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CYP51 (Erg11) belongs to the cytochrome P450 monooxygenase (CYP) superfamily
and mediates a crucial step of the synthesis of ergosterol, which is a fungal-specific
sterol. It is also the target of azole drugs in clinical practice. In recent years, researches
on fungal CYP51 have stepped into a new stage attributing to the discovery of
crystal structures of the homologs in Candida albicans, Cryptococcus neoformans and
Aspergillus fumigatus. This review summarizes the functions, structures of fungal CYP51
proteins, and the inhibitors targeting these homologs. In particular, several drug-resistant
mechanisms associated with the fungal CYP51s are introduced. The sequences and
crystal structures of CYP51 proteins in different fungal species are also compared. These
will provide new insights for the advancement of research on antifungal agents.
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INTRODUCTION

The incidence of invasive fungal infections has increased during the past three decades, arising
more and more concern. For example, statistics show that such incidence ranges from 30 to 40%
throughout critical ill patients (Bassetti et al., 2017). Prognosis of invasive fungal infections is
serious. Specifically, the mortality rate of systemic C. albicans infection is up to 40% (Gunsalus
et al., 2016). Risk factors, such as gastrointestinal surgery, widespread use of broad-spectrum
antibiotics and popularization of central venous catheters (CVCs) mainly contribute to the invasive
C. albicans infection. At the same time, non-Candida fungal infections should not be neglected,
as cryptococcosis is the third prevalent disease in HIV-positive patients, and the mortality of
invasive aspergillosis at 30 days in adult ICU patients is estimated to be 33.1% (Lanjewar, 2011;
Baddley et al., 2013).

Represented by azole resistance, the continuous emergence of drug-resistant fungal strains has
become a serious challenge for public health (Zhang et al., 2017). CYP51 (ERG11) proteins is
the target of azoles, which mediates membrane permeability and fluidity by demethylating the
14-α position of lanosterol to form ergosterol (Daum et al., 1998). In attribution to the constant
emergence of azole-resistant isolates, a critical understanding of the resistance mechanisms of
CYP51 is required for the discovery of novel CYP51 inhibitors.

FUNCTION AND STRUCTURAL FEATURES OF FUNGAL
CYP51S

Sterol synthesis is a very ancient pathway. After the appearance of molecular oxygen in the
atmosphere, squalene-2,3-epoxide is formed and then cyclized to steroid precursors, such as
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lanosterol. Under the oxidative removal of methyl groups by
CYP51, these precursors were transformed into ergosterol, which
is critical in membrane permeability and fluidity in the fungal
kingdom (Rohmer et al., 1979; Daum et al., 1998).

Cytochrome P450s (P450s, CYP) are an abundant hemease
superfamily. As the first group of enzymes ranked as
“superfamily,” cytochrome P450s play an important role in
the primary as well as secondary metabolic pathways (Lamb
et al., 2007). Until August 2013, this superfamily contained 10
classes, 267 families and over 21,000 members. These members
are important for catalyzing the oxidative process of various
organic substrates, and play a critical role during heterogeneous
metabolism and steroid conversion in biological kingdoms
(Hannemann et al., 2007; Munro et al., 2018).

CYP51 proteins belong to the CYP superfamily and
is the most conserved protein in it. Unlike other CYP
enzymes, CYP51 has a strong specificity. It only catalyzes
the demethylation of a very narrow range of substrates,
including lanoserol, obtusifoliol, 24,25-dihydrolanosterol,
24-methylenedihydrolanosterol and 4 β-desmethyllanosterol
(Lepesheva and Waterman, 2007). The CYP51-involved
catalytic reaction consists of three steps, each of which requires
one molecule of oxygen and two molecules of NADPH-
sourced reduction equivalent. The first two steps are typical
cytochrome P450 monooxygenation processes, during which
the 14α methyl is converted to methyl alcohol and further
converted to methyl aldehyde. And in the last step, the
aldehyde group is transformed into formic acid and detached,
accompanied with the synthesis of the 1-14, 15 double
bond (Waterman and Lepesheva, 2005).

The 14α-demethylase is the only invariant P450 present
in all sterol biosynthetic pathways, suggesting that all sterol
14α-demethylases share a common prokaryotic ancestor
(Lepesheva and Waterman, 2007). CYP51s are widely distributed
in the fungal kingdom. However, in different species of fungi,
there are still differences in the types and subtypes, as shown in
the phylogenetic tree (Režen et al., 2004) (Figure 1). Only one
CYP51 gene exists in the pathogenic fungi C. albicans, which
belongs to the Ascomycota Saccharomycotina (Hawkins et al.,
2014). In contrast, 2 or 3 CYP51 genes are commonly contained
in the Ascomycota Pezizomycotina genomes, including CYP51A
and CYP51B. CYP51C is exclusive in Fusarium spp. (Becher et al.,
2011). Some Aspergillus Spp. such as A. fumigatus carries only
one CYP51A and one CYP51B protein, while other Aspergillus
species such as A. flavus and A. terreus carry a third paralogous
gene, which is a copy of CYP51A or CYP51B. Studies on
Aspergillus fumigatus have shown that CYP51B is constitutively
expressed, while CYP51A is expressed in an inducible manner.
Neither CYP51A nor CYP51B is essential for in vitro growth and
virulence, and only the simultaneous inactivation of both genes
is lethal (Hu et al., 2007; Hargrove et al., 2015).

A recent study also showed that CYP51 might have a number
of indirect functions. In C. albicans, the deletion of CYP51
(ERG11) reduces mycelial elongation and invasive growth, and
causes defects of reactive oxygen elimination, resulting in
reduced virulence in vivo. It is worth paying special attention that
ERG11-deficient fungi are more susceptible to phagocytosis by

FIGURE 1 | Minor branch of the Fungal CYP51 Phylogenetic Tree. It has been
permitted by the copyright holders through RightsLink.

macrophages, which indicates that CYP51 may be critical for the
immune escape process in fungi (Wu et al., 2018).

Present in all animals, plants, fungi, in some protozoa and
bacteria, the CYP51 protein located in the inner face of the
endoplasmic reticulum is a membrane monospanning enzyme
(Noel, 2012). And its N-terminus includes an amphipathic
helix, which links the catalytic subunit to the lipid bilayer
(Monk et al., 2014). Besides crystallographic structures of CYP51
proteins from some protozoa and bacteria, and the ligand-free
CYP51 proteins from Homo sapiens (3JUV) and complexed
with ketoconazole (3LD6) deposited in Protein Data Bank (PDB)
(Strushkevich et al., 2010). X-ray structures of CYP51 proteins of
some fungi have already been described in literature, including
CYP51 proteins from Saccharomyces cerevisiae complexed with
the substrate lanosterol (4LXJ) and complexed with itraconazole
(5EQB) (Monk et al., 2014), voriconazole (5HS1) and fluconazole
(4WMZ) (Sagatova et al., 2015), from C. albicans complexed
with posaconazole (5FSA) and the tetrazole-based antifungal
drug candidate VT1161 (VT1) (5TZ1) (Hargrove et al., 2017a),
and CYP51B structure in complex with the VNI derivative
(6CR2) and a tetrazole-based inhibitor VT-1598 (5FRB) from
A. fumigates (Hargrove et al., 2017b).

Together with information from the analysis of multiple-
sequence alignment of CYP51 proteins from human and
fungi including S. cerevisiae, C. albicans, C. glabrata, C.
tropicalis, C. krusei, C. dubliniensis, C. parapsilosis, A. fumigatus
and Cryptococcus neoformans showing that the identity
varied between 36.5 and 93.9% among them (Table 1). The
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comprehensive comparative analysis of three-dimensional
structures uncovered the basic understanding how CYP51
enzymes might maintain their conservation in human and fungi.
As shown in Figure 2, the majority of amino-acids residues
conserved in the folding of chains might play an essential
structural role for their enzymatic function. The residues
forming the surface of CYP51 proteins active site were highly
conserved, such as Y118, F126, G127, V130 and T311 from the
CYP51 proteins helix B’, B” helical turn and Helix I signature
regions, respectively (Lepesheva and Waterman, 2011; Hargrove
et al., 2017a; Keniya et al., 2018).

The conserved amino acid sequences can be classified into
three motifs and six putative substrate recognition sites (SRS).
Among the three motifs, the most conserved FXXGXXXCXG
is a heme binding domain containing a heme axial Cys ligand;
and the E–R–R triad, formed by the motifs EXXR and PER,
contributes to locking the heme pocket into position and to
guarantee stabilization of the core structure (Figure 3). And
among the six putative SRSs, the most thoroughly studied SRS1
and SRS4 can be used as landmarks of the fungal CYP51
(Lepesheva and Waterman, 2007) (Figure 4).

To crystallize C. albicans CYP51 proteins complexes with
posaconazole and a tetrazole-based drug candidate VT-1161,
Hargrove et al. used E. coli cells to express and purify the
truncated C. albicans CYP51 proteins (56 kDa) without the
48-amino-acid-long N-terminal membrane anchor sequence
(Hargrove et al., 2017a). The structural analysis of C. albicans
CYP51 proteins complexes carried out by Hargrove et al.
showed that posaconazole had contacts with a set of 28 residues
of C. albicans CYP51 proteins, while VT-1161 interacts with
22 amino acid residues, and forms the H-bond between its
trifluoroethoxyphenyl oxygen and the imidazole ring of His377
of C. albicans CYP51 proteins [Table 2 from Hargrove et al.
(2017a) with slight modification]. Further, the X-ray structure of
A. fumigates CYP51B complex with the tetrazole-based inhibitor
VT-1598 (5FRB) determined also by Hargrove et al. (2017b)
showed the formation of an optimized hydrogen bond between
the phenoxymethyl oxygen of VT-1598 and the imidazole
ring nitrogen of His374 of A. fumigates CYP51B. Comparative
structural analysis of the CYP51 proteins residue (His377 of
C. albicans CYP51 proteins, His374 of A. fumigates CYP51B)
among different organisms suggested it was highly conserved
across fungal pathogens but not in human, supporting its fungus
specificity and the role of H bonding in fungal CYP51/inhibitor
complexes (Figures 2, 5).

After the first structure of CYP51 proteins with the N-terminal
region from S. cerevisiae (5EQB) in complex with itraconazole
was elucidated and deposited in PDB, Keniya et al. concluded
that the conformations of the three full-length fungal Cyp51
structures binding to itraconazole were close to that of the
N-truncated C. albicans Cyp51 with posaconazole. In comparison
these had only slight variations in residues conformations, such
as C. glabrata Cyp51 I71, T75, I240; C. albicans Cyp51 A62, Q66,
I231 and S. cerevisiae Cyp51 V70, M74, I239, all of which were
within the ligand binding pocket and may not be significant
due to modest electron densities in this region. Besides, the
structures showed S. cerevisiae Cyp51-fluconazole or itraconazole
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FIGURE 2 | Structure alignment of primary structure of CYP51 from different organisms > 80%. Structure alignment of primary structure of CYP51 from different
organisms: H. sapiens, S. cerevisiae, C. albicans, C. glabrata, C. tropicalis, C. krusei, C. dubliniensis, C. parapsilosis, A. fumigatus, and Cryptococcus neoformans.
The residues identical in all CYP51s are marked with black, the light gray show the residues conserved in more than 80% sequences. The sequences were from
NCBI and CGD database and were aligned using the ClustalW2 program. Red arrow means the most conserved CYP51 active amino acid sites among
diffierent species.

had the binding sites in near identical conformations (Sagatova
et al., 2015; Keniya et al., 2018). The X-ray crystal structures
determined by Keniya et al. (2018) gives us insights into the
CYP51 proteins reaction mechanism and emphasizes the identity
of ligand-binding sites of fungal CYP51 families, providing
a practical basis for the discovery and optimization of novel
antifungals targeting at CYP51 families.

CYP51-RELATED DRUG RESISTANCE

In recent years, with the widespread use of CYP51-targeting
drugs, drug-resistant Candida, Cryptococcus, and Aspergillus
have emerged continuously. As shown in Table 3, in many
resistant isolates, the decrease of susceptibility originated from
mechanisms associated with CYP51, while other isolates not.
Besides, transcription factors Pdr1 and Stb5, or the insertion of
the Aft1 transposon into the CYP51 promoter region, can also
cause a decrease in the sensitivity of the drugs (Albarrag et al.,
2011; Noble et al., 2013; Nishikawa et al., 2016). Transcription
factors of non-pathogenic species may also bring some

information, such as Set4 in S. cerevisiae, which represses CYP51
expression and reduces drug resistance (Serratore et al., 2018).
It is worth noting that drug resistance is often a combination of
multiple mechanisms (Berkow and Lockhart, 2017).

The mechanisms associated with CYP51 are discussed
below in detail.

Candida spp.
Candida spp., represented by C. albicans, is the most prominent
pathogenic fungus. The spectrum of disease of invasive
candidiasis ranges from minimally symptomatic candidaemia
to fulminant sepsis with an associated mortality exceeding
70% (Pappas et al., 2018). The resistance mechanisms of
Candida spp. related with CYP51 includes point mutation,
genomic plasticity, and upregulation of CYP51 meditated by the
transportation factor Upc2.

Point mutation (amino acid non-synonymous substitutions)
of CYP51 proteins is a critical origination of reduced drug
susceptibility. Three ways were proposed to explain the resistance
mechanism: (1) the corresponding amino acids docked with
azoles are changed, (2) the structure of the binding cavity is
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FIGURE 3 | Sequence logos of the conserved CYP motifs from the tested fungi and human’s CYP51. The sequences were from NCBI and CGD database and the
consensus logos were generated by WebLogo (http://weblogo.threeplusone.com/create.cgi).

rearranged, leading to changed position of the azole molecule
or the heme iron, disturbing the interaction between them,
and (3) the access of the drug into the active site is blocked
(Becher and Wirsel, 2012).

In C. albicans, mutations of CYP51 proteins amino acid
sequences frequently occurs on 105–165, 266–287, and
405–488 (Marichal et al., 1999). Among these mutations,
N-terminal and C-terminal are more frequent than central
regions, probably due to these terminal substitutions lead
to changes in secondary and tertiary structure, especially
substrate binding cavities, which are located in α-helix B, B′,
C, and in their connection loops (Becher and Wirsel, 2012).
And sequential replacement of ERG11 mutant alleles with
wild-type alleles contributes to the reduction of resistance
(MacCallum et al., 2010). The resistant C. albicans double
point mutation Y132F G464S (Y140F G464S by S. cerevisiae
numbering) were artificially introduced into S. cerevisiae CYP51,
leading to a decrease in sensitivity of the latter (Sagatova
et al., 2018). In addition, mutations located at different sites
of CYP51 proteins provide different degrees of resistance
enhancement. As an instance, K143R is stronger than F449V
(Flowers et al., 2015).

The non-albicans Candida (NCAC) species also contains
amino acid non-synonymous substitutions, such as Y132F in

C. parapsilosis, Y132F and K143R in C. tropicalis (Vandeputte
et al., 2005; Xisto et al., 2017; Choi et al., 2018).

The newly emerged C. auris is a multi-drug resistant Candida
that causes serious invasive infections, with a mortality rate
approximate to 60% (Lee et al., 2011). CYP51 point mutation
plays an important role in pan-azole resistance of C. auris. Nine
typical amino acid substitutions have been identified, three of
which are closely associated with geographic clades: F126T in
South Africa, Y132F in Venezuela, and Y132F or K143R in India
and Pakistan (Lockhart et al., 2017).

Genomic plasticity, including aneuploidy and loss of
heterozygosity (LOH), refers to the abnormal fungal
chromosomal behavior induced by heat, oxidative stress or
antifungal drugs. It is an important mechanism for fungal
adaptation to the environment.

Aneuploidy is a reversible fungal chromosomal adaptive
behavior in response to drug stress. If the “selectivity” of the drug
disappears, the cells will return to the euploid state. Aneuploidy
after azole stress was first discovered in C. glabrata and was
detailed studied in C. albicans (Vanden et al., 1992).

The aneuploidy of C. albicans chr1, chr3, chr5, chr6 and chrR
has been reported under the stress of azoles treatments (Selmecki
et al., 2010; Li et al., 2015). Research on fluconazole-resistant
strains has revealed that at least half of them carry aneuploid
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FIGURE 4 | (A) Predicted SRS1 (the positions 117–134) and SRS4 (the positions 305–314) of tested fungal CYP51 (S. cerevisiae, C. albicans, C. glabrata, C.
tropicalis, C. krusei, C. dubliniensis, C. parapsilosis, A. fumigatus, and Cryptococcus neoformans). The sequences were from NCBI and CGD database and the
consensus logos were generated by WebLogo (http://weblogo.threeplusone.com/create.cgi); (B) Location of SRS1(yellow) and SRS4 (blue) in C. albicans CYP51
(5v5z). HEME is shown in red. They are obtained from the published crystal data file from the PDB database, and then displayed by PyMOL Version 1.5.0.3.

chromosomes. The duplication of the chr5’s left arm in C. albicans
[named i(5L)] results in multiple copies and overexpression of
CYP51 gene, contributing to azole resistance (Selmecki et al.,
2006). Besides, aneuploidy of chr5 (carrying TAC1), chr3 (MRR1
and CDR1), Chr4 or chr6 (MDR1) also reduce drug susceptibility
(Selmecki et al., 2010). Some aneuploid C. albicans chromosomes
source from the mitotic defect in the process of quasi-fertility
(Forche et al., 2008). There also exists an additional mechanism
that, two diploid cells and one tetraploid cell are connected to
each other to form a “trimeric,” then the tetraploid cell undergoes
defective mitosis and results in two aneuploid progeny cells
(Harrison et al., 2014).

An “Evolution Trap” (ET) strategy was proposed to suppress
the occurrence of aneuploidy. The aneuploidy of a whole
microflora can develop into multiple random directions, but
once a specific inducing factor (stress X) is used to strictly
limit its development direction, another treatment (treatment
Y) can be applied to eliminate this trend and inhibits the
generation of resistance. Such strategy has successfully pulled
the minimum inhibitory concentration (MIC) against C. albicans
carrying aneuploidy-sourced resistance back to normal level
(Chen et al., 2015).

Loss of heterozygosity is another branch of genomic
plasticity leading to Candida species resistance. It is an

irreversible process in diploid fungi, thus resulting the
acquired resistance gene mutation (∗) become multiple
(e.g., ERG11/ERG11∗→ ERG11∗/ ERG11∗), thus results in
overexpression of such gene (White, 1997). LOH contains three
mechanisms, (1) local recombination of chromosomes, (2)
mitotic recombination between centromeres and related locus,
(3) whole-chromosome loss and the remaining chromosome’s
duplication (Morschhäuser, 2016).

Transcription factors of CYP51 are tightly related to drug
resistance. The Zn2-Cys6 transcription factor Upc2, located
in Candida spp., is highly relevant to the increase of azole
sensitivity (Vasicek et al., 2014). It has been confirmed that
when Upc2 in C. albicans or C. parapsilosis or Upc2A in
C. glabrata is deleted, the susceptibility to azoles will be
enhanced (Guida et al., 2011; Vasicek et al., 2014; Whaley
et al., 2014). The C-terminal domain (CTD) of Upc2 is
a novel α-helical fold with a deep hydrophobic pocket.
Treatment with azole reduces the membrane ergosterol level,
then ergosterol molecules that are previously bound to
CTD dissociates from Upc2p. Thereby Upc2p relocates from
the cytoplasm to the nucleus to activate CYP51 expression
(Yang et al., 2015). It is worth noting that Upc2 only up-
regulates the expression of CYP51 under azole stress conditions
(Hoot et al., 2011).
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TABLE 2 | Posaconazole and a tetrazole-based drug candidate VT-1161
contacting residues (<4.5 Å) in C. albicans CYP51 structures.

Drug

Secondary
structural
element

Posaconazole VT-1161

C. albicans PDB
code 5FSA

C. albicans PDB
code 5TZ1

Helix A′ Phe-58

Ala-61

Ala-62

Tyr-64 Tyr-64

Gly-65

β1-β2 turn Leu-88

Helix B′ Tyr-118 Tyr-118

Leu-121 Leu-121

Thr-122 Thr-122

Phe-126 Phe-126

B′ ′ helical turn Ile-131 Ile-131

Tyr-132 Tyr-132

Helix C

Helix F′ ′ Phe-228 Phe-228

Pro-230 Pro-230

Phe-233 Phe-233

Helix I Gly-303 Gly-303

Ile-304 Ile-304

Gly-307 Gly-307

Gly-308 Gly-308

Thr-311 Thr-311

K/β1–4 loop Leu-376 Leu-376

His-377 His-377, H-bond

Ser-378 Ser-378

β1–4 strand Phe-380 Phe-380

β4 hairpin Tyr-505 Tyr-505

Ser-506

Ser-507 Ser-507

Met-508 Met-508

Bold is to highlight the hydrogen bond formed between VT-1161 and C. albicans
CYP51-His377.

The gain-of-function (GOF) mutation of Upc2 also
contributes to Candida species increased drug resistance.
Typical GOF point mutations inducing overexpression of CYP51
in C. albicans include A643V, G648D, G648S, and Y642F (Dunkel
et al., 2008; Flowers et al., 2012). Point mutations in UPC2 can
reduce the sensitivity to azoles in combination with amino acid
substitution of CYP51. For example, when combined with the
CYP51G464S mutation, the MIC value of C. albicans carrying
Upc2G648D against fluconazole is increased from 4 µg/ml to
16 µg/ml (Sasse et al., 2012).

Gain-of-function mutations were also found in C. tropicalis
Upc2. Nucleotide substitutions T118G and G155A in CtUpc2
promoter increase the expression of this gene, and amino acid

substitution G392E in CtUpc2p enhances drug resistance when
expressed heterologously in S. cerevisiae (Jiang et al., 2016).

The GOF amino acid substitutions are often localized near
the C terminus of Upc2p, where the activation domain of
zinc-cluster transcription factors is found. Mutations in this
region leading to reduced drug susceptibility include two possible
mechanisms: (1) relieve Upc2 from a repressor that would
otherwise keep this transcription factor inactive, (2) interfere
with the transmembrane region of this protein, leading to
Upc2p nuclear localization and initiation of CYP51 transcription
(Flowers et al., 2012).

Cryptococcus spp.
Cryptococcal meningitis (CM) is the most common infection
caused by Cryptococcus spp., and is frequently recommended to
be treated with fluconazole monotherapy in national guidelines.
However, even with such treatment, the mortality of CM
can exceed 50%, much of which owing to drug-induced
cryptococcal resistance (Rothe et al., 2013; Bongomin et al.,
2018). Amino acid point mutation, genomic aneuploidy and
Sre1-induced overexpression of CYP51 account for the reduced
azole susceptibility.

The amino acid point mutation G344S was found in
CYP51 proteins of Cryptococcus neoformans var. grubii, resulting
in multi-azole resistance (Kano et al., 2017). Besides, the
substitution G484S may confer a change in the orientation of
the P450 heme-binding domain, decreasing catalytic activity
and azole binding of Cryptococcus neoformans CYP51 proteins
(CnCYP51 proteins) (Rodero et al., 2003). And the substitution
Y145F affords resistance to voriconazole but attenuates resistance
to itraconazole and posaconazole (Sionov et al., 2012). In
Cryptococcus gattii CYP51 proteins, amino acid non-synonymous
substitution N249D are deduced to result in azole resistance
(Gast et al., 2013).

As for genomic aneuploidy, Cryptococcus neoformans Chr1
disomy, which is common in heteroresistant isolates, results in
duplication of CnCYP51 and reduced azole sensitivity. A recent
report reveals that clinical fluconazole treatment can induce
aneuploidy of C. neoformans in CM patients, and relapse of
CM is associated with Chr1 disomy (Bongomin et al., 2018;
Stone et al., 2019).

Cryptococcus neoformans is haploid and aneuploid cells of this
species mainly derive from the uncoupling of cell growth and
nuclear division (Altamirano et al., 2017). Unlike C. albicans,
the aneuploidy of Chr1 in C. neoformans only repeats the
entire chromosome without forming segmental isochromosomes
(Kwon-Chung and Chang, 2012). A study indicates the detailed
mechanism causing aneuploidy: final degradation of the septum
is affected by fluconazole during cytokinesis, resulting in
Chr1 disomy multinucleated cells, and these cells exhibit an
increased potential to proliferate in the presence of fluconazole
(Altamirano et al., 2017). However, another study points
out that the fluconazole-induced multinucleated cells fail to
propagate to form colonies in the presence of fluconazole, and
chromosome missegregation of C. neoformans dividing cells has
not been detected, suggesting C. neoformans forms aneuploid
clones directly from uninucleated cells under fluconazole stress
(Chang et al., 2018).
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FIGURE 5 | VT-1161 andVT-1598 forming the H bond. VT-1161 and VT-1598 forming the H bond with the His377 of C. albicans CYP51 and the His374 of
A. fumigates CYP51B. (A) C. albicans CYP51-His377-VT-1161(5TZ1); (B) A. fumigates CYP51B-His374-VT-1598 (5FRB). They are obtained from the published
crystal data file from the PDB database, and then displayed by PyMOL Version 1.5.0.3. The red dot line means H-bonds formed between VT-1161 and C. albicans
CYP51-His377 in Figure 5A, and H-bonds formed between VT-1598 and A. fumigates CYP51B-His374 in Figure 5B.

Aneuploidy can be regulated by certain factors in Cryptococcal
spp. For example, the decreased expression of AIF1 (apoptosis-
inducing factor) conduces to maintain Chr1 aneuploidy, thereby
contributes to a stable repeat of CYP51 and preserves resistance
to azoles (Semighini et al., 2011).

Sterol regulatory element-binding protein (SREBPs) regulate
the CYP51s’ expression in many species of fungal, including
C. neoformans (Chang et al., 2009). Under azoles or hypoxic
stress, SREBPs regulate the transcription of CYP51 by binding to
the sterol regulatory element (SRE) in the promoter

The SREBP in C. neoformans is Sre1. Sre1 is cleaved by
Scp1and functions to regulate the expression of CYP51, thus plays
a key role in drug resistance (Bien and Espenshade, 2010). Studies
have shown that deletion of Sre1 converts the effect of azoles from
fungistatic to fungicidal (Bien et al., 2009; Chang et al., 2009).

Aspergillus spp.
The ability Aspergillus spp. to adapt to mammal hosts or external
environment is a vital fungal characteristic that leads to treatment
failure and the emergence of resistant isolates worldwide. Non-
synonymous substitution of amino acids, transcription factors
SrbA and AtrR, tandem repeats, and Dap proteins constitute the
CYP51-related resistance mechanisms of Aspergillus spp.

The lanosterol 14α-demethylase point amino acid mutations
of A. fumigatus mainly appear in CYP51A, and G54, L98,
G138, M220 and G448 are the hotspots (Denning and
Perlin, 2011). G54R/E/V and G138 lead to cross-resistance to

itraconazole and posaconazole, and G448S results in voriconazole
tolerance (Chowdhary et al., 2017), while M220I/V/T/K can
develop resistance to itraconazole, voriconazole, refconazole,
and posaconazole (Mellado et al., 2004). When the G138S
point-substituted CYP51A in the resistant A. fumigatus was
mutated back, the tolerance of the isolate diminished (Umeyama
et al., 2018). Moreover, one mutation may have varied
effects on resistance for different azoles. For example, in the
heterologous expression experiment, G54W significantly reduces
the susceptibility to itraconazole and posaconazole, while has
almost no effect on voriconazole (Alcazar-Fuoli et al., 2011).

Amino acids substitution also occurs in non-fumigatus
Aspergillus species. Four mutations of A. flavus CYP51C (S196F,
A324P, N423D and V465M) are correlated with voriconazole
resistance (Sharma et al., 2018). For A. clavatus CYP51A, E483K
and P486S mutations may narrow the azole transport and
therefore confer lower susceptibility (Abastabar et al., 2019). As
for A. terreus and related species, M217T and M217V mutations
of CYP51Ap was found correlating with posaconazole resistance
(Zoran et al., 2018).

Notably, appliance of azole pesticides in agriculture is one of
the reasons for the non-synonymous substitution of A. fumigatus
CYP51 proteins. Mutations in this type include L98H, Y121F
and T289A, which are often accompanied with tandem repeats
of the CYP51 promoter (Mellado et al., 2007; Camps et al.,
2012; Chowdhary et al., 2013; van der Linden et al., 2013;
Isla et al., 2018).
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TABLE 3 | CYP51-related and CYP51-unrelated drug resistance.

Resistance type Mechanism Gene(s) involved Transcription
factor(s) involved

Species References

CYP51 Related Drug-target point
mutation

CYP51 C. albicans; C. tropicalis; C. krusei;
C. glabrata; C. auris; C. parapsilosis; C.
neoformans; C. gatti; A. fumigatus; A.
flavus; S. apiospermum; T. asahii

1

Regulation of drug
target

Upc2; SREBPs C. albicans; C. neoformans; A.
fumigatus

2

Genomic plasticity CYP51 Upc2; C. albicans; C. glabrata; C. neoformans 3

Promoter Tandem
Repeats

CYP51 A. fumigatus 4

CYP51 Unrelated Efflux pump CDR1;CDR2;MDR1 Tac1;Mrr1 C. albicans; C. glabrata; C. krusei; C.
neoformans; A. fumigatus

5

Compensatory
ergosterol
biosynthesis

ERG3 Upc2 C. albicans; C. tropicalis; C.
parapsilosis

6

Genomic plasticity Tac1 C. albicans 7

Biofilm formation C. albicans; C. glabrata; C.
parapsilosis; C. dubiliensis; C.
tropicalis; C. neoformans; T. asahii; A.
fumigatus

8

Activation of Stress
Response Passway

HSP90;PKC1;
Calcineurin;TOR

C. albicans; C. glabrata; C. neoformans
A. terreus A. terreus; A. fumigatus;
Paecilomyces variotii; Mucor spp.

9

1: Albarrag et al., 2011; Becher and Wirsel, 2012; Gast et al., 2013; Silva et al., 2016; Kushima et al., 2017; Lockhart et al., 2017; Bernhardt et al., 2018; Sharma et al.,
2018. 2: Willger et al., 2008; Chang et al., 2009; Flowers et al., 2012; Whaley et al., 2014; Jiang et al., 2016; Pais et al., 2016. 3: Kwon-Chung and Chang, 2012; Parker
et al., 2014. 4: Spiess et al., 2014; Gsaller et al., 2016. 5: Cannon et al., 2009. 6: Martel et al., 2010; Eddouzi et al., 2013; Branco et al., 2017. 7: Morio et al., 2017. 8:
Desai et al., 2014. 9: Wong et al., 1998; Cruz et al., 2001; Blankenship et al., 2003; Cowen et al., 2009; Singh-Babak et al., 2012; Lamoth et al., 2015.

Tandem repeats include 34-base pair (TR34) and 46-base pair
(TR46) (Spiess et al., 2014). CBC (CGAAT binding complex)
binds to CGAAT of −293 to −289 position in the CYP51
promoter and downregulates CYP51A expression. Tandem
repeats reduce the affinity of CBC and the promoter, upregulating
CYP51A. Mechanism researches indicate that the presence of
eight different nucleotides at the 3′end of TR34 lead to lower CBC
affinity (Gsaller et al., 2016).

The combination of CYP51 promoter tandem
repeat and CYP51 proteins point mutation contains
TR34/L98H/S297T/F495I and TR46/Y121F/T289A, leading
to broad-spectrum azole resistance (Snelders et al., 2015; Chen
et al., 2018; Isla et al., 2018; Pinto et al., 2018; Tsitsopoulou
et al., 2018; Tsuchido et al., 2019). Studies on TR34/L98H have
shown that L98H can cause a flexible change in the BC loop and
IH loop of A. fumigatus CYP51A (Af CYP51A), which changes
the position of the tyrosine107 and tyrosine 121 side chains.
This modifies the ligand access channels in the Af CYP51A and
prevents the binding of azoles toward the active heme (Snelders
et al., 2011). Moreover, TR34/L98H doesn’t incur a fitness cost
or survival disadvantage to A. fumigatus (Beer et al., 2018). On
the other hand, studies on TR46/Y121F/T289A indicate that
the Y121F substitution seems to disrupt the H-bond between
tyrosine and the heme center of Af CYP51A, resulting in the
instability of enzyme’s active center (Snelders et al., 2015).

Besides, the insertion of Atf1 in the A. fumigatus CYP51A
promoter may also be one of the factors leading to azole resistance

(Albarrag et al., 2011). But it requires more researches to confirm
whether the effect is direct.

The transportation factor SrbA, as one of A. fumigatus
SREBPs, modulates the expression of AfCYP51A. Different from
C. neoformans, Scap homologue is absent in A. fumigatus, and
SrbA directly binds to the 34 mer of AfCYP51A promoter
without cleavage, regulating the synthesis of ergosterol (Blosser
and Cramer, 2011; Gsaller et al., 2016). SrbA is directly activated
by azole stress and is associated with the intrinsic resistance of
A. fumigatus to fluconazole (Song et al., 2017). An azole-resistant
strain with TR46/Y121F/T289A can be sensitized to azoles by
deletion of srbA (Hagiwara et al., 2016). The intrinsic expression
of CYP51 in such strain restores the MIC value to its original level
(Willger et al., 2008).

AtrR is a newly discovered fungal-specific Zn2-Cys6
transcription factor in Aspergillus spp. It modulates the
expression of CYP51A by directly binding to the promoter of
this gene. Deletion of AtrR results in hypersensitivity to azoles
and invalidates the CYP51AG54E mutation that would otherwise
render azole resistance (Hagiwara et al., 2017).

Damage Resistance Protein A (DapA), which belongs to the
cytochrome b5-like heme-binding damage resistance protein
(Dap) family, responds to azole treatment in a concentration-
dependent manner in A. fumigatus. It co-localizes with
CYP51A/B protein in the endoplasmic reticulum (ER), and then
binds to the heme group to stabilize these CYP51 proteins.
DapA is highly associated with the intrinsic azole resistance of
A. fumigatus, and the deletion of DapA leads to hypersensitivity
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to azoles (Song et al., 2016). Studies show that DapA may
indirectly sense the azole stress at the downstream of SrbA
(Song et al., 2017).

TRADITIONAL AND NOVEL
CYP51-TARGETING
ANTIFUNGAL AGENTS

The study of azole antifungal antifungal agents can be traced back
to 1944 (Woolley, 1944). Since then, imidazole (clotrimazole,
miconazole, econazole, and ketoconazole) and two generations of
triazoles (fluconazole, itraconazole, voriconazole, posaconazole,
isavuconazole) successively entered into the clinic (Musiol and
Kowalczyk, 2012) (partly shown in Table 4). Besides, there are
several other CYP51 inhibitors used in the treatment of topical or
superficial fungal infections, such as oxiconazole, sertaconazole,
luliconazole, efinaconazole, and ravaconazole.

Both imidazoles and triazoles exits adverse reactions caused
by inhibition of human CYP450 (such as CYP3A4 and CYP2C9),
due to the strong affinity to heme iron (Hoekstra et al., 2014).
Fortunately, replacement by 1-tetrazole could attenuate such
affinity. Based on this idea, new compounds VT-1611, VT-
1129, and VT-1598 have been developed (Hoekstra et al.,
2014) (Figure 6).

VT-1598
VT-1598 has a good affinity for the fungal CYP51 proteins, as
the Kd of this compound to A. fumigatus CYP51B is 13 nM
(Hargrove et al., 2017b). Its antifungal spectrum is relatively
broad. The MIC50 for azole-resistant C. albicans and C. glabrata
is 0.124 and 1.19 µg/ml (Wiederhold et al., 2018b). Especially,
the inhibition of VT-1598 against the clinical Coccidioides
isolates is significantly better than that of fluconazole (McCarthy
et al., 2017). The non-selective inhibition of VT-1598 to human
CYP450 is weak, as IC50 for human CYP2C9 and CYP3A4 are
both more than 200 µM, and the IC50 for CYP2C19 is 138 µM
(Yates et al., 2017). When the oral dose (15 mg/kg/day) of VT-
1598 is applied to mice, the Cmax is about 13 mg/L, the C24 h
level is 6.7 mg/L and the half-life period is 22 h in plasma
(Garvey et al., 2018).

VT-1598 has a high binding rate of plasma protein. When
co-incubated with plasma at concentration of 1 mg or 5 mg/L
in vitro, only less than 1% showed a free state (Garvey et al., 2018).
In vivo, when treated with 20 mg/kg of VT-1598 per day, the
minimum plasma concentration (Cmin) was 32-fold greater than
that of the 25 mg/kg dose of fluconazole (Break et al., 2018a).

In the mouse model, VT-1598 has been used alone
or in combination with amphotericin liposomes, and has
achieved good efficiency for cryptococcal meningitis caused by
C. neoformans or C. gatti infection (Garvey et al., 2018). VT-
1598 has also achieved significant preventive effects against
mucosal candidiasis induced by sensitive or resistant Candida
spp. (Break et al., 2018a). In addition, VT-1598 can be used
to treat central nervous system coccidioidomycosis infected by
C. posadasii and C. immitis (Wiederhold et al., 2018c). In May
2016, FDA granted orphan drug designation to VT-1598 for

the treatment of Valley fever, a disease caused by Coccidioides
infection (McCarthy et al., 2017).

VT-1161 (Oteseconazole)
VT-1161 can tightly bind to the fungal CYP51 proteins and
effectively inhibit the activity of such proteins. For example, the
Kd of VT-1161 to C. albicans CYP51 proteins is less than 39 nM
and IC50 ranges from 1.4 to 1.6 µM, resulting in the proportion of
ergosterol to total sterols drop to only 3% (Warrilow et al., 2014).
The MIC50 of VT-1161 against fluconazole-resistant C. albicans
is 0.03 µg/ml (Break et al., 2018b). For T. rubrum CYP51
proteins, The Kd and IC50 values are 242 nM and 0.14 µM,
respectively (Warrilow et al., 2017). Its non-selective inhibition
of human CYP450 is also weak, appears in its IC50 of CYP2C9,
CYP2C19 and CYP3A4 are 99, 72, and 65 µM. Pharmacokinetic
experiments in mice showed that VT1161 has a wide distribution
volume (1.4 L/kg), high oral bioavailability (73%), and long half-
life period (>48 h)(Garvey et al., 2015). Phase II clinical trials
showed oral VT-1161 plasma exposure for the 150 mg/24 weeks’
or 300 mg/24 weeks’ treatment groups were 3.81 and 8.33 µg/mL
(Brand et al., 2018).

Animal model studies have shown that VT1161 can be used
to prevent or treat mucormycosis caused by Rhizopus arrhizus,
and can also be used for treatment of mouse modeling infection
or canine naturally occurring coccidioidomycosis (Shubitz et al.,
2015, 2017; Gebremariam et al., 2017). In addition, in a mouse
model, VT1611 can treat oropharynx or vaginal Candidiasis
caused by fluconazole sensitive or resistant C. albicans (Break
et al., 2018b). Phase II clinical trials indicate that oral VT1161
has a good effect on treating human vulvar candidiasis, with a
satisfactory tolerance and a low incidence of adverse reactions
(Brand et al., 2018). Currently, oral VT-1161 has completed Phase
II clinical trials for moderate – severe interdigital tinea pedis,
vaginal candidiasis, and onychomycosis of the toenail. And phase
III clinical trial is underway for Vaginal Candidiasis.

VT-1129 (Quilseconazole)
VT-1129 has a similar skeleton to VT-1161, and shows a
remarkable inhibitory activity against Cryptococcus CYP51
protein. For example, the Kd for C. neoformans, C. gattii,
and C. grubii CYP51 proteins are about 11, 24, and 25 nM,
respectively, and the corresponding IC50 are 0.16, 0.15, and
0.18 µM. VT-1129 can reduce the proportion of ergosterol to
total sterols in C. neoformans to 11.5%, and only 0.12 µg/ml can
totally inhibit the growth of C. neoformans (Warrilow et al., 2016;
Wiederhold et al., 2018a). Its non-specific inhibition to human
CYP450 is lower than that of the previous azole antifungals,
appears in the IC50 to CYP2C9 and CYP2C19 are 87 and
110 µM, respectively, and for CYP3A4 is also higher than
79 µM (Warrilow et al., 2016). VT-1129 also inhibits the growth
of azole or echinocandin resistant C. glabrata and C. krusei
(Schell et al., 2017).

The pharmacokinetic experiments in mice model showed that
VT-1129’s half-life period is long (>6 days). The plasma and
brain concentrations were still above the MIC values even after
20 and 32 days stopping oral treatment of VT-1129. The non-
linear pharmacokinetic model has been approved to describe the
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TABLE 4 | Current antifungal CYP51 inhibitors.

Name Approval time Clinical applications Adverse effects Remarks References

Ketoconazole(KCZ) 1981 Oral, vaginal, cutaneous and
systemic candidiasis

Liver damage, interference of
the endocrine system, nausea,
headache, abdominal pain, etc.

Oral formulation has withdrawn
from Europe, Australia, and
China.

10

Fluconazole(FCZ) 1988 Systemic Candida infection,
cryptococcal meningitis,
vaginal, oropharyngeal and
esophageal candidiasis

Nausea, vomiting, abdominal
pain, gastrointestinal adverse
reactions, reversible mild liver
necrosis and thrombocytopenia

Adjuvants such as calcineurin
inhibitors, heat shock protein
90 inhibitors have been found

11

Itraconazole(ICZ) 1988 Invasive aspergillosis,
superficial candidiasis,
dermatophyte infection,
sporotrichosis, blastomycosis,
histoplasmosis, penicilliosis,
and coccidioidomycosis, etc.

Gastrointestinal symptoms,
cardiac failure, peripheral
edema and hepatic
inflammation

12

Voriconazole(VCZ) 2002 Aspergillosis, candidiasis,
scedosporium, and Fusarium
infection

Neurotoxicity, visual toxicity,
hepatotoxicity and skin
malignancy

Therapeutic drug testing (TDM)
is required

13

Posaconazole(PCZ) 2006 Aspergillus and Candida
infections, especially
fluconazole or itraconazole
resistant cases

Serious adverse reactions rarely
exit. Non-serious adverse
reactions include SeHeadache,
nausea, and menstrual
disorder, etc.

14

Isavuconazole 2015 Invasive aspergillosis and
invasive mucormycosis

Nausea, vomiting, diarrhea and
hepatobiliary toxicity

15

10: Listed, 1981; Heel et al., 1982; Pont et al., 1982, 1985; Daneshmend and Warnock, 1988; Chien et al., 1997; Rodriguez and Acosta, 1997; Rodriguez et al., 1999;
Greenblatt et al., 2011; Yan et al., 2013; Greenblatt and Greenblatt, 2014; Gupta et al., 2014; Gupta and Lyons, 2015). 11: Washton, 1989; Morita et al., 1992; Amichai
and Grunwald, 1998; Fischer et al., 2010; Liu et al., 2014; Behtash et al., 2017. 12: Isoherranen, 2004; Lestner and Hope, 2013; Abuhelwa et al., 2015. 13: Hyland et al.,
2003; Wood et al., 2003; Espinel-Ingroff et al., 2012; Owusu et al., 2014; Malani et al., 2015; Job et al., 2016; Lamoureux et al., 2016; Levine and Chandrasekar, 2016;
Patterson et al., 2016; Li et al., 2017; Xing et al., 2017; Cormican et al., 2018; Mounier et al., 2018. 14: Kim et al., 2003; Sansone-Parsons et al., 2007; Groll and Walsh,
2014; Clark et al., 2015; Moore et al., 2015. 15: Schmitt-Hoffmann et al., 2006; McCormack, 2015; Pettit and Carver, 2015; Traynor, 2015; Maertens et al., 2016; Denis
et al., 2018; Ledoux et al., 2018.

FIGURE 6 | Novel CYP51 inhibitors in studies. It has been permitted by the copyright holders through RightsLink.
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correlation between concentrations of VT-1129 in plasma and in
brain (Wiederhold et al., 2018a,d).

At present, the research on VT-1129 in animal models
is mainly focused on cryptococcal meningitis. VT-1129
significantly reduces fungal burden and improve survival rates
during treatments. When treated with a dose of ≥ 3 mg/kg/day,
the fungal burden was undetectable in most mice even 20 days
after dosing was stopped. And treating at a dose of 20 mg/kg
once daily reached a maximal survival benefit (100%). Because
VT-1129 plasma and brain concentrations are related with fungal
burden reductions, the loading dose-maintenance dose (LD-
MD) strategy to treat cryptococcal meningitis seems feasible
(Wiederhold et al., 2018a,d).

CONCLUSION AND PERSPECTIVES

CYP51 plays a crucial role in fungal invasive growth, hyphae
formation and virulence, and inhibitors targeting CYP51
have always been an important component of antifungal
agents. Further researches on fungal CYP51s might set about
from the following aspects: First, while the detailed crystal
structures of several susceptible pathogenic fungi CYP51 have
been elaborated, those of drug-resistant variants are still in
hypothesis. If those structures were elucidated, targeting at
common drug-resistant CYP51 protein variants could probably
be promising. Second, it deserves more in-depth researches
to find out why some kind of amino acid point mutations
(such as G54W in A. fumigatus CYP51A) could have varied
effects on resistance for different azoles. Such researches may
provide important ideas to minimize drug resistance. Third,
the study of model organisms may also bring some inspiration.
Such as Set4, which targets to ergosterol gene promoters
with a Hap1-dependent manner under hypoxic conditions in
S. cerevisiae, could downregulates the expression of CYP51.

Whether homologous proteins and similar mechanisms exist
in pathogenic fungi requires further researches. As long as
they exist, new remedies may be put forward to activate
Set4 to inhibit azole-induced CYP51 overexpression. Forth, it
might be achievable to target other proteins as well as CYP51
simultaneously to maximize the therapeutic effect. There already
exists some preliminary works focusing on this, and it is probably
requisite to find out more accompanying targets. Fifth, the
"Evolution Trap"(ET) strategy, which successfully restored the
sensitivity of C. albicans in vitro, might be practiced in vivo
to investigate whether similar effects exist in animal models
and further in humans. Aside from these, it is also hopeful for
pharmaceutics amelioration to improve treatment efficacy. Novel
drug delivery systems, such as liposomes, may confer better oral
bioavailability on azoles.
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