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Given that Clostridium difficile is not part of the normal human microbiota, if multiple
strains are to accumulate in the colon implies successive exposure events and/or
persistent colonization must occur. Evidence of C. difficile infection (CDI) with more
than one strain was first described in 1983. Despite the availability of increasingly
discriminatory bacterial fingerprinting methods, the described rate of dual strain recovery
in patients with CDI has remained stable at ∼5–10%. More data are needed to
determine when dual strain infection may be harmful. Notably, one strain may block
the establishment of and infection by another. In humans, patients colonized by non-
toxigenic C. difficile strain are at a lower risk of developing CDI. Further studies to
elucidate the interaction between co-infecting or colonizing and infecting C. difficile
strains may help identify potential exploitable mechanisms to prevent CDI.

Keywords: carriage, competition, microbiome, antibiotic, colon

INTRODUCTION

Clostridium (Clostridioides) difficile is an anaerobic, spore forming, Gram-positive bacillus (Martin
et al., 2016). Historically, C. difficile infection (CDI) primarily occurs in hospitalized patients
secondary to antibiotic use (Kelly and LaMont, 1998). However, in the past decade, the proportion
of C. difficile infection occurring in the community (previously thought to be low risk) is increasing
(DePestel and Aronoff, 2013). This highlights the endemicity of C. difficile outside healthcare
institutions. In addition, the emergence of a more virulent C. difficile strain BI/NAP1/027 changed
perceptions of C. difficile from an easily treated side-effect of antibiotic use to a leading cause of
infectious diarrhea with increased morbidity and mortality worldwide (Baines et al., 2013; Ghose,
2013; Sun et al., 2016).

There are over 800 recognized strain types (ribotypes) of C. difficile and only toxin-producing
strains are associated with disease (Tonna and Welsby, 2005; Vedantam et al., 2012). C. difficile
associated diarrhea is mediated by the production of toxin A (TcdA) and toxin B (TcdB) released
into the gut as a result of colonization by toxigenic strains (van den Berg et al., 2005). Early hamster
models suggested that TcdA is a key determinant of intestinal inflammation (Lyerly et al., 1985),
but subsequent studies suggested that TcdB is more potent (Savidge et al., 2003; Lyras et al., 2009).
Furthermore, a monoclonal anti-toxin B antibody, but not an anti-toxin A antibody, was effective
at reducing recurrence in patients treated for CDI (Wilcox et al., 2017). Also, there is a growing
body of evidence for TcdA negative/TcdB positive CDI cases (Samra et al., 2002; Carter et al., 2015;
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Di Bella et al., 2016). Therefore, the importance of TcdA in
human beings remains uncertain and needs further clarification.
Since the emergence of the more virulent BI/NAP1/027 strain
of C. difficile, the role of a third binary toxin, C. difficile
transferase (CDT) is increasingly recognized for its association
with enhanced virulence and higher patient mortality (Gerding
et al., 2014; Berry et al., 2017).

The method used for diagnosing CDI is one of the factors
limiting detection of multiple C. difficile strains in health or
disease. CDI diagnosis is based ideally on detection of free fecal
toxin, or, with less specificity, by the presence of toxin genes
(Surawicz et al., 2013; Martin et al., 2016). Therefore, in the
majority of settings, C. difficile culture is not performed and so
the number of C. difficile strains present is not determined.

The likelihood of detecting multi-strain infection or
colonization varies with the methods used. Multiple strains can
be detected by methods that can distinguish individual strains.
In the context of C. difficile, these methods include restriction
enzyme analysis (REA), pulsed field gel electrophoresis (PGFE),
PCR ribotyping, multilocus variable number tandem repeat
analysis (MLVA), multilocus sequence typing (MLST), and whole
genome sequencing (WGS) (Tenover et al., 2011; Knetsch et al.,
2013; Sim et al., 2017). Multiple strains may be detected by the
presence of more alleles present at a particular locus than is
possible if just one strain is present, dissimilar genotypes from
different colonies grown from the same isolate or difference
in ability to produce cytotoxin (Borriello and Honour, 1983;
Balmer and Tanner, 2011). Notably, the limited studies that have
investigated the presence of multiple strains of C. difficile in
patients with CDI, differ in their case selection criteria and in
the methods used for C. difficile culture, the number of colonies
tested and differentiation of strains (often reflecting the available
diagnostic technology) (Table 1).

SIGNIFICANCE

A key issue regarding colonization or infection by more than one
strain of C. difficile is the determination of whether recurrence
is due to the same (relapse) or different (reinfection) strain.
Most such CDI recurrence studies have examined single or few
colonies, or have not used a highly discriminative method, both of
which reduce the chance of isolating multiple strains of C. difficile.
For example, Figueroa et al. (2012) examined 90 patients who
had recurrent C. difficile infection using REA on single C. difficile
colonies (Figueroa et al., 2012). They showed that 75 participants
(83.3%) had a relapse. The remaining 15 (16.7%) participants
were found to have a reinfection. Based on the results obtained,
there was no evidence to suggest the presence of concomitant
carriage of more than 1 strain of C. difficile (Figueroa et al., 2012)
Although REA has respectable discriminatory power, newer
methods such as capillary PCR ribotyping and MLVA are more
discriminatory and therefore have a higher chance of identifying
mixed C. difficile strain infections (Kuijper et al., 2009). Kamboj
et al. (2011) used PCR ribotyping to explore patients with
recurrent C. difficile infection. The results suggested that the
majority of patients with recurrent C. difficile infection within

8 weeks (85/102 patients) had a relapse and not a reinfection.
This method has similar discriminative power to REA (Kuijper
et al., 2009). Based on the results, there was no evidence to suggest
the presence of more than 1 strain of C. difficile at any one time
(Kamboj et al., 2011). This may be due to the small number
of colonies studied as per the published protocol (Bidet et al.,
1999). A recent study by Behroozian et al. (2013) recognized this
limitation and analyzed approximately 95 colonies per sample
and found evidence of more than 1 C. difficile ribotype in 16/102
(16%) cases. Even with the large number of colonies studied,
there is a chance that less abundant ribotypes will be overlooked
(Behroozian et al., 2013).

As C. difficile is ubiquitous in nature, the presence of
multiple strains could simply reflect a recently ingested strain
when another has already colonized or been newly ingested.
However, colonization by multiple strains could affect the level
of host protection against C. difficile infection. At present, there
is insufficient evidence to determine the full implications of
colonization/infection with more than 1 strain of C. difficile.
Baines et al. (2013) demonstrated using an in vitro gut model
that 2 different population of C. difficile (differentiated by
antimicrobial susceptibility) were able to concurrently colonize,
populate and produce toxin. It is however, not possible to
determine the degree of contribution toward toxin production
(Baines et al., 2013). Longitudinal studies are needed to determine
the significance of this phenomenon in human beings.

Data from murine models suggest that colonization with a
non-toxigenic strain of C. difficile protects against disease in
hamster following a challenge with a toxigenic strain (Merrigan
et al., 2009). Balmer et al. suggests that in human beings,
infection with more than 1 strain of C. difficile is likely to
be a significant clinical and immunological phenomenon as it
may overwhelm the immune system by influencing the host
immune response in different ways. This may also affect pathogen
evolution, potentiate competitive, or mutualistic pathogen-
pathogen interaction, horizontal gene flow and treatment options
compared with single strain infection (Balmer and Tanner, 2011).
On the other hand, the presence of two competing strains
can be beneficial to the host as they could control each other,
similar to how probiotics have been proposed for the prevention
of CDI (Goldenberg et al., 2013). Notably, Gerding et al.
demonstrated that patients with an episode of primary CDI or
first recurrence within 8 weeks of the primary episode benefitted
from colonization with non-toxigenic C. difficile strain M3
(NTCD-M3). The recurrence rate of CDI in patients colonized
with NTCD-M3 was significantly lower compared with patients
who were not (11 vs. 30%). This reaffirms the notion that
colonization with a non-toxigenic strain is beneficial to the host
(Gerding et al., 2015).

DUAL STRAIN INFECTION

The observed incidence of mixed C difficile toxigenic strain
infection has been relatively stable over recent decades at
approximately 7–16% of all cases (Eyre et al., 2012, 2013;
Behroozian et al., 2013; Sun et al., 2016). Evidence of mixed strain
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infection was first reported by Borriello and Honour (1983).
The authors found that stool samples from all 6 studied cases
showed isolates of C. difficile that differed in cytotoxin production
(Borriello and Honour, 1983). O’Neill et al. (1991) later reported
a patient who had suffered both a reinfection and relapse.
The isolated strain did not produce cytotoxin in vitro but
toxin was detected in the stools. They hypothesized that this
is due to the presence of concomitant strains of C. difficile.
However, further investigation on 10 different colonies from each
sample using REA and cytotoxin studies did not support this
(O’Neill et al., 1991). Similarly, in a larger study, Wilcox et al.
(1998) retrospectively analyzed C. difficile colonies using random
amplification of polymorphic DNA (RAPD) fingerprinting, but
did not identify show more than one C. difficile strain per sample
time point (Wilcox et al., 1998). This may be due to the fact that
mixed infection is a rare occurrence or due to the limitations
of the detection methods (Barbut et al., 2000; Behroozian et al.,
2013). More recently, Hell et al. (2011); van den Berg et al. (2005)
investigated 5 or fewer colonies from each sample and found that
1/11 (9.1%) and 2/23 (8.7%) of samples, respectively, had multiple
strains of C. difficile.

With advancing technology, improved sampling methods and
sophisticated genotyping, C. difficile transmissions leading to
mixed infection and the presence of different toxigenic C. difficile
strains are being more readily identified (Eyre et al., 2012, 2013).
However, the reported rate of mixed infection remains similar.

CONCLUSION

Knowledge and understanding of C. difficile has grown
considerably since George and colleagues made the link

between C. difficile and human diseases (Heinlen and
Ballard, 2010). Evidence of dual strain infection was first
identified by Borriello and Honour (1983) after observing
differential expression of toxins (Borriello and Honour,
1983). With advancing technology, C. difficile typing
methods are becoming more discriminative and therefore
mixed strain infection can be detected more readily.
Interestingly, the incidence of mixed strain C. difficile infection
has been stable.

Currently, there are no studies examining the role of
mixed or dual strain infection with C. difficile in human
beings. A previous study in hamsters suggests that mixed
strain infection has the potential to be both beneficial and
harmful depending on the nature of the infecting strains
(Merrigan et al., 2009). In human beings, it is recognized
that patients who are colonized by non-toxigenic C. difficile
strain is at lower risk of developing C. difficile infection
while in hospital. This is supported by results from a Phase
2 randomized controlled trial using non-toxigenic C. difficile
spores to prevent recurrent C. difficile infection (Gerding et al.,
2015). Further studies to elucidate the interaction between
co-infecting or colonizing and infecting C. difficile strains
may help identify potential exploitable mechanisms to prevent
C. difficile infection.
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