) was considered as a discrete
group (ANOSIM, r > 0.90, p < 0.01; Figures 5B,C). At station
A3 both bacterial and archaeal communities shared the lowest
number of OTUs with all other stations (13 ± 2% and 12 ± 3%,
respectively; Figures 5D-G and Supplementary Table S3).
Bacterial and archaeal communities in surface sediments of SWIR
stations (A1, A2, and A2m) shared a higher number of OTUs
with each other (36 ± 2% and 57 ± 3%, respectively) than
with communities outside the SWIR (27 ± 2% and 40 ± 5%,
respectively; Figures 5D–G and Supplementary Table S3).

Surface and subsurface bacterial and archaeal communities
were significantly different (ANOSIM, r = 0.98 and r = 0.61,
respectively, p = 0.001; Figures 5B,C), with the highest number
of shared OTUs between 110 and 410 cm layers (Figures 5D,E
and Supplementary Table S3). Shared bacterial OTUs between
110 cm layer and the top 0–5 cm layer increased remarkably
westward (from 0.3 to 16%), whereas shared archaeal OTUs did
not show any clear pattern between stations (11–14%). In surface
sediments of Area 3, 46± 8, 89± 1, and 4± 1% of OTUs affiliated
with the taxa Dehalococcoida, Atribacteria, and Woesearchaeota
were shared with subsurface sediments; this corresponds to
46 ± 12, 93 ± 2, and 12 ± 4% of total sequences assigned to
them in surficial sediments, respectively. In surface sediments the
number of both bacterial and archaeal unique OTUs increased at
the stations A3 and A3m compared to the stations outside the
SWIR (Supplementary Table S1). About 3–8% of all bacterial
OTUs were unique to one station, with highest values at A3m
(Supplementary Table S1A). Unique archaeal OTUs represented
16–34% and 1–3% of total OTUs in surface sediments of Area 3
(A3 and A3m) and other stations, respectively (Supplementary
Table S1B). In subsurface samples the contribution of bacterial
and archaeal unique OTUs ranged between 3 and 6% and between
2 and 7%, respectively.

Factors Controlling Microbial
Community Structure
The variables chlorophyll a (Chl-a), total organic carbon (TOC),
and dissolved inorganic carbon (DIC) did not show collinearity
(VIF < 4) and were therefore used as descriptors of changes in the
environmental setting at different stations. DIC, ammonia and
sulfide were significantly positively correlated (Pearson r > 0.95,
p < 0.001), thus we used DIC as a proxy for the presence of
porewater flux and the availability of reduced compounds.

Bacterial and archaeal community similarity (i.e., proportion
of shared OTUs) between samples did not show significant
relationships with geographic distance, even when stations
at Area 3 were excluded or only stations outside the SWIR
(N0, N1, N2, and S0) were considered (Figures 6A,B).
In contrast, the proportion of bacterial and archaeal OTUs
shared between stations (not including N1 and N2) were
significantly related with differences in the environmental
setting (Spearman ρ = 0.63 and p < 0.01, Spearman ρ = 0.66
and p < 0.05), and correlated negatively with differences
in Chl-a content and DIC concentration (Supplementary
Table S4 and Figures 6C–F). The extent of the relationship
between Chl-a and OTU variations was different between
stations inside and outside the ridge, whereas the variations
related to DIC concentration were mostly related with larger
differences between stations in Area 3 and other stations
(similarity < 20%). Accordingly, a combination of Chl-a and
DIC concentrations explained 46 and 61% of the variance
in bacterial and archaeal community structure, respectively
(Supplementary Table S4). Both bacterial and archaeal
community structures were mainly explained by DIC (23 and
29%, respectively) rather than Chl-a (10 and 20%, respectively;
Supplementary Figure S5).
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FIGURE 3 | Bacterial and archaeal community composition in surface and subsurface sediments. Relative sequence abundance of (A) bacterial and (B) archaeal
16S rRNA at Class level resolution. Dominant community is here showed (i.e., community composed by those taxa present in the dataset with a relative abundance
higher than 1%). For those taxa unclassified at Class level the Phylum is reported.

DISCUSSION

Ocean ridges are the largest continuous topographic feature
on Earth, representing diverse geobiological habitats including
hydrothermal vents, different types of hard and soft bottom
including typical pelagic sediments (Orcutt et al., 2011). Where
active venting occurs, substantial energy may be delivered to
specific chemosynthetic groups of bacteria that provide the
basis of a food web independent of photosynthetically produced
matter, including symbiotic interactions with animals. MOR
rocks host their own microbial communities that add substantial
diversity to this deep-sea realm (Santelli et al., 2008). However,
the specific role of non-hydrothermal MOR sediments in shaping
benthic microbial diversity and connectivity in the deep sea is
largely unknown. Furthermore, the increasing interest in mining
seafloor massive sulfide (SMS) deposits at oceanic ridges calls
for a better baseline knowledge about the diversity, variability

and connectivity of benthic biological communities, in order to
assess and forecast significant ecological impacts (Boetius and
Haeckel, 2018; Miller et al., 2018). In this study, the diversity of
bacterial and archaeal 16S rRNA genes at the sedimented SWIR
segment 10◦–17◦E and in the adjacent sedimentary seafloor north
and south of the ridge (Figure 1) within a water depth range
of 3,655–4,869 m were investigated to test whether the SWIR
may act as a physical barrier (i) reducing the benthic north-
south microbial genetic flux in the South Atlantic Polar Front
and (ii) promoting isolation of microbial communities inside
the ridge. The topography (high ridge flanks and deep valley)
and axial orientation (parallel to the main eastward bottom
water flow) of SWIR limit the northward and southward flow
of bottom water. The SWIR segment studied here is located in
a region with relatively high sedimentation rates for an open
ocean system (ca. 1–30 cm kyr−1 in the last 200,000 years;
Nürnberg et al., 1997; Mackensen et al., 2001). This, together with
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FIGURE 4 | Bacterial community composition in surficial and subsurface sediments at Family level. Here we reported Families responsible for differences between
bacterial communities inside and outside the SWIR and between surficial and subsurface bacterial communities. Families were selected after PCA analysis carried
out on Hellinger transformed dominant bacterial and archaeal taxa (i.e., OTU > 0.1%) comparing (i) 0–5 cm layer of A3–A3m versus all stations, (ii) 0–5 cm layer of
stations inside SWIR (A1 and A2–A2m) versus outside SWIR stations (N0, N1, N2, and S0), and (iii) 0–5 cm layer of all stations versus subsurface layer of SWIR
stations.

the V-shape topography at this site, produced a high sediment
thickness (ca. 80 m) at the bottom of the axial ridge valley
(Supplementary Figure S6). The area is within a relatively
productive biogeochemical province (ca. 51.7 × 106 km2)
represented by an annual productivity of 8.4 mol C m−2 yr−1

and an estimated carbon flux of 85.8 mmol C m−2 yr−1 to the
seafloor at 4,487 m depth (Seiter et al., 2004; Watling et al., 2013).
The higher accumulation of Chl-a inside the SWIR compared to
outside (up to 10 times; Table 1), and the increase of Chl-a toward
the SWIR deepest axial stations (Supplementary Figure S1)
is likely an effect produced by the V-shaped topography
at this site.

The detection of significant differences in bacterial and
archaeal community structure at stations located outside and
inside the SWIR supports at first sight the idea of the
MOR acting as a physical barrier limiting microbial dispersal
(Figure 5). Nevertheless, stations to the north of SWIR were

not more similar to each other than with the station to the
south (e.g., N1–N2 vs. N0–S0; Figures 5F,G). As described
above, sedimentary matter composition and porewater chemistry
indicated substantial differences in biogeochemistry, especially in
the stations A3 and A3m. The environmental setting explained a
large fraction of variance in bacterial and archaeal communities
(45 and 61%, respectively; Supplementary Figure S5 and
Supplementary Table S4), indicating environmental selection
rather than isolation-by-distance as a main controlling factor.

The presence of the negative relationship between community
similarity and differences in sedimentary chlorophyll a
(Figures 6C,D) suggests food availability as a major driver
of differences in bacterial and archaeal community composition
between stations. This type of relationship has been shown before
for deep-sea sediments in the Arctic Ocean (Bienhold et al., 2012;
Jacob et al., 2013) and the primary role of trophic resource
availability in shaping deep-sea benthic microbial community
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FIGURE 5 | Beta-diversity of bacterial and archaeal communities in surface and subsurface sediments. (A) Geographic distance in kilometers between the
investigated stations. Non-metric multidimensional scaling (nMDS) using Bray–Curtis distance on Hellinger transformed (B) bacterial and (C) archaeal community
structure at OTU level. Percentage of (D–F) bacterial and (E–G) archaeal shared OTU between stations as defined by Jaccard dissimilarity matrix based on
presence/absence OTU table (with 100 sequence re-samplings per sample on the smallest dataset); the numbers in parentheses represent the shared OTU between
A2/A2m (green blue) and A3/A3m (red circle). For full matrices see Supplementary Table S3. bsf, below the seafloor.

structure globally has been substantiated in more recent studies
(Bienhold et al., 2016; Danovaro et al., 2016). This is reflected
by the increase in the relative abundance of specific taxa related
to phytoplankton/complex organic matter degradation at the
SWIR stations in comparison to adjacent northern and southern

sites (Figure 4). This includes the class Flavobacteriia, which has
also shown positive correlations with chlorophyll pigments in
an Arctic region (Bienhold et al., 2012). Flavobacteria have been
associated with the ability to hydrolyze complex plant polymers
(Humphry et al., 2001; Knoll et al., 2001; Williams et al., 2013).
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FIGURE 6 | Relationship between geographic distance, environmental patterns and similarity in surface microbial community composition. The proportion of
(A) bacterial and (B) archaeal shared OTUs between samples did not show any significant relationship with geographic distance; three different scenarios have been
evaluated: full data-set including all stations (all dots; black text and dotted line); excluding stations in Area 3 (red dots; green text and dotted line); considering only
the stations outside SWIR (blue dots; pink text and line). The proportion of (C–E) bacterial and (D–F) archaeal shared OTUs between samples decreased significantly
with differences in chlorophyll a content (Chl-a; C,D) and dissolved inorganic carbon concentration (DIC; E,F). Dotted lines are linear model fits. Linear models’ R2,
Spearman’s rho correlations, and their significance (Mantel tests with 1000 permutations) are reported in each panel.
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More specifically, the relative sequence abundance of the genus
Flavobacterium was considerably higher at SWIR stations than
in the adjacent seafloor. Pelagic and deep-sea benthic members
of this taxon were previously shown to respond positively to
phytoplankton blooms (Teeling et al., 2012, 2016; Ruff et al.,
2014; Vigneron et al., 2017), indicating their potential role in
complex phytodetritus matter degradation. Another class that
seems to be selected for by higher organic matter availability at
SWIR stations is Verrucomicrobiae; members of this class are
known to play a role in polysaccharide degradation (Cardman
et al., 2014; Li et al., 2016).

The different porewater biogeochemistry in Area 3 explained
the majority of the observed differences in community
composition between stations A3 and A3m with other stations
(Figures 6E,F). Area 3 is located in the deepest axial section
of the ridge valley where the large sink of organic matter can
enhance early diagenesis processes (D’Hondt et al., 2002) and
where the underlying lithosphere (i.e., peridotite) can promote
serpentinization processes (Schmid and Schlindwein, 2016).
These features produce an unusual geological setting in the deep
sea, which is likely responsible for the observed upward efflux of
anoxic porewater enriched in reduced compounds (Table 2), such
as ammonia and sulfide in the surface sediments and potentially
methane and hydrogen in deepest subsurface sediments. Hence,
the highest per-cell microbial activity measured at A3m (Table 3)
may be a consequence of the availability of multiple energy
sources. During the PS81 expedition, no evidence for recent
hydrothermal activity was found, neither at the seafloor nor in
the water column of the amagmatic accretionary SWIR segment
studied here (Schlindwein, 2014). Only one large veneroid bivalve
of the family Vesicomyidae (genus Christineconcha, identified
by Sergei Galkin, IORAS) was discovered, that had crawled onto
an ocean bottom seismometer, which was deployed close to
stations A3m 1 year before (Schlindwein, 2014; Supplementary
Figure S6). Such Vesicomyids (i.e., genus Christineconcha) are
known to inhabit reduced sediments with sulfide fluxes (Krylova
and Von Cosel, 2011; Decker et al., 2012).

The most remarkable difference to other sites was the
higher relative sequence proportion of potential sulfate-reducing
bacteria (i.e., Desulfobacteraceae and Desulfarculaceae), which
represented about 7% of all bacterial sequences at station A3
compared to less than 0.01% at stations outside the SWIR
(Figure 3). This indicates that the high amount of organic
carbon and the anaerobic conditions at Area 3 may support
the development of sulfate-reducing communities, which are
typically found in subsurface OM rich continental margin and
cold-seep sediments (Teske, 2010). Interestingly about 35%
of sequences related to potential sulfate reducers belonged to
the genus SEEP-SRB1 (Supplementary Table S2), which is a
sulfate-reducing partner of anaerobic methanotrophic archaea
ANME-2 (Schreiber et al., 2010) and dominates methane-rich
sediments (Ruff et al., 2015); however, we did not detect ANME-2
sequences in any of our samples. Most of the SEEP-SRB1
sequences found in Area 3 were closely related to sequences
found in other chemosynthetic habitats and in SWIR vent fields
(Supplementary Figure S7). Hydrogen sulfide, the catabolic
product of sulfate reducers, probably favored sulfur-oxidizing
bacteria in surface sediments of Area 3 (i.e., Helicobacteraceae),

where their relative sequence proportion (ca. 0.2–1%; Figure 4)
increased up to 500 times compared to outside the ridge.
Sulfur oxidizers are a fundamental component of hydrothermal
chemosynthetic communities and Helicobacteraceae dominate
benthic chemolithotrophic communities at rocky hydrothermal
vents of SWIR (Ding et al., 2017) and worldwide MOR (e.g.,
Flores et al., 2011; Sievert and Vetriani, 2012; Meier et al., 2017).

In surface sediments of Area 3, Dehalococcoida and
Atribacteria were another important component of bacterial
assemblages. These two taxa also dominated subsurface bacterial
communities (Figure 3) and they are typically reported from
subsurface environments associated with methane hydrates,
hydrocarbon seeps, and petroleum reservoirs (Webster et al.,
2004; Inagaki et al., 2006; Pham et al., 2009; Orcutt et al., 2011;
Kobayashi et al., 2012; Parkes et al., 2014). There was no evidence
for the presence of hydrocarbons in our sediments, and methane
was only measured at nanomolar concentrations (Table 1), thus
the presence of Dehalococcoida and Atribacteria in surface
sediments could be due to an upward transport of porewater flux
from deeper sediment layers. The high permeability and porosity
of sediment in the ridge axial valley would allow for porewater
circulation that could be responsible for an increased connectivity
between subsurface and surface bacterial communities in this
area compared to the more consolidated sediments outside the
ridge (Figure 5D).

Area 3 also differed in archaeal diversity (Supplementary
Figure S3 and Supplementary Table S1B) and community
structure (Figures 3, 5C) from the other stations. The increased
diversity and endemism of archaeal populations of Area 3
(Supplementary Table S1B) was associated with a decrease
in their relative abundance, which was less than 2% of total
microbial cells (Table 3). The dominance of Marine group I
(Thaumarchaeota) suggests that archaea could have a primary
role in nitrification (Könneke et al., 2005; Molari et al., 2013).
However, the contribution of this taxon to total archaeal
sequences did not increase in Area 3 where we found the
highest concentrations of ammonia. Marine group I members
use oxygen to oxidize ammonia, thus they may be limited
by oxygen availability under the anoxic conditions in Area 3.
Nevertheless, Marine group I was also a dominant group in
the investigated anoxic subsurface layers, as reported for other
deep-sea subsurface sediments (e.g., Durbin and Teske, 2010),
which may mean that the metabolic diversity and ecological niche
of this archaeal taxon is not fully elucidated yet (Offre et al.,
2013). A large proportion of archaeal sequences found in surface
sediments of Area 3 and subsurface layers of other SWIR stations
belonged to Woesearchaeota (Figure 3), an enigmatic archaeal
group of the monophyletic DPANN superphylum (Rinke et al.,
2013; Castelle et al., 2015). Woesearchaeota have been detected
in various environments including marine hydrothermal habitats
(Takai and Horikoshi, 1999; Li et al., 2015), subsurface marine
sediments, acid mines, groundwater (Baker et al., 2010; Castelle
et al., 2015; Shcherbakova et al., 2016), high-altitude lakes
(Ortiz-Alvarez and Casamayor, 2016), and recently in SWIR
hydrothermal chimneys (Ding et al., 2017). Recent genome
reconstructions support an anaerobic heterotrophic lifestyle (Liu
et al., 2018), and their small genome size and the fact that most
of the core biosynthetic pathways were partial or absent also
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suggest that Woesearchaeota have a host-associated/syntrophic
or parasitic lifestyle, maybe even with bacteria (Baker et al.,
2010; Castelle et al., 2015) or methanogenic Archaea (Liu et al.,
2018). Despite the limited information about the ecological role
of Woesearchaeota, the presence of this archaeal taxon in surface
sediments of Area 3 supports connectivity between surface and
anaerobic subsurface environments.

CONCLUSION

Our study suggests that the amagmatic SWIR fragment
investigated here substantially enhanced microbial diversity
by providing additional biogeochemical niches, foremost
via sediment accumulation in the axial valley. Accordingly,
variations in microbial community composition were driven by
changes in trophic resource availability and the biogeochemical
setting at this site. In the axial valley, porewater circulation
also promoted connectivity between subsurface and surface
communities, and favored microbial taxa typically associated
with reduced sediments, including such found at hydrothermal
vent fields on the SWIR and in other deep-sea regions. This
indicates a potential role of ultraslow spreading ridges in
connecting spatially isolated chemosynthetic communities in
the deep sea, instead of inducing isolation. In this regard the
findings reported here expand our knowledge about microbial
community dynamics in these systems, and stimulate future
research to better elucidate the role of magma-starved ridges
in deep-sea biodiversity and connectivity.
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